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Abstract: Aquatic vegetation in shallow freshwater lakes are severely degraded worldwide, even
though they are essential for inland ecosystem services. Detailed information about the long term
variability of aquatic plants can help investigate the potential driving mechanisms and help mitigate
the degradation. In this paper, based on Google Earth Engine cloud-computing platform, we made
use of a 33-year (1987–2019) retrospective archive of moderate resolution Landsat TM, ETM+ and
OLI satellite images to estimate the extent changes in aquatic vegetation in Longgan Lake from
Middle Yangtze River Basin in China using the modified enhanced vegetation index, including
emerged, floating-leaved and floating macrophytes. The analysis of the long term dynamics of
aquatic vegetation showed that aquatic vegetation were mainly distributed in the western part of the
lake, where lake bottom elevation ranged from 11 to 12 m, with average water depth of less than 1 m
in spring. The vegetation area variation for the 33-year period were divided into six stages. In years
with heavy precipitation, the vegetation area decreased sharply. In the following years, the area
normally restored. Aquatic vegetation area had a significant negative correlation with the spring
water level and summer water level. The results showed that aquatic vegetation was negatively
affected when water depth exceeded 2.5 m in May and 5 m in summer. It is recommended that
water depth remain close to 1 m in spring and close to 3 m in summer for aquatic vegetation growth.
Our study provide quantitative evidence that water-level fluctuations drive vegetation changes in
Longgan Lake, and present a basis for sustainable lake restoration and management.

Keywords: spatial-temporal dynamics; aquatic vegetation; water level fluctuation; Longgan lake;
Google Earth Engine

1. Introduction

Wetlands play an important role in ecological services and socioeconomic services. As a basic
component of wetland ecosystems, aquatic vegetation in shallow freshwater provide a variety of
services, including improving water quality, maintaining aquatic ecosystem balance and providing
food and habitats for many aquatic animals [1–3]. According to a recent investigation, decreasing
aquatic vegetation are found in around 65.2% of the world lakes [4]. Due to rapid social and economic
development during the past decades, dramatic variations in the distribution area of aquatic vegetation
have been occurred in many lakes [5]. In addition, lake ecosystem have changed due to water level
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management, nutrient input and global climate change [6,7]. In views of this, it is necessary to study
the change trend of aquatic vegetation and its response to environmental factors.

Water-level fluctuation (WLF) has been well demonstrated as one of the core factors affecting
biomass, diversity, composition and structure of vegetation, by causing variations in environmental
factors for plant growth and germination, such as light, oxygen, temperature and nutrients etc. [8–10].
Based on the study of Great Lakes, Keddy and Reznicek concluded that during extremely high water
periods, the dominant species were killed, thus creating gaps; however, many plant species and
vegetation types regenerated from buried seeds during low water periods [11]. Therefore, fluctuating
water levels generally increase the diversity of vegetation types and plant species. The influence of WLF
on aquatic vegetation mainly manifests through variation of its amplitude and dynamic regime [12].
For example, by comparing the aquatic vegetation in two river-disconnected lakes (artificial water
regime) and the river-connected lake (natural water regime), Zhang et al. [13] found that the plant
species richness was highest in the disconnected lake with intermediate amplitude of WLFs, and lowest
in the connected lake. The amplitude of WLFs was the most important factor in determining the
distribution of lake-shore plants, followed by relative elevation and duration of submergence.

Macrophytes of different life forms response to WLF differently. By analyzing of the relationship
between aquatic vegetation and WLFs in Taihu Lake from 1989 to 2010, Zhao et al. [14] found that water
level from January to March had significant positive correlation with the coverage of emergent and
floating-leaved vegetation, while had negative correlation with the coverage of submerged vegetation.
Different macrophyte species of identical life form may also response to WLF differently. By treatment
of three submerged macrophytes under different amplitude of WLF, Wang et al. [15] found Hydrilla
verticillata exhibited more growth in static water, and Elodea nuttallii was inhibited by fluctuating water
level treatments, while Ceratophyllum demersum became more abundant when water levels fluctuated.

Because aquatic vegetation in lakes and wetlands are often hard to reach, satellite images of
Landsat and MODIS are employed for large scale and synoptic monitoring of lake vegetation [16–19].
Spectral indices (SIs), included various combinations of visible, near-infrared, and shortwave infrared
bands, are widely used because their flexibility and capability for aquatic vegetation mapping.
Villa et al. [20] and Villa et al. [21] summarized and compared several SIs for macrophyte mapping
and concluded that the modified enhanced vegetation index (EVI) performed the best for three shallow
freshwater bodies in different parts of Europe. The high temporal variability of aquatic vegetation
in decades can offer pivotal information about the biological complexity of the lakes and wetlands.
Szabó et al. [22] used Normalized Difference Vegetation Index (NDVI) for a 33-year long vegetation
spread monitoring survey in an artificial lake in Hungary. Combining four vegetation indices (VI),
Lopes et al. [23] studied the spatial and temporal vegetation changes within a coastal lagoon through
Landsat imagery between 1984 and 2017. Google Earth Engine (GEE) [24], which is a cloud-based
platform for earth science data analysis and visualization, is commonly used to study the dynamics of
wetland land cover [25–27]. However, studies using GEE to investigate the long term variability of
aquatic vegetation in shallow lakes are rarely found.

How water levels affect aquatic vegetation in natural lakes has been well studied. Hu et al. [28]
took the use of time-series MODIS data to explore the relationship between wetland vegetation and
factors linked with water-level fluctuations in Lake Poyang and Dongting. Using time-series of
both MODIS and Landsat, the hydrological influence on the distribution and transition of wetland
cover was studied [29]. Tan and Jiang [30], Wan et al. [31], You et al. [32], Zhang et al. [33] had also
analyzed the relationship between wetland vegetation and water level for Lake Poyang and Dongting.
However, Lake Poyang and Dongting are the only two lakes that are not dammed in the Yangtze
river basin. All other lakes in the middle reaches of the Yangtze River are separated from the Yangtze
River by dams and sluice gates. Thus, human interference is an important factor affecting lake water
levels. As a national wetland reserve of China, Longgan Lake is an artificial regulated lake. However,
the effects of human interference on water level to aquatic vegetation for Longgan Lake have been
little explored. It is helpful to explore the relationship between aquatic vegetation coverage and
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human regulated water levels with long-term data for lake ecological management. As submerged
macrophytes disappeared from the lake in late 1990s, this study will only focus on the extent of
emerged, floating-leaved and floating macrophytes.

Therefore, using GEE cloud-computing platform, this paper aimed to discuss the following
issues: (1) to distinguish aquatic vegetation using medium-resolution Landsat satellite imagery;
(2) to understand the long-term variation in the distribution area of aquatic vegetation over for more
than 30 years; (3) to build relationships between aquatic vegetation and parameters associated with
water-level fluctuations.

2. Materials and Methods

2.1. Study Area

Longgan Lake (29◦52′–30◦05′ N, 115◦19′–116◦17′ E ), located in the middle reaches of the Yangtze
River in central China, is a typical freshwater shallow lake covering an area of more than 300 km2 in
the junction of Hubei Province and Anhui Province (Figure 1). The lake is shaped like a shallow dish
with lake bottom topography ranging between 10.5 m and 13.3 m (meters above sea level, reference to
Wusong datum). The average spring water depth of the lake is 1–2 m, with a maximum summer depth
of 3–5 m, varying from year to year. The climate is subtropical and the average annual precipitation
in Longgan catchment is 1307 mm [34]. The western lakeshore was diked with three sluice gates
(Tuohu, Yanjia, Hukou) as shown in Figure 1, which have been built to regulate river flow and control
water levels since 1970s. The main inflows are from the northwestern catchment, and the outflow
drains into the Yangtze River. Longgan Lake is one of the national nature reserves of wetland in China,
serves as an important wetland habitat for many endangered waterbirds in the middle reaches of
Yangtze River [35].

Figure 1. Location of Longgan Lake. The elevation of the lake bottom ranges between 10.5 m and
13.3 m (meters above sea level, reference to Wusong datum).

In 1993, the lake was at mesotrophic state and the aquatic vegetation coverage was up to 89.7%.
Submerged macrophytes occupied the majority of the lake area, with a small area of emergent
and floating leaved macrophytes occupying the northwestern lakeshore. A total of 50 species of
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macrophytes were recorded in lake, including 15 species of submerged macrophytes, 7 species of
floating-leaved macrophytes, 6 species of floating macrophytes and 22 species of emergent macrophytes
or hygrophytes [36]. Since the late 1990s, submerged macrophytes almost disappeared, which was
confirmed by our field investigation of 2017–2018.

2.2. Aquatic Vegetation Survey Data

In order to validate Landsat data, we conducted vegetation survey from 2017 to 2018 in the
west part of Longgan Lake, where macrophytes were mostly distributed. The plant samples were
collected for species identification. The plant community was investigated according to Braun-Blanquet
methodology [37]. Georeferenced photographs were taken and the center coordinates were recorded
with a handheld GPS. Vegetation coverage was estimated with position data recorded on site.

Quite different from the results of the survey of 1993, our survey found that the lake became
highly eutrophic and vegetation coverage of the macrophytes decreased to 10%, indicating the wetland
vegetation has degraded significantly. A total of 18 plant species were observed, including 4 species of
submerged macrophytes, 5 species of floating-leaved macrophytes, 3 species of floating macrophytes
and 6 species of emergent macrophytes or hygrophytes. The aquatic vegetation was dominated
by emergent macrophyte Zizania caduciflora, floating-leaved macrophytes Trapa litwinowii and Trapa
bicornis (Figure 2). Submerged macrophytes were distributed sparsely with very low biomass in the
lake. In 2017, the vegetation was classified to 6 associations, i.e., Trapa bicornis Ass., Nelumbo nucifera
Ass., Euryale ferox Ass., Eichhornia crassipes Ass., Zizania caduciflora+ Polygonum orientale Ass., and Trapa
litwinowii+ Eichhornia crassipes+ Spirodela polyrhiza Ass.. In 2018, Nelumbo nucifera+ Trapa litwinowii+
Euryale ferox Ass. appeared near the north shoreline, but the Trapa litwinowii+ Eichhornia crassipes+
Spirodela polyrhiza Ass. disappeared (Figure 3).

Figure 2. Photographs of aquatic vegetation observed in Longgan Lake. (a) Nelumbo nucifera
Ass., (b) Euryale ferox Ass., (c) Trapa bicornis Ass., (d) Eichhornia crassipes Ass., (e) Zizania caduciflora+
Polygonum orientale Ass., (f) Trapa litwinowii+ Eichhornia crassipes+ Spirodela polyrhiza Ass. and
(g) Nelumbo nucifera+ Trapa litwinowii+ Euryale ferox Ass.
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Figure 3. Distribution of macrophyte species in the western part of Longgan Lake for (a) September
2017 and (b) September 2018.

2.3. Satellite Data

All available Landsat top-of atmosphere (TOA) reflectance images for the WRS-2 footprints
121/39 and 122/39 in Google Earth Engine between 1987 and 2019 were used in this study, including
Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper-plus (ETM+) and Landsat
8 Operational Land Imager (OLI) (as listed in Table 1). These datasets have a spatial resolution of
30 m. The images in late July were primarily selected to represent the vegetation cover extent of a year,
because the vegetation coverage was highest during this time of a year. For years without cloud-free
images in July, images in June and August were chosen instead. For Landsat 7 image in 2012, SLC-off
gaps were filled with Phase 2 USGS Gap-Fill Algorithm [38].

Table 1. Temporal distribution of available Landsat images in Longgan Lake during 1987 to 2019.

Date Sensor Date Sensor

27/08/1987 Landsat 5 TM 07/08/2003 Landsat 5 TM
26/06/1988 Landsat 5 TM 24/07/2004 Landsat 5 TM
15/07/1989 Landsat 5 TM 12/08/2005 Landsat 5 TM
09/07/1990 Landsat 5 TM 30/07/2006 Landsat 5 TM
26/06/1991 Landsat 5 TM 09/08/2007 Landsat 5 TM
23/07/1992 Landsat 5 TM 03/07/2008 Landsat 5 TM
10/07/1993 Landsat 5 TM 13/07/2009 Landsat 5 TM
04/07/1994 Landsat 5 TM 25/07/2010 Landsat 5 TM
05/06/1995 Landsat 5 TM 03/07/2011 Landsat 5 TM
25/07/1996 Landsat 5 TM 22/07/2012 Landsat 7 ETM+
29/08/1997 Landsat 5 TM 01/07/2013 Landsat 8 OLI_TIRS
08/07/1998 Landsat 5 TM 02/06/2014 Landsat 8 OLI_TIRS
02/07/1999 Landsat 5 TM 05/06/2015 Landsat 8 OLI_TIRS
05/07/2000 Landsat 5 TM 23/06/2016 Landsat 8 OLI_TIRS
24/07/2001 Landsat 7 ETM+ 28/07/2017 Landsat 8 OLI_TIRS
11/07/2002 Landsat 7 ETM+ 31/07/2018 Landsat 8 OLI_TIRS

02/07/2019 Landsat 8 OLI_TIRS

High quality Sentinel-2 data with close acquisition dates as the corresponding Landsat images
were used to validate the vegetation mapping results by the proposed method. Sentinel-2 have more
than 10 bands, with spatial resolutions of 10–20 m. Moreover, a PROBA-V (Project for On-Board
Autonomy-Vegetation) image of 26 June 2018 was also used in the discussion to show the aquatic
vegetation cover difference between June and July 2018. Though PROBA-V has a lower spatial
resolution (100 m) than that of Landsat, it was the only cloud free image that was found for June 2018
for Longgan Lake. PROBA-V is a satellite mission tasked to map land cover and vegetation growth on



Water 2020, 12, 2178 6 of 16

a daily basis. The sensor collects data in three VNIR (red, blue and near-infrared) bands and one SWIR
(short-wave infrared) spectral band.

2.4. Hydrological Data

Water levels of Longgan Lake were controlled by artificial regulation using three hydrological
stations (Figure 1). Since the start of the wet season (usually from May to September), the gates are
closed to store water in the lakes and prevent flooding of the land. The water is released back into
the Yangtze River in late autumn [39]. Daily water level data (meters above sea level, reference to
Wusong datum) from May to September each year from 1987 to 2018 were collected. In this study,
the spring water level was defined as the the average water level in May, and the summer water level
was defined as the average water level in June, July and August. However, spring and summer water
levels were missing in some years due to incomplete water level records.

The fifth generation ECMWF atmospheric reanalysis of the global climate (ERA5) from 1987
to 2018 were used to analyze the temporal trend of annual precipitation for Longgan Lake. ERA5
provides several improvements compared to ERA-Interim data with a much higher resolution in both
time and space [40]. Its horizontal resolution is approximately 30 km.

2.5. Methods

2.5.1. Determination of Lake Boundaries

The spectral signatures of aquatic vegetation largely overlap with the signatures of terrestrial
vegetation, which leads to the misclassification of aquatic and terrestrial vegetation patches in their
transitional areas. Thus, terrestrial areas around the lake were blocked out using a mask of the lake
based on the water surface in 2018. The same mask was applied to all Landsat images to obtain
comparable results. Moreover, the northeastern and southern boundary of the lake have also been
masked, because these area have been extensively used for aquaculture.

2.5.2. Aquatic Vegetation Mapping

Large-scale aquatic vegetation mapping usually employs a series of spectral indices (SIs),
combining with threshold determination approaches [41,42]. The performance of different SIs have
been assessed for aquatic vegetation mapping, and the 2-band enhanced vegetation index (EVI2)
outperforms others in extracting floating and emergent vegetation [20,21,43]. EVI2 is a two-band
adaptation of EVI that has been developed without a blue band. It retains sensitivity and linearity as
EVI in high biomass regions [44]. EVI2 is calculated based on Equation (1),

EVI2 = 2.5
(RNIR − RR)

(RNIR + 2.4RR + 1)
(1)

where RNIR and RR are the top-of-atmosphere (TOA) reflectance of the near-infrared and red bands.
EVI2 values were then used to distinguish between water and aquatic vegetation through

a threshold selection method. Dynamic thresholds, instead of a static threshold, are normally
recommended for remote sensing data of different phases, due to different satellite instruments
used, or different atmospheric conditions or water environment for images of different dates [23,45].
For each scene, a threshold was selected based on the EVI2 histogram using the Otsu method that
divide the study area into two classes (aquatic vegetation and open water) [46]. Otsu is a nonparametric
unsupervised method, which find the threshold to minimize the within class variance of two classes.
The histograms of EVI2 for 1997, 2001, and 2018 are shown in Figure 4 with the threshold values.
For this study, the pixels with EVI2 values below and above the selected threshold were assigned as
water and aquatic vegetation, respectively. The classification results and the false color composite
images are also shown in Figure 4 for visual comparison.
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Figure 4. Classification results based on the optimized threshold for 1997, 2001, 2018. The pixels with
EVI2 values below and above the selected threshold were assigned as water and aquatic vegetation,
respectively. (a) Classification results; (b) The false color composite images; (c) EVI2 histogram and the
Otsu segmentation thresholds.

2.5.3. Accuracy Assessment of Macrophytes Mapping

Extensive field survey data of aquatic vegetation in Longgan Lake were only available for
September 2017 and September 2018 (Figure 3). The field survey results for a total of 48 field
survey samples (pixels) were extracted and compared with the classification results of July 2017
and 2018, as shown in Figure 5 and Table 2. There were two possible reasons for the relatively low
accuracy. Firstly, aquatic vegetation extent declined from summer to fall due to withering (e.g., Trapa
litwinowii located in the center of the western lake withered from July to September). Secondly, floating
macrophytes could change location quickly due to winds (e.g., Eichhornia crassipes located along
the western shore of the lake during the survey of 2018 were not presented in the July image used
for classification.)

Figure 5. Comparison of field survey data and classification results for (a) 2017 and (b) 2018.

Table 2. Confusion matrix of classification result for aquatic vegetation (compared to field data).

Year Overall Accuracy(%) Kappa Producer’s Accuracy (%) User’s Accuracy (%)

2017 79.17 0.5833 100.00 58.33
2018 85.42 0.7267 60.00 90.00
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Considering there was a two month difference between the Landsat data and the field data used,
Sentinel-2 false color composite images of 26 July 2017 and 31 July 2018 were also used to validate
the classification results. Aquatic vegetation boundaries were identified manually from Sentinel-2.
Then, the manually delineated aquatic vegetation boundaries were compared with the classification
results of Landsat using the confusion matrix. Table 3 listed the accuracy of aquatic vegetation
classification. The results showed that the overall accuracies were higher than 90% and the kappa
coefficients all exceeded 0.8, which demonstrated that the model performed well for distinguishing
aquatic vegetation.

Table 3. Confusion matrix of classification result for aquatic vegetation (Compared to Sentinel-2).

Year Overall Accuracy (%) Kappa Producer’s Accuracy (%) User’s Accuracy (%)

2017 97.12 0.8682 83.04 94.62
2018 97.95 0.8183 82.75 83.10

3. Results

3.1. Seasonal and Decadal Variation of Water Level

The mean and variation of the monthly water level (meters above the sea water, reference to
Wusong datum) for the study period were shown in Figure 6. It can be seen that the monthly average
water level has been increasing, reaching its peak in August. Annual precipitation, average spring
water level and summer water level of Longgan Lake from 1987 to 2018 were shown in Figure 7.
Data gaps are caused by the lack of data. In spring, the highest water level was 13.49 m in 2010, and the
lowest water level was 12.11 m in 2004. In summer, the highest water level was 16.28 m in 1992, and the
lowest water level was 12.31 m in 2007. The changes of water level were generally consistent with
the annual precipitation of Longgan Lake from 1987 to 2018. It can be seen that years of 1991, 1998,
2002, 2010, 2015 and 2016 have abnormally high annual precipitation and years of 2006 and 2007 have
abnormally low annual precipitation.

Figure 6. Box plot of the water levels from May to September for Longgan Lake (meters above sea
level, reference to Wusong datum).
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Figure 7. Annual precipitation, average spring water level and summer water level of Longgan Lake
from 1987 to 2018. The red circles present years with abnormally high annual precipitation.

3.2. Inter-Annual Dynamics of Aquatic Vegetation

The spatial distribution of aquatic vegetation in Longgan Lake at the peak of vegetation coverage
each year from 1987 to 2019 was shown in Figure 8. Due to the low temporal resolution of Landsat
and the effects of cloud cover, it was impossible to accurately obtain the maximum aquatic vegetation
coverage of each year. Even though the spatial distribution patterns of aquatic vegetation varied from
year to year, aquatic vegetation were primarily distributed in the western region of the lake, where
lake bottom elevation ranged from 11 to 12 m, with average water depth of less than 1 m in spring.
For years that had high vegetation extent, aquatic vegetation expanded towards the center of the lake.
For years with low vegetation extent, aquatic vegetation shrank towards the northwest corner.

The temporal variation of aquatic vegetation area in Longgan Lake from 1987 to 2019 were shown
in Figure 9. In 2011, the vegetation area reached the maximum area of 73.99 km2. In 2015, the vegetation
area was the smallest, occupying 8.72 km2, only about one-tenth of the aquatic vegetation area in 2011.
In order to analyze the vegetation restoration process in a certain period under the influence of
abnormal precipitation, the years of 1991, 1998, 2002, 2010 and 2015 were used as the dividing points.
Thus, the inter-annual aquatic vegetation variation were divided into six stages. During the first stage
(1987–1991), the vegetation area had remained above 35 km2 in the first three years and then had
decreased. Especially, the area was smallest in 1991, occupying only 14.87 km2. The second stage
occurred from 1992 to 1998. During this stage, the area began to increase, reaching to a maximum
in 1996. Since then, the area had decreased, but at a lower rate. The third stage occurred from 1999
to 2002. During this period, the area increased firstly and then decreased. During the fourth stage
(2003–2010), the area maintained at a higher value over 65 km2. In 2010, the area dropped sharply
to 12.34 km2. During the fifth stage (2011–2015), the area increased firstly at a very high rate in 2011,
and then remained above 45 km2. In 2015, the area dropped sharply to 8.72 km2. The sixth stage
occurred from 2016 to 2019. During this stage, the area was very small except for 2019.
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Figure 8. Spatial distribution map of aquatic vegetation in Longgan Lake from 1987 to 2019.
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Figure 9. Aquatic vegetation area of Longgan Lake from 1987 to 2019.

3.3. Relationship between Aquatic Vegetation Area and Water-Level Change

The variation of aquatic vegetation area and water level for Longgan Lake from 1987 to 2019 were
shown in Figure 10. When the water level rose above to 13 m in spring, the area of aquatic vegetation
greatly reduced. When the water level exceeded 16 m in summer, the area decreased dramatically.

Figure 10. Decadal variations of aquatic vegetation area and water level for Longgan Lake from 1987
to 2019. (a) Aquatic vegetation area related to water level in spring; (b) Aquatic vegetation area related
to water level in summer.

In order to explore the coupling relationship between the area of aquatic vegetation and
water-level fluctuation rhythm, Pearson correlation analysis was used. The results revealed that
aquatic vegetation area had a significant negative correlation with spring water level and summer
water level, with Pearson correlation coefficients of −0.70 (P < 0.01) and −0.67 (P < 0.01), respectively.
As shown in Figure 11, specifically, the area of aquatic vegetation was very large when water level
was low, and vice versa. In 2011, the area of aquatic vegetation was largest, the spring water level was
below 12.5 m and the summer water level was below 14 m.
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Figure 11. Correlation between aquatic vegetation distribution area and water level. (a) Spring water
level; (b) Summer water level.

4. Discussion

4.1. Effects of Remote-Sensing Imagery Acquisition Time on the Maximum Aquatic Vegetation Area of a Year

According to field surveys, the main growth season for aquatic vegetation in Longgan Lake is
from May to September. Thus, aquatic vegetation area normally reaches the maximum in late July.
Therefore, July images were used with priority to get the maximum vegetation cover of a year.
However, the maximum aquatic vegetation area extracted in this analysis might not be the true
maximum cover area of a year. Firstly, images in June and August were used as supplements due to
cloud coverage in July. Moreover, the locations of floating vegetation were greatly influenced by wind
speed and direction, leading to large variability in their spatial distribution. As shown in Figure 11,
some outliers did not follow the rule that the vegetation area was larger when the water level was lower.
In 2018, the aquatic vegetation area was 14.49 km2, and the water level in spring was 12.5 m. It showed
that the water level in spring was low, but the extracted vegetation area was also relatively small
compared to other years. As it can be seen in the PROBA-V image and Sentinel-2 image (Figure 12),
large area of aquatic vegetation were distributed in the center of the western lake on 26 June 2018.
However, these aquatic vegetation disappeared in the July 2018 images. Based on the field survey
of 2017, the center of the western lake was largely covered by Trapa litwinowii+ Eichhornia crassipes+
Spirodela polyrhiza Ass.. Same floating-leaved and floating plants present in June 2018, were possibly
withered or blown away to other locations in July 2018. Despite these uncertainties, a good relationship
between aquatic vegetation area and water level was still achieved for the three decades study period,
indicating the robustness of the analysis.

Figure 12. Comparison of PROBA-V image, Sentinel-2 image and Landsat 8 image in 2018. (a) PROBA-V
image on 26 June 2018; (b) Sentinel-2 image on 26 June 2018; (c) Landsat 8 image on 31 July 2018.

4.2. Effects of Water-Level Fluctuation on Aquatic Vegetation Area

As shown in Figures 10 and 11, aquatic vegetation area showed a significant negative correlation
with water level. The existing vegetation types in the lake have adapted to the long-term variation
of water level. The expansion and retreat of aquatic vegetation are greatly related to lake bottom
topography, as water depth is the determining factor for aquatic vegetation growth. The normal
spring water depth in the northwestern part of the lake is less than 1 m, which is suitable for aquatic
vegetation growth. For years with abnormally high spring water level, due to high water depth,
aquatic vegetation retreated to areas close to the boundary of the lake where water depth was low.
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When water level rose above to 13 m in spring and 16 m in summer, aquatic plants largely disappeared.
To show the optimal water depth for aquatic vegetation, the distributions of spring and summer water
depths for all area mapped as aquatic vegetation in all years were calculated. It can be seen in Figure 13
that in areas with aquatic vegetation, water depths did not exceed 2.5 m in May and 5 m in summer.
To preserve aquatic vegetation in the western part of the lake, it is recommended that water depth
remain close to 1 m in spring and close to 3 m in summer. In spring, higher water level reduced light,
which was not conducive to seed germination and seedling growth [47,48]. In summer, continuous
high water level could drown vegetation, resulting in reduced oxygen supplies and causing the death
of aquatic plants [49]. Significantly, extreme hydrological events in summer, such as flooding, would
cause massive aquatic vegetation collapse, and consequently the decline of ecosystem diversity.

Figure 13. Water depth distribution for areas with aquatic vegetation in (a) Spring (average water
depth in May) and (b) Summer (average water depth of June, July and August) for all years.

5. Conclusions

The aim of this study was to map the long term variability of aquatic vegetation extent in a
human dammed lake and to investigate the correlation between aquatic vegetation and water level
fluctuation of the lake. For this purpose, the modified enhanced vegetation index with Otsu threshold
method was used to map the aquatic vegetation area in Longgan Lake for the 33-year period, including
emerged, floating-leaved and floating macrophytes, using archived Landsat images from 1987 to 2019
on GEE platform. The classification results were validated by field survey data and other satellite
data. Results showed that aquatic vegetation were mainly distributed in the western part of the lake,
where lake bottom elevation ranged from 11 to 12 m, with average water depth close to 1 m in spring.
The relationships between aquatic vegetation area and spring and summer water-level fluctuation
were also analyzed. For years with increased vegetation cover, aquatic vegetation would expand
from the northwestern to the center of the lake. Years with extremely high precipitation were related
to low vegetation area. In the following years, the area normally restored. The aquatic vegetation
area showed a significant negative correlation with the spring water level and summer water level.
The results showed that aquatic vegetation was negatively affected when water depth exceeded 2.5 m
in May and 5 m in summer. It is recommended that water depth remain close to 1 m in spring and
close to 3 m in summer to assure successful aquatic vegetation growth. The results from our study
provided information about the optimum water level for aquatic vegetation growth in Longgan Lake.
These findings can provide the basis for wetland management and restoration. Future work will
mainly focus on the classification of different aquatic vegetation types and the inter-seasonal dynamics
based on multi-temporal and multi-source remote sensing imagery.
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seasonal dynamics using dense time series of medium resolution satellite data. Remote Sens. Environ. 2018,
216, 230–244.

22. Szabó, L.; Deák, B.; Bíró, T.; Dyke, G.J.; Szabó, S. NDVI as a Proxy for Estimating Sedimentation and
Vegetation Spread in Artificial Lakes—Monitoring of Spatial and Temporal Changes by Using Satellite
Images Overarching Three Decades. Remote Sens. 2020, 12, 1468.

23. Lopes, C.L.; Mendes, R.; Caçador, I.; Dias, J.M. Evaluation of long-term estuarine vegetation changes through
Landsat imagery. Sci. Total Environ. 2019, 653, 512–522.

24. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale
geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27.

25. Wang, X.; Xiao, X.; Zou, Z.; Hou, L.; Qin, Y.; Dong, J.; Doughty, R.B.; Chen, B.; Zhang, X.; Chen, Y.; Ma, J.;
Zhao, B.; Li, B. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google
Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 163, 312–326.

26. Wang, Y.; Ma, J.; Xiao, X.; Wang, X.; Dai, S.; Zhao, B. Long-term dynamic of Poyang Lake surface water:
A mapping work based on the google earth engine cloud platform. Remote Sens. 2019, 11, 313.

27. Inman, V.L.; Lyons, M.B. Automated Inundation Mapping Over Large Areas Using Landsat Data and Google
Earth Engine. Remote Sens. 2020, 12, 1348.

28. Hu, Y.; Huang, J.; Du, Y.; Han, P.; Wang, J.; Huang, W. Monitoring wetland vegetation pattern response
to water-level change resulting from the Three Gorges Project in the two largest freshwater lakes of China.
Ecol. Eng. 2015, 74, 274–285.

29. Liang, D.; Lu, J.; Chen, X.; Liu, C.; Lin, J. An investigation of the hydrological influence on the distribution
and transition of wetland cover in a complex lake floodplain system using time-series remote sensing and
hydrodynamic simulation. J. Hydrol. 2020, 587, 125038.

30. Tan, Z.; Jiang, J. Spatial-Temporal Dynamics of Wetland Vegetation Related to Water Level Fluctuations in
Poyang Lake, China. Water 2016, 8, 397.

31. Wan, R.; Xue, D.; David, S. Vegetation Response to Hydrological Changes in Poyang Lake, China. Wetlands
2019, 39, 99–112.

32. You, H.; Fan, H.; Xu, L.; Wu, Y.; Wang, X.; Liu, L.; Yao, Z.; Yan, B. Effects of Water Regime on Spring Wetland
Landscape Evolution in Poyang Lake between 2000 and 2010. Water 2017, 9, 467.

33. Zhang, C.; Yuan, Y.; Zeng, G.; Liang, J.; Guo, S.; Huang, L.; Hua, S.; Wu, H.; Zhu, Y.; An, H.; Zhang, L.
Influence of hydrological regime and climatic factor on waterbird abundance in Dongting Lake Wetland,
China: Implications for biological conservation. Ecol. Eng. 2016, 90, 473–481.

34. Zhang, E.; Cao, Y.; Langdon, P.; Jones, R.; Yang, X.; Shen, J. Alternate trajectories in historic trophic change
from two lakes in the same catchment, Huayang Basin, middle reach of Yangtze River, China. J. Paleolimnol.
2012, 48, 367–381.

35. Hu, H.; Kang, H.; Gong, G.; Zhu, M.; Zheng, W.; Wu, F.; He, D.; Li, Z.; Geng, D. Biodiversity of winter
waterbirds in Hubei, China. Resour. Environ. Yangtze Basin 2005, 14, 422–428.

36. Zhang, S.; Dou, H.; Jiang, J. Aquatic vegetation in Longgan Lake. J. Lake Sci. 1996, 8, 161.
37. Tomaselli, V.; Di Pietro, R.; Sciandrello, S. Plant communities structure and composition in three coastal

wetlands in southern Apulia (Italy). Biologia 2011, 66, 1027.
38. Phase 2 USGS Gap-Fill Algorithm. Available online: https://landsat.usgs.gov/sites/default/files/

documents/L7SLCGapFilledMethod.pdf (accessed on 7 October 2018).
39. Yuan, L.; Liu, G.; Li, W.; Li, E. Seed bank variation along a water depth gradient in a subtropical lakeshore

marsh, Longgan Lake, China. Plant Ecol. 2007, 189, 127–137.
40. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.;

Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society
2020, doi: 10.1002/qj.3803

41. Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009,
113, 2118–2129.

42. Zhao, D.; Lv, M.; Jiang, H.; Cai, Y.; Xu, D.; An, S. Spatio-temporal variability of aquatic vegetation in Taihu
Lake over the past 30 years. PLoS ONE 2013, 8, e66365.

43. Villa, P.; Bresciani, M.; Bolpagni, R.; Pinardi, M.; Giardino, C. A rule-based approach for mapping macrophyte
communities using multi-temporal aquatic vegetation indices. Remote Sens. Environ. 2015, 171, 218–233.

https://landsat.usgs.gov/sites/default/files/documents/L7SLCGapFilledMethod.pdf
https://landsat.usgs.gov/sites/default/files/documents/L7SLCGapFilledMethod.pdf


Water 2020, 12, 2178 16 of 16

44. Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without
a blue band. Remote Sens. Environ. 2008, 112, 3833–3845.

45. Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index.
Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317.

46. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979,
9, 62–66.

47. Zhang, X.; Liu, X.; Wang, H. Developing water level regulation strategies for macrophytes restoration of a
large river-disconnected lake, China. Ecol. Eng. 2014, 68, 25–31.

48. Zou, L.; Nie, Z.; Yao, X.; Shi, J. Effects of light on submerged macrophytes in eutrophic water:
Research progress. Chin. J. Appl. Ecol. 2013, 24, 2073–2080.

49. Yuan, S.; Zhang, X.; Liu, X.; Wang, H. Ecological water level management strategy for aquatic vegetation in
the mid-lower yangtze shallow lakes. Acta Hydrobiol. Sin. 2019, 43, 104–109.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Study Area
	Aquatic Vegetation Survey Data
	Satellite Data
	Hydrological Data
	Methods
	Determination of Lake Boundaries
	Aquatic Vegetation Mapping
	Accuracy Assessment of Macrophytes Mapping


	Results
	Seasonal and Decadal Variation of Water Level
	Inter-Annual Dynamics of Aquatic Vegetation
	Relationship between Aquatic Vegetation Area and Water-Level Change

	Discussion
	Effects of Remote-Sensing Imagery Acquisition Time on the Maximum Aquatic Vegetation Area of a Year
	Effects of Water-Level Fluctuation on Aquatic Vegetation Area

	Conclusions
	References

