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Abstract: An essential factor in the propagation of drought, from meteorological drought to
groundwater drought, is the delay between a precipitation event and the groundwater recharge
reaching the groundwater table. This delay, which mainly occurs in the vadose zone of the hydrological
cycle, is often poorly studied. Therefore, this paper proposes a method for estimating the spatially
distributed delay in the vadose zone using the kinematic wave approximation of Richards’ equation
combined with the van Genuchten–Burdine and Brooks–Corey parametric model. The modeling was
approached (1) using a detailed parametrization of soil and geological layers and (2) using lumped
hydraulic and physical properties of geological layers. The results of both approaches were compared
against the physically based flow model Hydrus-1D. This analysis shows that using a detailed
parametrization of soil and geological layers results in good comparison, with a Nash–Sutcliffe
efficiency of 0.89 for Brooks–Corey and 0.80 for van Genuchten–Burdine. The delay result of the
Brooks–Corey model was incorporated into the groundwater recharge time series from 1980 to 2013
to analyze the effect of this delay on groundwater drought. The results show that the delay in the
vadose zone influences groundwater drought characterization features such as the number, duration,
and intensity of drought events.

Keywords: groundwater drought; groundwater recharge delay; vadose zone; kinematic wave
approximation; drought propagation

1. Introduction

Drought can be described as a temporary decrease in water availability over a significant
period of time. Drought is a direct result of deficient precipitation and, as such, it is mainly a
meteorological-related hazard. Typically, three definitions of drought are used: meteorological,
agricultural, and hydrological drought. The first refers to a period with little or no precipitation; the
second refers to a shortage of water in the soil and as such for vegetation; the third describes the
impact on hydrological water bodies. It can affect both surface and groundwater resources. Where this
concerns groundwater bodies, the term groundwater drought is used. Groundwater drought can be
defined as a temporary decrease in groundwater availability over a significant period of time. This
drought causes decreased groundwater levels and discharge to the surface water system [1].

In Belgium, Tricot et al. [2] have shown that drought periods have not intensified during the last
century. The drought periods were defined as the number of consecutive days without significant
precipitation (less than 0.5 mm) for the six hottest months of the year. However, the study area
experienced long periods of drought and low groundwater levels in the past four years. According to
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Verbeiren et al. [3], the main influencing factors for groundwater drought are climate, land use/land
cover (LULC), and groundwater demand for human activities.

An essential factor in the propagation of drought, from meteorological drought to groundwater
drought, is the delay between a precipitation event and the resulting groundwater recharge reaching
the groundwater table. The spatial and temporal distribution of this delay determines how fast and how
significantly groundwater is affected after periods of meteorological drought. This delay mainly occurs
in the unsaturated soil zone of the hydrological cycle. However, studies of drought propagation [4–7]
in the hydrological cycle often give less attention to lag effects caused by the vadose zone. Additionally,
this effect is often not considered in groundwater modeling, analysis of climate change’s impact on
groundwater, and effective management and sustainability of future water resources.

Estimation of the time for groundwater recharge to reach the groundwater table needs critical
understanding and estimating of hydraulic properties and flow in the vadose zone. Therefore,
unsaturated soil flow equations and modeling can be used to estimate this delay. This flow is controlled
by the spatial and temporal heterogeneity of the vadose zone and hydrological perturbations at the
surface and within the subsurface.

The groundwater recharge delay is mainly influenced by changes in soil moisture and pressure
in the vadose zone. These factors are a result of small hydrological perturbations at the surface [8].
Kinematic wave approximation theory can be used to predict these small changes of pressure in the
vadose zone [8–14]. According to Lighthill and Whitham [15], a one-dimensional pressure wave in the
hydrological system can be described using kinematic wave theory. Therefore, soil moisture content,
unsaturated hydraulic conductivity, and vertical soil moisture velocity in the vadose zone can be
described using this theory. However, hydraulic properties of the vadose zone should be defined
continuously over the spatial and temporal scale of the working domain [11].

This study considers one-dimensional vertical soil moisture movement in the unsaturated soil
zone. This vertical flow is governed by capillary and gravity forces. Gravity dominant flow can be
applied in the case of deep drainage in response to rainfall and soil with a larger soil moisture content
than field capacity [14]. For gravity dominated flow, kinematic wave velocity is used to analyze
the vertical soil moisture movement of small changes in pressure perturbations in the unsaturated
soil zone [8]. This means that this velocity controls the travel time of pressure distributions in the
unsaturated soil zone [12].

Numerical simulations are used for the quantification of small changes in pressure distribution in
the vadose zone in the time and space scale. Some studies have used numerical simulations of the
vadose zone by solving the 3D Richards equation to determine the travel time of soil moisture [16,17].
However, numerical simulation using the 3D equation leads to complex models and model calibration
issues and needs long calculation times as well as extensive data. Therefore, the 1D gravity-driven
kinematic wave approximation approach is used for a simplified treatment of flow processes in the
vadose zone [18,19].

Estimation of the groundwater recharge delay in the vadose zone can be handled at a point or
spatially distributed scale. The studies of Hocking and Kelly [20] and Mattern and Vanclooster [21]
estimate the groundwater recharge delay in the vadose zone at point scale. However, other studies
such as Rossman et al. [19] estimate lag time using a kinematic wave approximation of the Richards
equation in a spatially distributed way, based on the van Genuchten–Mualem parametric model.
Rossman et al. [19] mainly focus on the effect of the vadose zone thickness and climate change on the
groundwater recharge delay.

This paper aims to estimate the spatially distributed vadose zone lag time in relation to groundwater
drought using the kinematic wave approximation of the Richards equation under the assumption of
deep drainage occurring in response to rainfall infiltration, steady vertical flow (no flow barriers or
artificial drainage), and isotropic and homogenous soil hydraulic properties. This theory is combined
with the van Genuchten–Burdine and Brooks–Corey parametric models. Besides the above, the paper
will propose a simplified approach for lag time estimation in the vadose zone.
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2. Study Site and Data

The study area consists of the Dijle and Demer catchments in Central Belgium, underlain by the
Brulandtkrijt and Central Campine groundwater systems (Figure 1). The aquifer has a surface area
of 5800 km2. The land surface elevation ranges between 10 m and 100 m. Belgium has a temperate
climate with a long-term average annual rainfall of around 800 mm and an average temperature of
around 10 ◦C [3]. This high and frequent rainfall is the main factor initiating subsurface drainage in the
study area. The vadose zone in the study area vertically extends from the Quaternary and Campine
aquifer systems (HCOV 0100 & 0200) to the Cretaceous aquifer system (HCOV 1100) shown in Figure 2.
However, more than 65 percent of the vadose zone contains geological layers from the Quaternary and
Campine aquifer systems. The Quaternary deposits are mostly sandy in the northern part of the study
area. In contrast, loamy deposits characterize the hilly regions in the south. Moreover, the central parts
of the river valleys (Dijle, Demer, and smaller tributaries) are covered with alluvial deposits, typically
loamy or clayey [22].
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HCOV is a hydrogeological code developed within the framework of the Flemish groundwater
model [23], giving a unique code to every aquifer and aquitard in Flanders.

Geological, hydrogeological, and groundwater data such as borehole information on geology,
hydraulic properties, groundwater monitoring wells, etc., is available from the DOV database (Databank
Ondergrond Vlaanderen—dov.vlaanderen.be), the Flemish groundwater model [24,25], and the Service
Public Wallonie (SPW). Detailed characterization of soil texture, i.e., proportions of sand, silt, and
clay, in the vadose zone was taken from 168 soil boreholes (Figure 1). Soil physical properties such as
porosity n, saturated hydraulic conductivity Ks, and pore size distribution index λ are dependent on
soil texture [26]. The USDA soil texture classification and the univariate regression equation by Cosby,
Hornberger, Clapp, and Ginn [27] were used for deriving soil parameter values.
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Table 1. Geological layers found in the vadose zone of the study area.

Layer Groundwater Unit HCOV Codes Range of Layer
Thickness (m)

1
Top of the Quaternary aquifer systems HCOV 0100 0–87

Local deposits of the Campine aquifer system HCOV 0200

2 Deposits of the Boom aquitard HCOV 0300 0–14.5

3 Oligocene aquifer system HCOV 0400 0–32.5

4 Bartoon aquitard system HCOV 0500 0–6

5 Ledo Panselian Brusselean aquifer system HCOV 0600 0–35

6
Ypresian aquifer system HCOV 0800 0–36

Ypresian aquitard system HCOV 0900

7 Paleocene aquifer system HCOV 1000 0–24

8 Cretaceous aquifer system HCOV 1100 0–29
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The vadose zone thickness was estimated as the difference between land surface elevation and
groundwater level (Figure 3). A groundwater table map was generated based on monthly groundwater
level readings from 1980 to 2013 in observation wells found in the study area. The northern part of the
study area has a shallow groundwater table (less than 10 m), while a thicker vadose zone characterizes
the southern part of the study area.

Spatially distributed groundwater recharge (R(t)) generated in the GroWaDRISK project was used.
This project was aiming for the development of a drought-related vulnerability and risk assessment
strategy for sustainable management of groundwater resources under temperate conditions [3]. In this
project, a monthly averaged, spatially distributed groundwater recharge was estimated using the
WetSpaSS model from 1980 to 2013. WetSpaSS is a physically based model for the estimation of spatially
distributed surface runoff, actual evapotranspiration, and groundwater recharge [28]. This model
accounts for spatially distributed land use, soil type, slope, elevation, monthly average groundwater
depth, and meteorological conditions as an input, and it calculates the water balance up to the root
zone [29,30]. Therefore, the groundwater recharge computed using this model has to pass through the
vadose zone to reach the groundwater table. Figure 4 shows that groundwater recharge is higher than
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300 mm/year in the north, which is characterized by sandy soil and gentle slopes. Moreover, in river
valleys characterized by loamy soil and steep slopes, groundwater recharge ranges between 100 and
300 mm/year. In urbanized areas, groundwater recharge is often lower than 100 mm/year because of
impervious surfaces. In general, the estimated groundwater recharge is larger than 150 mm/year in
most of the study area. These high rates of groundwater recharge, along with the presence of the thick
permeable aquifers, make the area valuable for its groundwater reserves and drinking water supply.Water 2020, 12, 2123 5 of 23 
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3. Mathematical Model Development

3.1. Kinematic Wave Approximation Theories

In this section, the derivation of kinematic velocity from the kinematic wave approximation model
in the vadose zone will be presented. The kinematic wave model is primarily based on the continuity
equation and only approximates the dynamic equation with uniform flow [31]. As stated in Lighthill
and Whitham [15], kinematic waves only propagate in the vertical direction; thus, kinematic waves
have one wave speed, which is called celerity or kinematic velocity. The one-dimensional flow of the
kinematic wave model in the vadose zone is a functional relationship between the flow (q) and head
(h) or soil moisture content (θ).

Smith [14] stated that if the steady gravity-driven vertical porous media flow passing down
through the vadose zone, the kinematic wave velocity or celerity can be expressed as the following:

c =
dq
dθ

(1)

In porous media flow, celerity can be expressed in terms of soil moisture (θ) and unsaturated
hydraulic conductivity. Therefore, the Buckingham–Darcy flux law under the assumption of gravity
dominant unsaturated flow [32] was used to express this celerity.

The flow in the vadose zone of soil is often assumed as one-dimensional steady gravity dominant
flow because the hydrological changes at the surface are often minimal, and subsurface drainage mainly
occurs under frequent rainfall. For gravity dominant flow in the vadose zone, with water flowing
downward at a constant rate, the matric potential gradient (dh/dz) approaches zero and water flows
under the influence of gravity alone. Therefore, the Buckingham–Darcy flux law for gravity-driven
flow can be approximated as follows:

q ≈ −K(h) ≈ −K(θ) (2)

Since unsaturated hydraulic conductivity K(h) is a function of the matric potential head (h), and
K(θ) is a function of soil moisture content (θ), K may be written directly as a function of θ.

Celerity or kinematic wave velocity in the vadose zone for steady gravity dominate flow can be
derived based on Equations (1) and (2).

c =
dK(θ)

dθ
(3)

Equation (3) is used to indicate the timing of a small change in soil moisture or capillary pressure
at a water table resulting from a small change of hydrological conditions at the land surface. This
velocity is most relevant when calculating the delay of groundwater recharge in the vadose zone [19].

3.2. Parameterization of the Kinematic Wave Model

For conditions where the moisture flux is only a function of the moisture content, kinematic
wave models are applied to describe the moisture flow behavior in the vadose zone [10]. Unsaturated
hydraulic conductivity, porosity, residual soil moisture, and pore size distributions of the vadose
zone are used to parametrize the soil moisture content and celerity. In this study, the relationships
formulated by Brooks–Corey and van Genuchten–Burdine are used to express soil moisture and
celerity(c) in a parametric form based on their unsaturated hydraulic conductivity function.

3.2.1. Unsaturated Hydraulic Conductivity Function

Water flow and solute transport in the subsurface are strongly influenced by hydraulic conductivity.
Parameters of the vadose zone, like the pore size distribution of the medium and the tortuosity, shape,
roughness, and degree of interconnectedness of the pores, affect the value of hydraulic conductivity in
the subsurface [33].
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In this study, the closed-form analytical expression based on Burdine’s theory for predicting
unsaturated hydraulic conductivities is used. Since the Burdine theory is applicable for isotropic
media [34,35], the flow is assumed to be in isotropic media. The following equation was derived by
Burdine [36] for predicting relative hydraulic conductivity from pore size distribution data and basic
laws of fluid flow in a porous medium.

Kr = Se
2

se∫
0

1

h2(x)
dx/

1∫
0

1

h2(x)
dx (4)

where h is the pressure head, which is a function of relative soil moisture content or effective
saturation, Se:

Se =
θ− θr

θs − θr
(5)

In Equation (5), θs and θr indicate the saturation and residual soil moisture content in the vadose
zone, respectively. Both Brooks–Corey and van Genuchten express the relative soil moisture content in
the form of pressure head to solve the Burdine relative hydraulic conductivity equation.

Based on the observation of a large number of experimental data, Brooks and Corey [34,35] express
effective saturation in the function of pressure head as follows:

Se =

(
h
hb

)−λ
(6)

where hb is the bubbling pressure (approximately equal to the air entry value), and λ is a number to
characterize pore size distribution. Then, the closed-form expression of relative hydraulic conductivity
can be derived by solving Equation (4) using Equation (6). Therefore, relative hydraulic conductivity
using Brooks–Corey is as follows:

Kr = Se
(3λ+2)/λ (7)

van Genuchten [37] also expresses the effective saturation in the function of pressure head:

Se =

[
1

1 + |αh|n

]m

(8)

where α and n are van Genuchten empirical coefficients which depend on the air bubbling pressure
and pore size distribution, respectively, m = 1 − 2/n (with n > 2), and h is the pressure head, assumed
to be positive below the root zone or during deep drainage. Then, a closed-form expression for van
Genuchten relative hydraulic conductivity can be derived by solving Equation (4) of Burdine theory
using Equation (8):

Kr = Se
2
[
1−

(
1− Se

1
m

)m]
(9)

Relative hydraulic conductivity in Equations (7) and (9) is equal to the ratio of unsaturated K(θ)
and saturated hydraulic conductivity Ksat.

Kr = K(θ)/Ksat (10)

Using relative hydraulic conductivity Equations (7), (9), and (10), parametric models can be
developed to estimate unsaturated hydraulic conductivity, K(θ), from vadose zone properties. Therefore,
unsaturated hydraulic conductivity for the two parametric models can be expressed as follows:

Brooks–Corey model (BC):

K(θ) = Ks(Se)
3λ+2
λ (11)
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van Genuchten–Burdine model (VGB):

K(θ) = KsSe
2
[
1−

(
1− Se

1
m

)m]
(12)

According to the soil retention curve resulting from van Genuchten [37], the above two parametric
models become identical for a sufficiently low value of soil moisture, θ, under the same parameter
values of α and n and λ (which is equal to n − 1) [38].

3.2.2. Soil Moisture Content

Due to the relatively large size of the catchment, the difficulty of measuring soil moisture content
values in the subsurface, and its variability in space and time, soil moisture content was estimated
using the Brooks–Corey and van Genuchten–Burdine parametric models.

During the soil moisture transport in the vadose zone, when the moisture content reaches field
capacity, hydraulic conductivity is sufficient to pass the volumetric flux q in the downward direction
under the force of gravity, so that water content θ can be inferred from knowledge of q and K(θ) [39].
The assumption hereby is that under these conditions, the hydraulic gradient is equal to one (flow is
only driven by gravity). Hence, the water content of the vadose zone must be the water content at
which K(θ) = q. By setting K(θ) = q in the Brooks–Corey model (Equation (11)) and rearranging, the
average soil moisture content in the vadose zone can be calculated as follows:

θ = θr + (θs + θr)
( q

Ks

) λ
3λ+2

(13)

By similarly setting K(θ) = q in the van Genuchten–Burdine equation (Equation (12)), the average
soil moisture content can be calculated from the recharge flux as follows:

q
Ks

= Se
2
[
1−

(
1− Se

1
m

)m]
(14)

3.2.3. Kinematic Wave Velocity or Celerity

A parametric expression of celerity can be obtained by derivation of the unsaturated hydraulic
conductivity formulation of Brooks–Corey and van Genuchten–Burdine with respect to the soil moisture
content in the vadose zone.

According to Equation (3), the celerity for the Brooks–Corey equation is obtained by taking the
derivative of unsaturated hydraulic conductivity (Equation (11)) with respect to the water content θ,
which yields the following:

c =
Ks(3λ+ 2)Se

3λ+2
λ

λ(θ− θr)
(15)

Similarly, the celerity in case of the van Genuchten–Burdine equation is obtained by taking the
derivative of Equation (12) with respect to the water content θ, which yields the following:

c =
KsSe

(θS − θr)

[
2(1− Sf

m) + S
1
m
e Sm−1

f

]
(16)

where Sf is equal to 1 − Se
1/m.

4. Methods

In this study, groundwater recharge is assumed as the only vertical water flow in the vadose zone.
Thus, groundwater recharging passing through the vadose zone is approximated by the Darcy flow
driven by gravity. Therefore, Darcy flux (q) mentioned in all the above equations can be substituted by
groundwater recharge.
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The parametric models of Brooks–Corey (BC) and van Genuchten–Burdine (VGB) directly address
moisture content as the variable of interest and assume gravity as the driving force for water flow.
These models were used to estimate soil moisture content and celerity in the vadose zone.

The groundwater recharge delay was calculated from celerity using the following expression:

td =
Tvz

c
(17)

where td is the groundwater recharge delay (d) in the unsaturated zone, Tvz is the thickness of the
vadose zone (m), which is equal to the mean of the groundwater table depth described in Figure 3, and
c is the celerity (m/day) calculated with Equation (15) or (16), thereby calculating the moisture content
θ with Equation (13) or (14), respectively.

The methods used here to estimate td may lead to a small potential error because the capillary
fringe near the water table is not taken into account.

4.1. Modeling Approaches

In this study, two modeling approaches were applied: (1) using a detailed physical parametrization
of the geological layers and (2) using lumped geological layers.

4.1.1. Detailed Physical Parametrization of Geological Layers

Detailed soil characterization of the geological layers was taken from 168 soil boreholes found in
the Demer and Dijle catchments (Figure 1).

In these soil boreholes, soil texture is aggregated using a soil texture triangle, and the homogeneous
soil texture within the thickness of each borehole was considered (Table S1). For each soil texture group,
parameter values of physical properties were determined using the USDA soil texture classification and
the univariate regression equation by Cosby et al. [27]. Soil moisture content was estimated for each
borehole using Brooks–Corey and van Genuchten–Burdine parametric models. After estimating point
scale kinematic velocity, empirical Bayesian kriging (EBK) was used to interpolate celerity throughout
the study area. During the interpolation of celerity, 80% of the point scale values were used as training
data while the rest was used for the validation of interpolation.

4.1.2. Lumped Parametrization of Geological Layer

In the second modeling method, the groundwater recharge delay was estimated by lumping
the different geological layers found in the vadose zone. The thickness of each geological layer was
computed from its top surface elevation, the bottom elevation of each layer, and water table elevation
(Figure S1). The data for the elevations of each geological layer were taken from VMM (Vlaamse
MilieuMaateschappij) [40]. Hydraulic and physical properties of the geological layers were taken from
the hydrogeology study of North-East Belgium by Vandersteen and Gedeon [22].

Spatially distributed, yearly averaged soil moisture content was estimated for each geological
layer using the Brooks–Corey and van Genuchten–Burdine parametric models. Moreover, celerity was
estimated in each geological layer based on the result of the soil moisture content and yearly averaged
groundwater recharge. The groundwater recharge delay in the vadose zone was estimated using the
relationship of celerity and vadose zone thickness shown in Equation (17).

4.2. Comparison with Other Methods

Direct measurement of the delay time in the unsaturated zone is not possible, and validation is
very challenging, especially for the size of the study area. As direct validation of the resulting delay
time is not possible, the model results were compared to results from different models [41]. The results
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of the above parametric models are compared to a physically based flow model, HYDRUS-1D, which
solves the 1-D Richards flow equation numerically.

∂θ
∂t

=
∂
∂z

[
K(h)

(
∂h
∂z

+ 1
)]
− S (18)

where z is the vertical coordinate (positive upward), t is time (d), S is a sink term (d−1), h is the pressure
head (m), θ is the volumetric moisture content, and K is the unsaturated hydraulic conductivity
function (m/d).

The results of both the van Genuchten–Burdine and Brooks–Corey parametric models were
compared to the HYDRUS-1D model for 15 selected locations varying in the thickness of the vadose
zone. For these locations, the lithological information could be inferred from borehole data. The soil
physical properties were parametrized based on USDA default soil texture parameter values mentioned
in Cosby et al. [27].

A variable flux condition was imposed on the soil surface, considering the same inputs R(t)
as those used in the parametric models. Since the bottom of the flow domain is the groundwater
table, a constant soil moisture content equal to the saturated soil moisture content was imposed.
Field capacity soil moisture content throughout the vadose zone was defined as the initial condition.
Moreover, the soil hydraulic property model was set as Brooks–Corey and van Genuchten–Mualem for
different simulations.

The groundwater recharge delay was calculated by comparing the timing of the peak flow daily
time series at the soil surface and the groundwater table.

4.3. Delay Effect on Groundwater Drought

To assess the effect of the delay in the vadose zone on groundwater drought, the groundwater
recharge delay output was implemented on the spatially distributed, monthly recharge time series
between 1980 and 2013 obtained from the GroWaDRISK project, resulting in a delayed recharge time
series R(t)d.

A groundwater drought analysis was performed on the original groundwater recharge (R(t))
and the delayed groundwater recharge (R(t)d = R(t − td)) time series of 34 years. The threshold level
method introduced by Yevjevich [42], with a variable threshold value [43], was used to determine the
occurrence of groundwater recharge drought events.

To do so, a separate frequency analysis was conducted for each of the 12 months. The threshold
level for each month was determined as the 70th percentile of the probability of exceedance of monthly
recharge in that month in the 34-year series (1980–2013). This threshold level is within the 70th–95th
percentile of the probability of exceedance range used for most drought studies [44]. For each month
of the year, the monthly recharge values in the time series were ranked from highest to lowest. For
each month, percentiles were calculated using the formula from [45]:

Pi = 100
i− 0.5

n
(19)

where Pi is the percentile of the data set, i is the rank number, and n is the total number of data
points. The formula was rearranged to calculate the rank for the 70th percentile recharge for each
month, and the corresponding threshold value of recharge was obtained using linear interpolation
between successive ranks. Finally, the comparison of drought events of groundwater recharge and
delayed groundwater recharge were made in terms of the number of drought events, the severity
of drought, and their duration and timing. The results were analyzed for the whole study area and
also separately for the subareas with deep and shallow groundwater tables, defined as areas with an
average groundwater depth higher than 40 m and lower than 10 m, respectively.
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5. Results and Discussion

5.1. Detailed Physical Parametrization of Geological Layers

5.1.1. Soil Moisture and Celerity

Estimated soil moisture content in the study area varies from 0.03 to 0.25 mm/mm (Figure 5). The van
Genuchten–Burdine model gives a higher estimation of soil moisture than the Brooks–Corey model. Soils
with low hydraulic conductivity and high deep percolation have higher soil moisture content.
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Figure 5. Average soil moisture content for 168 locations found in Dijle and Demer catchment, ordered
from low to high soil moisture content.

Celerity estimated using the van Genuchten–Burdine model ranges from 179 to 6367 mm/month,
while the Brooks–Corey model estimates values from 148 to 3597 mm/month (Figure 6). Due to the
different estimates of soil moisture in the two models, the celerity estimated by the Brooks–Corey
model has lower values compared to the van Genuchten–Burdine model.

Water 2020, 12, 2123 12 of 23 

  
Figure 6. Van Genuchten–Burdine and Brooks–Corey model soil moisture content and celerity 
estimation difference using the same groundwater recharge input for 168 sample boreholes. 

The spatially distributed celerity using empirical Bayesian kriging is shown in Figure 7. The 
performance of the interpolation method is indicated in Table 2. 

 
Figure 7. Celerity of soil moisture in the vadose zone estimated by van Genuchten–Burdine (right) 
and Brooks–Corey model (left). 

Figure 6. Van Genuchten–Burdine and Brooks–Corey model soil moisture content and celerity
estimation difference using the same groundwater recharge input for 168 sample boreholes.



Water 2020, 12, 2123 12 of 22

The spatially distributed celerity using empirical Bayesian kriging is shown in Figure 7.
The performance of the interpolation method is indicated in Table 2.
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Table 2. Prediction error of empirical Bayesian kriging.

Prediction Error VGB BC

Root mean square (mm/month) 1461 691
Mean standardized (–) −0.0109 −0.0034

Root mean square standardized (–) 0.994 0.989
Average standard error (mm/month) 1452 686

5.1.2. Groundwater Recharge Delay

Figure 8 shows the distribution of the groundwater recharge delay. The estimated groundwater
recharge delay in the vadose zone using the Brooks–Corey model ranges from 0 to 110 months, with a
spatial mean of 10.32 months, whereas, under the van Genuchten–Burdine model, the delay ranges from
0 to 73 months, with a spatial mean of 6.65 months. The difference map shown in Figure 9 shows the
spatial distribution of the difference in delay between the Brooks–Corey and van Genuchten–Burdine
models. The spatially averaged mean difference is 3.6 months.
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Figure 9. Groundwater recharge delay difference between the delay estimated by the Brooks–Corey
model and van Genuchten–Burdine model.

Comparing the spatial distribution of the recharge delay and Figure 3, it is clear that the
distributions of the vadose zone thickness and the delay have the same pattern. This indicates that the
thickness of the vadose zone is the main factor influencing the groundwater recharge delay (Figure 10).
In the northern part of the study area with shallow groundwater, the groundwater recharge delay is
below 2 months, while the delay increases to 110 months in the area found in the southeast with a deep
water table.
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5.2. Lumped Parametrization of Geological Layers

5.2.1. Soil Moisture and Celerity

The van Genuchten–Burdine and Brooks–Corey models were also used to estimate soil moisture
content and celerity for each geological layer found in the vadose zone of the study area. Figure 11 shows
that soil moisture and celerity in the vadose zone are mainly influenced by the hydrogeologic properties
of the geological layers (mainly saturated hydraulic conductivity) and groundwater recharge. As in the
detailed parameterization approach, for a given groundwater recharge, the van Genuchten–Burdine
model gives a higher estimation of celerity than the Brooks–Corey model.
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5.2.2. Groundwater Recharge Delay

Figures 12 and 13 show the distribution of the groundwater recharge delay. The estimated
groundwater recharge delay in the vadose zone using the Brooks–Corey model ranges from 0 to
26 months. Under the van Genuchten–Burdine model, the delay ranges from 0 to 18 months.
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Figure 13. Box plots showing the distribution of groundwater recharge delay in each geological layer
of the vadose zone using the van Genuchten–Burdine parametric model. See Table 1 for the description
of layers.

The comparison of the delay estimated in each geological layer using both models allows examination
of the contribution of each layer. As most of the vadose zone is found in Quaternary (HCOV 0100) and
deposits of the Kempen (HCOV 0200) aquifer systems, the greatest delay occurs in layer 1.

5.3. Comparison of Groundwater Recharge Delay to Physically Based Conceptual Flow Model

The delay estimated using the above parametric models from both modeling approaches was
compared to output from a physically based flow model (i.e., HYDRUS-1D). Figure 14 shows that the
approach using a detailed parametrization of the geological layers compares better to the HYDRUS-1D
output, with a Nash–Sutcliffe efficiency of 0.89 for Brooks–Corey and 0.79 for van Genuchten–Burdine.
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Figure 14. Comparison of HYDRUS-1D output with groundwater recharge delay estimated
using Brooks–Corey and van Genuchten–Burdine models for both detailed parametrization and
lumped approaches.

The models’ output from the lumped geological layer approach compares poorly to HYDRUS-1D,
with a Nash–Sutcliffe efficiency of 0.22 for Brooks–Corey and 0.15 for van Genuchten–Burdine. However,
as a result of the systematical underestimation of the groundwater recharge delay regarding the output
of the HYDRUS-1D model, the coefficient of determination (r2) is larger than 75%.

5.4. Delay Effect on Groundwater Drought

The effect of the recharge delay on the occurrence and timing of groundwater drought was
analyzed using a variable threshold method, where the threshold value was calculated as the 70th
percentile of the probability of exceedance for the original and delayed recharge time series, for the
whole study area and the subareas with deep and shallow groundwater tables.

5.4.1. Delay Effect on Groundwater Drought for the Whole Study Area

Figure 15 shows the deviation of groundwater recharge from the threshold value in time. Negative
anomalies indicate groundwater drought. The results indicate that the delay in the vadose zone
decreases the number of drought events from 4 to 10 events and the cumulative deficit volume from
46.87 to 49.51 mm. However, the average duration of drought events increases from 3 to 8 months.
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Figure 15. Deviation from the threshold value of spatially average monthly groundwater recharge (top)
and delayed recharge (bottom) for the whole study area based on 6-month moving average. The red
color represents groundwater drought.

This shows that including the recharge delay in the unsaturated zone results in fewer but longer
groundwater drought events, with a lower cumulative deficit volume. Passage of recharge through the
unsaturated zone has a smoothing and delaying effect on the occurrence of groundwater drought.

5.4.2. Delay Effect on Groundwater Drought for Deep Water Table Area

Monthly groundwater recharge and delayed groundwater recharge for the deep groundwater area
with an average groundwater depth of 48 m and delay of 61 months was used to estimate groundwater
drought events. Figure 16 shows the deviation of both recharges from the threshold value. The result
indicates that the first groundwater drought happened on the delayed groundwater recharge in July
1994, 61 months later than the first drought event in the original groundwater recharge time series.
The cumulative deficit of delayed groundwater recharge is 4.8 mm lower. Moreover, considering the
delay in the vadose zone, the number of events decreased from 9 to 11 events. This could be because of
the larger attenuation in this deep vadose zone and the storage properties of the vadose zone.

The results also show that the average duration of drought events for the delayed recharge and
original recharge is 2.6 months and 2.5 months, respectively. Therefore, the delay in areas with deep
groundwater tables would mainly affect the onset of drought events.

5.4.3. Delay Effect on Groundwater Drought for Shallow Water Table Area

In the shallow groundwater area, a cumulative deficit of 91.56 mm was calculated, versus 92.92 mm
for the recharge time series without delay. This small difference in cumulative deficit could be explained
by the smaller attenuation in the thin vadose zone and smaller delay time.

The number of drought events estimated using both recharge time series is the same, i.e., ten
events. However, Figure 17 shows that the first groundwater drought with delayed recharge happened
in Oct. 1983, 3 months after the first drought event in the undelayed groundwater recharge time series.
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6. Conclusions

In this study, spatially distributed groundwater recharge delay through the vadose zone was
estimated in the Dijle and Demer catchments in Central Belgium. This estimation was conducted using
two mathematical models developed by combining the kinematic wave approximation of Richards’
equation with two parametric models describing the soil hydraulic properties, i.e., the Brooks–Corey
and van Genuchten–Burdine models.

The vertical soil moisture velocity or celerity was influenced by saturated hydraulic conductivity
and soil moisture content in the vadose zone for both models. The Brooks–Corey model estimated
lower celerity compared to the van Genuchten–Burdine model.

The calculated delay was compared to the physically based flow model HYDRUS-1D. Delays
calculated based on a detailed parametrization of the soil and geological layers are very similar to
the HYDRUS-1D results, with a Nash–Sutcliffe efficiency of 0.89 for Brooks–Corey and 0.80 for van
Genuchten–Burdine. However, in both models, there is a slightly systematic underestimation of the
delay compared to the HYDRUS-1D model.

The estimated spatially distributed groundwater recharge delay in the vadose zone using the
Brooks–Corey model ranges from 0 to 110 months, with a spatial mean of 10.3 months. Using the van
Genuchten–Burdine model, the delay ranges from 0 to 73 months, with a spatial mean of 6.7 months.
The thickness of the vadose zone is the main parameter influencing the spatial distribution of this
delay. In regions with shallow groundwater (<10 m), the groundwater recharge delay is less than
2 months, whereas the delay is up to 110 months for areas with a deep water table (>40 m).

The delay effect on groundwater drought was analyzed by implementing the delay result of
the Brooks–Corey model on the groundwater recharge time series from 1980 to 2013. Groundwater
drought characterization features like number, duration, onset, and intensity of drought events were
influenced by the delay in the vadose zone.

Finally, from this study, the Brooks–Corey model with a detailed parametrization of the geological
layers is recommended to estimate spatially distributed groundwater delay. Besides this, incorporating
this delay in groundwater drought delay analysis does affect the timing of groundwater drought
significantly. Therefore, combining the delay in the vadose zone with drought propagation in
the hydrological cycle is recommended for future studies. The applicability of the findings and
methodology of this research depends on the nature of the vadose zone. In this paper, the method is
applied and tested in low land areas. The applicability of the method in mountain catchments needs
further investigation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/8/2123/s1,
Figure S1: Thickness of geological layers in vadose zone (m) of the study area within 5 color-coded classes,
estimated as the difference in 100-m digital elevation model data, base elevation of each geological layers and
34 years (from 1980 to 2013) averaged water table digital data (refer layer type from Table 1 in the manuscript),
Table S1 Aggregated soil lithology for 168 soil boreholes.
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