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Abstract: Frequent flood disasters have caused serious damage to karst areas with insufficient
measured rainfall data, and the analysis of the applicability of satellite rainfall data in runoff

simulation is helpful to the local water management. Therefore, the purpose of this study is to
analyze the accuracy of IMERG satellite rainfall data and apply it to long-term runoff simulations in a
karst area—the Xiajia River basin, China. First, R (correlation coefficient) and POD (probability of
detection) are applied to analyze the accuracy of the IMERG data, and the SWAT model is used for
runoff simulation. The results show that the accuracy of the original IMERG data is poor (R range
from 0.412 to 0.884 and POD range from 47.33 to 100), and the simulation results are “Unsatisfactory”
(NSE (Nash-Sutcliffe efficiency coefficient) ranged from 0.17 to 0.32 and RSR (root mean square
standard deviation ratio) ranged from 0.81 to 0.92). Therefore, the GDA correction method is used to
correct the original IMERG data, and then the accuracy analysis and runoff simulation are carried out.
The results show that the accuracy of the corrected IMERG data is better than that of the original
data (R range from 0.886 to 0.987 and POD range from 94.08 to 100), and the simulation results
of the corrected IMERG data are “Satisfactory” (NSE is over 0.55 and RSR is approximately 0.65).
Therefore, the corrected data have a certain applicability in long-term continuous runoff simulations.
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1. Introduction

Global climate change is an undeniable fact, and under the influence of climate change, flood
disasters occur frequently, causing long-term and large-scale damage and impacts [1]. A more precise
grasp of the flooding process is helpful to reduce the risk of flood disasters, so as to protect people’s life
and health and promote the sustainable development of economy [2]. Therefore, hydrological models
have become the key way to solve such problems [3]. Commonly used hydrological models include
the SHE model, SWAT model [4–7], TOPMODEL model [8–10], and the Xinanjiang model [11,12], etc.
With further research, various coupling models have been widely used. Senatore et al. established a
coupled atmospheric hydrological model by coupling the regional climate model WRF and WRF-Hydro
model and applied it to the central Mediterranean [13]; Javier Senent-Aparicio applied four nonlinear
time series intelligent models combined with the SWAT model to estimate the IPF (the instantaneous
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peak flow) based on MMDF (the maximum mean daily flow) [14]. The karst landform covers 12% of
the Earth’s continent [15], and the hydrological process is unique because of its special hydrogeological
conditions. The hydrological simulation is critical to flood control, water and sediment management,
and for maintaining the ecological environment health, especially for a karst area. Ravbar et al. analyzed
the potential methodological problems by using the most commonly used karst water vulnerability
assessment model to the Slovenian karst area [16]. The sedimentation rate of floodplains impacted by
land-use changes in the Dragonja catchment in southern Slovenia was estimated by Keesstra et al. [17].
The WATEM/SEDEM model was applied to study the source of suspended sediments in the karst basin
of Slovenia [18]. It is well known that China is one of the most developed karst countries with a wide
range of karst landforms in the southwest [15], and the hydrological process modeling becomes a major
challenge for local water management. Zhou et al. constructed a combination of the Xin’anjiang (XAJ)
model and two reservoir-based karst models to better simulate runoff in the karst and non-karst regions
of the Lijiang River Basin [19]. Meng et al. proposed a threshold-ANN model (T-ANN) to predict the
water flow in a small karst watershed in Hubei Province, China, and achieved good results [20].

For flood simulation, precipitation is one of the most important inputs of the hydrological model,
and the accuracy of the precipitation data is critical to the hydrological process simulation [21].
Although hydro-meteorological stations are the most common methods to obtain precipitation data,
some limitations should be addressed. The spatial representation of this method is insufficient,
a station can only represent the precipitation in a certain range, and it is difficult to describe the actual
precipitation in a region when the precipitation stations are relatively sparse and irregular [22,23].
As stated by Duan et al. [24], the type, density and locations of ground-based observations in
mountainous regions are constrained since the terrain complexity, leading to sparse, poorly maintained,
and irregularly distributed observing networks. To further expand the access to precipitation data
and improve the accuracy of precipitation data, a satellite rain measurement was developed [25,26].
The Satellite rain measurement technology uses satellite-borne rain measurement radar to send and
receive signals to clouds with active microwave technology and convert the scattering data into rainfall
through the built-in algorithms [27,28]. Currently, multiple sets of satellite precipitation retrieval
products are commonly used, such as TMPA (TRMM multi-satellite precision analysis) products and
IMERG (integrated multi-satellite retrievals for GPM) products of NASA in the United States. However,
as the satellite rain measurement is an indirect method to identify infrared and microwave emission,
its precipitation inversion accuracy is affected by latitude and longitude, seasonality, precipitation type,
terrain, and other factors. YANG et al. analyzed the characteristics between precipitation variation
trend (PVT) and altitude, indicating that the correlation between PVT and altitude in different regions
was different. Zhou et al. compared the data of TMPA 3b42v6 with the data of 624 ground stations in
China and found that the accuracy of satellite precipitation decreased from southeast to northwest [29],
and it was worse in complex terrain areas. Tang et al. found that IMERG data did not perform well
in arid and high-latitude areas of China [30]. Toshiaki et al. found that it is difficult to discriminate
rain echoes from the surface echo at ranges near the surface, especially over mountainous regions [31].
As stated by Prat et al, capturing the space-time variability of precipitation across mountainous regions
remains a major challenge for satellite-based precipitation estimates [32], and the satellite-based
products tend to severely underestimate rainfall at higher elevation [33]. Therefore, it is necessary
to improve the accuracy of satellite data through correction. Cheema and Bastiaanssen used the RA
(regression analysis) and GDA (Geographical Differential Analysis) method to locally correct the
TRMM3B43 precipitation data and found that the GDA method performed better [34]. Goovaerts et al.
cross-validated the prediction performance of the three geostatistical interpolation algorithms GDA,
TP (Thiessen polygon method), and OK (ordinary Kriging method) [35]. Cheema and Bastiaanssen
found that the GDA technique performed better with higher efficiency and smaller error in complex
mountainous terrains [34]. The GDA and the Geographical ratio analysis methods (GRA) were applied
by Duan et to the scale corrections of the annual and monthly precipitation, and they found that GDA
and GRA were the most effective methods [36]. Besides, the precipitation data can be interpolated
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using the IDW method, Kring method, and Spline Function method, etc. [37], and the IDW technique
was most commonly adopted because of its robustness and simplicity [34].

Scholars have studied the accuracy between IMERG precipitation data and ground station data in
various regions [38–41]. For the karst basin, southwest China, the geological structure is variable, the
runoff response process is complex, and the surface rainfall stations are relatively sparse, resulting in
difficulties in local flood warning, water resource utilization, and soil-water conservation [29,42,43].
However, there are currently few studies on the runoff simulation of IMERG precipitation data,
especially in the karst area of Southwest China. Therefore, the objective of this study is to analyze the
accuracy of the IMERG satellite precipitation data and evaluate the applicability of IMERG satellite
precipitation data to runoff simulation in a small karst basin-XiaJia River basin in southwest China. The
outline of this paper follows: Section 2 briefly introduces the accuracy evaluation method and correction
method (GDA) of satellite precipitation data and the use of SWAT model; Section 3 evaluates the accuracy
of the IMERG data before and after correction, and respectively drives SWAT model to simulate runoff,
and compares the difference of applicability. The summary and conclusions follow in Section 4.

2. Materials and Methods

2.1. Study Area and Data

The Xiajia River basin with the main river channel of 35.12 km and a drainage area of 799.20 km2,
is a typical karst area in Southwest China (Figure 1a). The mainstream in the Xiajia River basin is the
Chengbi River (the upper reaches are called the Yangba River), and its main tributaries include the
Chaoli, Mengsha, Yaoma, and Dancun River. There is a natural karst cave (water source cave) on the
main river channel in southeastern Lingyun County. Most of the water from upstream of the cave
belongs to underground undercurrent. The measured precipitation and flow data from 1 January 2002,
to 3 September 2018, are recorded by Chaoli station (CLS), Donghe station (DHS), Lingyun station
(LYS), and Xiajia station (XJS) (Table 1) [44–46]. The satellite data used are IMERG early data with a
0.5-h resolution from 12 March 2014, to 3 September 2018, which has the shortest delay. The download
space ranges from 24.1◦ N to 24.6◦ N, and from 106.3◦ E to 106.8◦ E. The spatial grid distribution of
the IMERG precipitation data is shown in Figure 1b. Since the coordinated universal time (UTC) of
IMERG satellite precipitation data, it is necessary to add an 8-h time difference to convert it into Beijing
time to realize the unification of satellite data and ground data time.
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Table 1. The GPS coordinates and elevation of each station.

Station Code Station Name Station Category Longitude Latitude Elevation(m)

20,000,900 Chaoli Rainfall Station 106◦30′14.736” E 24◦14′21.567” N 625
20,001,300 Donghe Rainfall Station 106◦43′25.983” E 24◦21′37.121” N 897
20,000,800 Lingyun Rainfall Station 106◦34′26.216” E 24◦20′42.088” N 444

20,001,000 Xiajia Hydrological
Station 106◦38′51.175” E 24◦17′18.718” N 385

2.2. Evaluation Indices

The Correlation coefficient is applied to the accuracy evaluation of IMERG satellite precipitation
data at temporal and spatial scales. The Probability of detection, False alarm rate (FAR), and Critical
success index (CSI) are selected to evaluate the precipitation detection capability. The indexes mentioned
above are calculated by the following equation [47]:

R =

N∑
i=1

(xi −X)(x0i −X0)√
N∑

i=1
(xi −X)2

√
N∑

i=1
(x0i −X0)2

(1)

POD =
H

H + M
(2)

FAR =
F

H + F
(3)

CSI =
H

H + F + M
(4)

where N is the number of samples; xi is the precipitation observed by the ground stations, mm; x0i
is the precipitation observed by IMERG, mm; X is the average precipitation observed by the ground
stations, mm; X0 is the average precipitation observed by IMERG, mm; H is the precipitation observed
by the ground station and IMERG, simultaneously; M is the precipitation observed by the ground
stations but fail to be observed by IMERG; F is the precipitation observed by IMERG but fail to be
observed by the ground stations.

The Nash efficiency coefficient (NSE) and the RMS standard deviation ratio (RSR) was selected to
evaluate the performance of the SWAT model, and the evaluation criteria [48,49] was shown in Table 2.

NSE = 1−

n∑
i=1

(qobs
i − qsim

i )
2

n∑
i=1

(qobs
i − qobs)

2
(5)

RSR =

√√√√√√√√√√√√ n∑
i=1

(qobs
i − qsim

i )
2

n∑
i=1

(qobs
i − qobs)

2
(6)

where i is the series number, qobs is the measured flow, qobs is the mean value of the measured flow,
qsim is the simulated flow, qsim is the mean value of the simulated flow, and n is the total number
of observations.
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Table 2. The evaluation criteria for RSR and NSE.

Evaluation Level RSR NSE

Very good 0.00 ≤ RSR ≤ 0.50 0.75< NSE ≤ 1.00
Good 0.50 < RSR ≤ 0.60 0.65< NSE ≤ 0.75

Satisfactory 0.60 < RSR≤ 0.70 0.50< NSE ≤ 0.65
Unsatisfactory RSR> 0.70 NSE≤ 0.50

2.3. Data Correction Method

The fusion correction methods such as the Linear regression method, the Mean deviation correction
method, the Bayesian fusion method, the Geographic weighted regression method, and the Geographic
difference analysis (GDA) method, can be adopted to improve the accuracy of the satellite data [50,51].
In this study, the GDA method was applied due to its advantages of good correction effect and simple
calculation. The specific correction steps of the GDA method are as follows [52]:

(1) Firstly, calculate the difference between the precipitation measurement for each ground station
and the corresponding satellite pixel;

(2) Then, the Inverse distance weighted interpolation (IDW) method is applied to analyze the
spatial interpolation of the rainfall differences to obtain a difference map;

(3) Finally, calibrate (correct) the satellite rainfall estimates with the difference map.

2.4. SWAT Model

The Soil and Water Assessment Tool (SWAT) model was a distributed hydrological model and
suitable for multiple time scale runoff simulations. The model, developed by USDA-ARS, includes eight
modules called weather, hydrology, nutrients, sediment, land cover, management measures, river course
process, and water body. The runoff, sediment, nutrients, and other processes can be simulated by
inputting the terrain, land cover, soil type, weather, pollution source, and other information. The SWAT
model has been widely used in runoff simulation, sediment transport simulation, and non-point source
pollution prediction since the advantages of easy access to parameters, high calculation efficiency, and
continuous simulation [6,53,54]. A schematic diagram of the SWAT model is shown in Figure A1 of
Appendix A.

In this study, the original DEM is processed by using the Stream burning method [55],
and the cumulative threshold of confluence is set to 1000 by using the watershed extraction tool of
ArcSWAT(United States Department of Agriculture, Washington, USA) software (ArcSWAT is an
ArcGIS-ArcView extension and interface for SWAT) to obtain the extracted Xiajia River basin (Figure 2).
The land cover data of the study area are from the IGBP_LUCC (Food and Agriculture Organization of
the United Nations, Rome, Italy) (International Geosphere-Biosphere Programme_Land Use/Cover
Change) database and are reclassified according to the type and number specified by the SWAT model.
The spatial distribution of land cover is shown in Figure 3a. Besides, the soil data of the study area are
from the HWSD(Food and Agriculture Organization of the United Nations, Rome, Italy) (Harmonized
World Soil Database) database, some parameters are directly copied from HWSD, the others are
recalculated by SPAW (Washington State University, Washington, USA) (Soil-Plant-Air-Water) software,
and the spatial distribution of soil data is shown in Figure 3b. According to the weight of 5% of land
cover, 20% of soil data, and 20% of slope, 114 hydrological response units (HRU) are generated.

Considering the series of satellite data is relatively short (2014–2018), the static parameter method
is applied to calibrate and validate the model parameters based on the ground data. In more detail,
set January 2002 to February 2014 as the calibration period, and March 2014 to September 2018 as the
validation period.
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The weather data needed for the SWAT model include precipitation, relative humidity, solar
radiation, temperature, and wind speed. The precipitation data used in this study are measured by the
ground stations and IMERG early. The other weather data are calculated depend on the CMADS-V1.1
dataset (spatial resolution is 0.25 × 0.25) and the weather generator. Then, the generated weather
data are transformed into SWAT format and imported into the SWAT model. Considering the flow
characteristics of the karst area in the Xiajia River basin, the SWAT model is adjusted by adding a
reservoir unit to the river channel where the water source cave is located and 7 model parameters
named RES_K, RES_RR, RES_ESA, RES_PSA, RES_EVOL, RES_PVOL, and RES_VOL, are added.
As a result, a total of 17 parameters called CN2, ALPHA_BF, GW_DELAY, GWQMN, ALPHA_BNK,
CH_K2, GW_REVAP, REVAPMN, ESCO, CH_N2, RES_K, RES_RR, RES_ESA, RES_PSA, RES_EVOL,
RES_PVOL, and RES_VOL are calibrated by using SWAT-CUP software. The physical meaning and
the calibration results of the parameters are shown in Tables A1 and A2 of Appendix A.
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3. Results and Discussion

3.1. Accuracy Analysis of IMERG Satellite Precipitation Data

3.1.1. Temporal Scale Accuracy Evaluation

The R index was applied to evaluate the accuracy of IMERG early precipitation data at the
temporal scale; in other words, to show how well the IMERG satellite precipitation data matches
the precipitation data observed by ground stations at the temporal scale—the results are shown in
Figure 4. As can be seen from Figure 4, the R index value between the IMERG satellite precipitation
data and the precipitation data observed by ground stations at 1-h, 3-h, daily and monthly time scales
are 0.412, 0.492, 0.667 and 0.884, respectively, indicating that the R value increases with increasing
time scale. That is, the larger the time scale, the greater the rainfall accuracy of IMERG satellite
precipitation data. Additionally, the degree of dispersion of rainfall data also increases with increasing
time scales. At the 1-h scale (Figure 4a), the IMERG early data are most discrete, which significantly
underestimates (negative bias) the ground data. At the monthly scale, the IMERG early data are least
discrete, which underestimates the ground data to a certain extent (negative bias). The lower limit
values of significant tests for R in different time scales are list in Table 3 [56]. The lower limit values
range from 0.009888 (1-h scale) to 0.268086 (monthly scale) at a confidence level α = 0.05 and range
from 0.012995 (1-h scale) to 0.347652 (monthly scale) at a confidence level α = 0.01.

Water 2020, 12, x FOR PEER REVIEW 7 of 23 

 

 

Figure 4. The R values between the ground station precipitation and the IMERG early 

precipitation at 1 h (a), 3 h (b), daily (c), and monthly (d) scales. 

Table 3. The lower limit value of a significant test for R at different time scales. 

Time Scale Sample Size   0.05   0.01 

1 h 39,288 0.009888 0.012995 

3 h 13,096 0.017127 0.022508 

daily 1638 0.049436 0.063629 

monthly 54 0.268086 0.347652 

3.1.2. Spatial Scale Accuracy Evaluation   

Firstly, the R values of the IMERG early precipitation data (corresponding to each station) 

were calculated, and then the IDW method was used to analyze the spatial distribution of the 

R values to evaluate the accuracy of IMERG precipitation data at spatial scale, and the results 

are shown in Figure 5. For the 1 h scale, the R values range from 0.350 to 0.440, and the values 

in the central and western regions of the basin are larger than those in the other parts, 

indicating a higher accuracy of the IMERG precipitation data in the central and western parts 

of the basin. For the 3 h scale, the R values range from 0.460 to 0.550, and the values in the 

central and western regions of the basin are larger than those in the other parts, indicating a 

higher accuracy of the IMERG precipitation data in the central and western parts of the basin. 

For daily scale, the R values range from 0.610 to 0.700, and the values in the central regions of 

the basin are larger than those in the other parts, indicating a higher accuracy of the IMERG 

precipitation data in the central parts of the basin. For a monthly scale, the R values range from 

0.820 to 0.910, and the values in the central and eastern regions of the basin are larger than 

those in the other parts, indicating a higher accuracy of the IMERG precipitation data in the 

central and eastern parts of the basin. Overall, the R values show an increasing pattern with an 

increasing time scale. 

Furthermore, the maximum 1-h precipitation, maximum 3-h precipitation, maximum 

1-day precipitation, maximum 1-month precipitation, and the average monthly rainfall from 

2014–2018 were selected to evaluate the spatial accuracy of rainfall extremes and average 

monthly rainfall, and the results are shown in Figure 6. Overall, the IMERG early data at all 

Figure 4. The R values between the ground station precipitation and the IMERG early precipitation at
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Table 3. The lower limit value of a significant test for R at different time scales.

Time Scale Sample Size α= 0.05 α= 0.01

1 h 39,288 0.009888 0.012995
3 h 13,096 0.017127 0.022508

daily 1638 0.049436 0.063629
monthly 54 0.268086 0.347652
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3.1.2. Spatial Scale Accuracy Evaluation

Firstly, the R values of the IMERG early precipitation data (corresponding to each station) were
calculated, and then the IDW method was used to analyze the spatial distribution of the R values
to evaluate the accuracy of IMERG precipitation data at spatial scale, and the results are shown in
Figure 5. For the 1 h scale, the R values range from 0.350 to 0.440, and the values in the central and
western regions of the basin are larger than those in the other parts, indicating a higher accuracy of the
IMERG precipitation data in the central and western parts of the basin. For the 3 h scale, the R values
range from 0.460 to 0.550, and the values in the central and western regions of the basin are larger than
those in the other parts, indicating a higher accuracy of the IMERG precipitation data in the central and
western parts of the basin. For daily scale, the R values range from 0.610 to 0.700, and the values in the
central regions of the basin are larger than those in the other parts, indicating a higher accuracy of the
IMERG precipitation data in the central parts of the basin. For a monthly scale, the R values range from
0.820 to 0.910, and the values in the central and eastern regions of the basin are larger than those in the
other parts, indicating a higher accuracy of the IMERG precipitation data in the central and eastern
parts of the basin. Overall, the R values show an increasing pattern with an increasing time scale.

Water 2020, 12, x FOR PEER REVIEW 8 of 23 

 

time scales significantly underestimate the extreme precipitation and average monthly 

precipitation compared with that of the ground stations. Taking the maximum 1-h 

precipitation as an example, the values observed by ground stations are larger than those 

observed by IMERG early, and the values observed by ground stations show a characteristic 

that the value of the maximum 1-h precipitation is larger in the middle part of the basin while 

the value observed by IMERG early fails to reflect this characteristic. 

 

Figure 5. The R spatial distribution of the 1-h (a), 3-h (b), daily (c), and monthly (d) IMERG 

precipitation data. 

 

Figure 6. Spatial distribution of maximum 1-h (a), maximum 3-h (b), maximum 1-day (c), 

maximum 1-month (d), and average monthly (e), precipitation in the study area (2014–2018). 

3.1.3. Detection Capability Evaluation 

Figure 5. The R spatial distribution of the 1-h (a), 3-h (b), daily (c), and monthly (d) IMERG
precipitation data.

Furthermore, the maximum 1-h precipitation, maximum 3-h precipitation, maximum 1-day
precipitation, maximum 1-month precipitation, and the average monthly rainfall from 2014–2018
were selected to evaluate the spatial accuracy of rainfall extremes and average monthly rainfall,
and the results are shown in Figure 6. Overall, the IMERG early data at all time scales significantly
underestimate the extreme precipitation and average monthly precipitation compared with that of the
ground stations. Taking the maximum 1-h precipitation as an example, the values observed by ground
stations are larger than those observed by IMERG early, and the values observed by ground stations
show a characteristic that the value of the maximum 1-h precipitation is larger in the middle part of the
basin while the value observed by IMERG early fails to reflect this characteristic.
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3.1.3. Detection Capability Evaluation

The Probability of detection (POD), False alarm rate (FAR), and Critical success index (CSI)
were applied to evaluate the precipitation detection capability of IMERG data, and the results are
summarized in Table 4. The POD values range from 47.33% to 100% and show a tendency to increase
with increasing time scale. The FAR values range from 0.00% to 50.99% and show a tendency to
decrease with increasing time scale. The CSI values range from 39.99% to 100% and show a tendency
to increase with increasing time scale. In summary, the precipitation detection capability of the IMERG
early gradually increases as the time scale increases.

Table 4. The precipitation detection capability of IMERG data. Unit: %.

Parameter 1 H 3 H Daily Monthly

POD 47.33 54.81 71.57 100.00
FAR 50.99 40.34 19.43 0.00
CSI 31.71 39.99 61.04 100.00

Besides, this study further analyzed the ability of IMERG early to identify the frequency of
occurrence of various rainfall levels for the period from March 2014 to September 2018. As suggested by
the Chinese national industry standard, GB/T 28592-2012 precipitation classification [57], the rainfall level
are determined as 24 h precipitation is light rain at 0.1–9.9 mm, moderate rain at 10.0–24.9 mm, heavy rain
at 25.0–49.9 mm, rainstorm at 50.0–99.9 mm, heavy rainstorm at 100.0–249.9 mm and extraordinary
rainstorm at 250.0 mm or above. As shown in Figure 7, as the rainfall level increases (from light rain to
extraordinary rainstorm), the less frequent the rainfall occurs. Besides, compared to station rainfall,
satellite rainfall overestimates the frequency of light rainfall, heavy rain, and extraordinary rainstorm
while underestimating the frequency of moderate rain and rainstorm.
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3.2. Runoff Simulation Results—Using the IMERG Early Data

After being calibrated by using the precipitation observed by the ground station, the SWAT model
was driven by the IMERG early data to obtain the runoff process on the daily, monthly and multi-year
monthly mean scales in the validation period to evaluate the application of the IMERG early data in
long-term runoff simulation, and the results are shown in Figures 8–10 and Table 5. The simulated daily
runoff reflected the periodic change in the measured flow, but there were differences in the value and
the wet and dry trend. For example, 2014 should be a normal year according to the measured values,
while the simulations show 2014 as a wet year. Besides, 2015, 2017, and 2018 should be wet years,
but the simulated flows in these years are relatively small (Figure 8). For the simulated monthly and
mean–year monthly runoff process (Figures 9 and 10), the overall runoff process was underestimated,
especially, the high value was wrongly simulated at the end of 2014 for the monthly runoff process.
Furthermore, the NSE and RSR results are shown in Table 5. The NSE and RSR for the daily runoff

simulation are 0.17 and 0.92, and the values are 0.32 and 0.81 for the monthly runoff simulation, and 0.49
and 0.71 for the simulation of the monthly results for the mean year. The above results indicate that the
runoff simulation results of IMERG data in the validation period are poor, and the simulation results
need to be improved, implying that the IMERG data cannot be used without any correction.
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Table 5. The NSE and RSR results.

Scales
Station IMERG

NSE RSR NSE RSR

daily 0.60 0.63 0.17 0.92
monthly 0.78 0.46 0.32 0.81

multi-year monthly mean 0.64 0.60 0.49 0.71

3.3. Accuracy Analysis of Corrected IMERG Satellite Precipitation Data

Temporal Scale Accuracy Evaluation for Corrected IMERG

The R index was applied to evaluate the accuracy of corrected IMERG early precipitation data at
the temporal scale, in other words, to show how well the corrected IMERG satellite precipitation data
matches the precipitation data observed by ground stations at the temporal scale, and the results are
shown in Figure 11. As can be seen from Figure 11, the R index value between the corrected IMERG
satellite precipitation data and the precipitation data observed by ground stations at 1-h, 3-h, daily and
monthly time scales are 0.886, 0.917, 0.946 and 0.987, respectively, showing that the R value increases
with increasing time scale. That is, the larger the time scale, the greater the rainfall accuracy of corrected
IMERG satellite precipitation data. Additionally, a comparison with the R values in Figure 4 shows
that the R values between the corrected IMERG satellite precipitation data and the precipitation data
observed by ground stations have improved significantly, with improvement values ranging from
0.103 to 0.474. It can also be seen from Figure 11 that the correlation of the corrected IMERG early data
is close at the scale of 1-h, 3-h, day, and month, they are all distributed near the 45◦ line, and there is no
obvious positive or negative deviation.
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The R spatial distribution for the corrected IMERG precipitation data at various time scales
is shown in Figure 12. The spatial analysis of the R of the corrected IMERG data shows that the
correlations between the corrected IMERG data and the precipitation observed by the ground station
are better than that of the original IMERG early data in most parts of the basin, and the R values
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are higher in the middle of the basin at all time scales. For 1-h scale, the R values range from 0.850
to 0.920, and the value is 0.880–0.940 for 3-h scale, 0.920–0.970 for daily scale, and 0.970–0.990 for
a monthly scale. Overall, the R values showed an increasing pattern with an increasing time scale.
Furthermore, the IDW method is used for the spatial interpolation of the maximum 1-h precipitation,
maximum 3-h precipitation, maximum 1-day precipitation, maximum 1-month precipitation and
average monthly precipitation data in the study area from March 2014 to September 2018, and the
spatial distribution map of precipitation of IMERG early data at various time scales (Figure 6) is
corrected (Figure 13). After correction, the extreme precipitation of IMERG early data in each time scale
is still slightly underestimated compared with that of the ground station, but the overall distribution is
the same. The spatial distribution of IMERG early precipitation data after correction retains the spatial
distribution characteristics of the original IMERG early data and recognizes that the precipitation
center is near Lingyun station. Besides, the corrected IMERG early average precipitation value is close
to that of the ground station data, which reflects that the average precipitation center is near the east of
Lingyun station, the average precipitation shows the spatial distribution characteristics of larger in the
east and less in the west. In summary, the corrected IMERG data are close to that of the ground data in
numerical value, which can reflect the spatial distribution characteristics of precipitation in the Xiajia
River basin.
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3.4. Detection Capability Evaluation for Corrected IMERG

The precipitation detection capability results of the corrected IMERG data are shown in Table 6.
The POD values range from 94.08% to 100% and show a tendency to increase with increasing time scale.
The FAR values range from 0.00% to 9.98%, except for daily scale, the FAR values show a tendency to
decrease with increasing time scale. The CSI values range from 87.21% to 100% and show a tendency
to increase with increasing time scale except for daily scale. In summary, the precipitation detection
capability of the IMERG early gradually increases as the time scale increases. In conclusion, the overall
precipitation recognition efficiency of the corrected IMERG early data is significantly higher than that
of the original IMERG early data. Besides, the ability of corrected IMERG to identify the frequency of
occurrence of various rainfall levels for the period from March 2014 to September 2018 is shown in
Figure 14. After correction, the ability to identify the frequency of occurrence of various rainfall level is
improved compared with that before correction with the error of 0.13–1.87%.

Table 6. As in Table 4 but for corrected IMERG data.

Parameter 1H 3H Daily Monthly

POD 94.08 95.49 96.55 100.00
FAR 5.61 2.50 9.98 0.00
CSI 89.10 93.20 87.21 100.00
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3.5. Runoff Simulation Results-Using the Corrected IMERG

The SWAT model was driven by the corrected IMERG data to obtain the daily, monthly, and
multi-year monthly mean runoff processes in the validation period (Figures 15–17). As shown in
Figure 15, the simulated daily runoff process can reflect the fluctuation and periodic change in the
measured flow without particularly obvious peak overestimation, but the overall runoff process is
slightly lower than the measured value. For the simulated monthly and mean-year monthly runoff

process (Figures 16 and 17), the underestimation of measured values by simulated values is significantly
improved. Additionally, the NSE and RSR results are shown in Table 7. The NSE and RSR for the daily
runoff simulation are 0.58 and 0.66, and the values are 0.59 and 0.64 for the monthly runoff simulation,
and 0.73 and 0.52 for the simulation of the monthly results for the mean year. Therefore, we can
conclude that the runoff model results of corrected IMERG early data can reach the “satisfactory” level,
which can be used for runoff simulation in the future.
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Table 7. As in Table 5 but for corrected IMERG data.

Scales
Station IMERG

NSE RSR NSE RSR

daily 0.60 0.63 0.58 0.66
monthly 0.78 0.46 0.59 0.64

multi-year monthly mean 0.64 0.60 0.73 0.52

4. Conclusions

Accuracy analysis of the precipitation data from satellites is helpful for water management,
especially in the areas with a sparse rain gauge station network. However, satellite estimates are biased
and need area-specific correction. Therefore, the objective of this study is to propose a framework
for analyzing the accuracy of IMERG satellite rainfall data and its application in long-term runoff

simulation. The proposed framework consists of an accuracy evaluation at temporal and spatial scale
by using the R index, an evaluation of the precipitation detection capability depend on the Probability
of detection (POD), False alarm rate (FAR) and Critical success index (CSI), and an analysis of the
application in long-term runoff simulation based on a SWAT model. The framework was successfully
implemented using the IMERG satellite rainfall data and the corrected IMERG satellite rainfall data for
a comparison analysis to show if there is an improvement in the accuracy of the data and its application
for long-term runoff simulation after being corrected by GDA method. The Xiajia basin in the karst
area is selected as the study area. The main conclusions are as follows:
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For the accuracy evaluation at temporal and spatial scale, we found that the correlation coefficients
R of the original IMERG early satellite precipitation data are 0.412, 0.492, 0.667 and 0.884 at 1-h, 3-h,
daily and monthly scales, and these values are raised to 0.886, 0.917, 0.946 and 0.987 after corrections.
Besides, the spatial accuracy of rainfall has been significantly improved, with the R values increasing
from 0.350–0.910 to 0.850–0.990. Overall, the R values showed an increasing pattern with increasing
time scale before and after correction. The extreme precipitation of the corrected IMERG data is still
slightly underestimated compared with that of the ground station, but the overall distribution does
not very much. In summary, the corrected IMERG data are relatively close to that of the ground data
in numerical value and can basically reflect the spatial distribution characteristics of precipitation in
the Xiajia River basin. To some degree, the correction resulted in improvements in the temporal and
spatial accuracy of the rainfall data.

The detection capability of the original IMERG is strong at a monthly scale, the POD, FAR, and CSI
values are 100%, 0.00%, and 100%. Unfortunately, the detection capability decreases with decreasing
time scale, the POD, FAR, and CSI values are 47.33%, 50.99%, and 31.71% at a 1-h scale, implying a
very poor detection capability. After correction, the detection capability of the corrected IMERG was
significantly improved at all time scale, the POD range from 94.08% to 100%, FAR range from 0.00% to
9.98%, and the CSI value is 87.21% to 100%, presenting a strong detection capability.

The model performance is poor in long-term runoff simulation when selecting the original IMERG
precipitation as the input data, and it gets poorer as the time scale is decreasing. The values of NSE
and RSR are 0.32 and 0.81 for the runoff simulation at a monthly scale, and the values change into 0.17
and 0.92 for the runoff simulation on a daily scale. The reason is that the simulations obtained using
satellite rainfall grossly underestimate the measured runoff volume. When inputting the precipitation
from the corrected IMERG, the SWAT model performs better, and the simulation result is significantly
improved. The simulated daily runoff process can reflect the fluctuation and periodic change in the
measured flow though the overall runoff process is slightly lower than the measured value. The NSE
values are larger than 0.55, and the RSR values are smaller than 0.70. Therefore, the runoff simulation
results by inputting the corrected IMERG early data can reach the “satisfactory” level, which can be
used for runoff simulation in the future, and the corrected IMERG early satellite precipitation data
have a certain applicability and application value in the runoff simulation of a small watershed in a
karst area.

Author Contributions: Conceptualization, M.Z. and Y.R.; Data curation, M.Z. and Y.W.; Formal analysis, M.Z.
and J.Q.; Funding acquisition, C.M. and Z.X.; Investigation, M.Z. and Y.W.; Methodology, M.Z. and Y.R.; Project
administration, C.M. and Z.X.; Resources, M.Z. and Y.W.; Software, M.Z. and J.Q.; Supervision, G.S.; Validation,
M.Z. and Y.R.; Visualization, M.Z. and J.Q.; Writing—original draft, M.Z. and J.Q.; Writing—review & editing, G.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of China, grant number 51569003,51969004
and 51979038; the National Key Research and Development Program of China, grant number 2017YFC0406004;
the Guangxi Natural Science Foundation of China, grant number 2017GXNSFAA198361; the Innovation Project of
Guangxi Graduate Education, grant number YCBZ2019022.

Conflicts of Interest: The authors declare no conflict of interest.



Water 2020, 12, 2177 18 of 22

Appendix AWater 2020, 12, x FOR PEER REVIEW 18 of 23 

 

 

Rainfall 

Precipitation 

Irrigation 

Snowmelt 

Infiltration 

Snowfall 

Accumulate 

Soil water stratification 

Evaporation of soil 

Soil water 

Vegetation emission 

Surface runoff 

Loss of transportation 

Subsurface flow 

Evaporation 

Water balance estimation 

Infiltration 

Irrigation 

Outflow 

River 

Irrigation water intake 

Leakage 

Loss of transportation 

River outflow 

Shallow groundwater 

Irrigation 

Deep groundwater 

Phreatic water evaporation 

Irrigation 

Regression flow Leakage 

 

Figure A1. Principle of SWAT model. 

Table A1. Daily calibration results of SWAT model parameters. 

Serial 

Number 
Parameter Meaning 

Initial 

Value 
Unit 

Final 

Value 

1 CN2 
SCS Curve number（AMCⅡ

） 
60~92 / 69.76~100 

2 ALPHA_BF Base flow recession constant 0.048 day 0.31 

3 GW_DELAY Groundwater time delay 31 day 8.25 

4 GWQMN 
Regression water level 

threshold 
1000 mm 1360.54 

5 ALPHA_BNK Baseflow factor 0 / 0.31 

6 CH_K2 
The permeability coefficient 

of the main channel 
0 mm/hour 344.99 

7 GW_REVAP 
Reavp coefficient of 

groundwater 
0.02 / 0.16 

8 REVAPMN 
Occurrence reavp water level 

threshold 
750 mm 1106.43 

9 ESCO 
Soil evaporation 

compensation factor 
0.95 / 0.62 

10 CH_N2 
Manning coefficient of main 

channel 
0.014 / 0.14 

11 RES_K 
Permeability coefficient of 

reservoir 
5 mm/hour 7.09 

12 RES_RR Average daily discharge 100 m3/s 175.08 

13 RES_ESA 
Area of non overflow 

reservoir 
3177.1 ha 8461.61 

14 RES_PSA 
Area of normal overflow 

reservoir 
2051.9 ha 8294.77 

15 RES_EVOL 
Extraordinary flood storage 

capacity 
90,000,000 104 m3 

48,893,760

.00 

Figure A1. Principle of SWAT model.

Table A1. Daily calibration results of SWAT model parameters.

Serial Number Parameter Meaning Initial Value Unit Final Value

1 CN2 SCS Curve number (AMC II) 60~92 / 69.76~100
2 ALPHA_BF Base flow recession constant 0.048 day 0.31
3 GW_DELAY Groundwater time delay 31 day 8.25

4 GWQMN Regression water level
threshold 1000 mm 1360.54

5 ALPHA_BNK Baseflow factor 0 / 0.31

6 CH_K2 The permeability coefficient
of the main channel 0 mm/hour 344.99

7 GW_REVAP Reavp coefficient of
groundwater 0.02 / 0.16

8 REVAPMN Occurrence reavp water
level threshold 750 mm 1106.43

9 ESCO Soil evaporation
compensation factor 0.95 / 0.62

10 CH_N2 Manning coefficient of main
channel 0.014 / 0.14

11 RES_K Permeability coefficient of
reservoir 5 mm/hour 7.09

12 RES_RR Average daily discharge 100 m3/s 175.08

13 RES_ESA Area of non overflow
reservoir 3177.1 ha 8461.61

14 RES_PSA Area of normal overflow
reservoir 2051.9 ha 8294.77

15 RES_EVOL Extraordinary flood storage
capacity 90,000,000 104 m3 48,893,760.00

16 RES_PVOL Normal flood storage
capacity 100,000 104 m3 61,111.90

17 RES_VOL Initial storage capacity 5000 104 m3 11,924.99
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Table A2. Monthly calibration results of SWAT model parameters.

Serial Number Parameter Meaning Initial Value Unit Final Value

1 CN2 SCS Curve number (AMC II) 60~92 / 60.56~92.86
2 ALPHA_BF Base flow recession constant 0.048 day 0.34
3 GW_DELAY Groundwater time delay 31 day −124.41

4 GWQMN Regression water level
threshold 1000 mm 2636.32

5 ALPHA_BNK Base flow factor 0 / 0.11

6 CH_K2 Permeability coefficient of
main channel 0 mm/hour 159.31

7 GW_REVAP Reavp coefficient of
groundwater 0.02 / 0.15

8 REVAPMN Occurrence reavp water
level threshold 750 mm 1489.71

9 ESCO Soil evaporation
compensation factor 0.95 / 0.91

10 CH_N2 Manning coefficient of main
channel 0.014 / 0.04

11 RES_K Permeability coefficient of
reservoir 5 mm/hour 0.45

12 RES_RR Average daily discharge 100 m3/s 30.00

13 RES_ESA Area of non-overflow
reservoir 3177.1 ha 13,085.54

14 RES_PSA Area of normal overflow
reservoir 2051.9 ha 1501.43

15 RES_EVOL Extraordinary flood storage
capacity 90,000,000 104 m3 45,000,000.00

16 RES_PVOL Normal flood storage
capacity 100,000 104 m3 285,142.00

17 RES_VOL Initial storage capacity 5000 104 m3 5233.83
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