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Abstract: Improved water resource management relies on accurate analyses of the past dynamics
of hydrological variables. The presence of low-frequency structures in hydrologic time series is
an important feature. It can modify the probability of extreme events occurring in different time
scales, which makes the risk associated with extreme events dynamic, changing from one decade
to another. This article proposes a methodology capable of dynamically detecting and predicting
low-frequency streamflow (16–32 years), which presented significance in the wavelet power spectrum.
The Standardized Runoff Index (SRI), the Pruned Exact Linear Time (PELT) algorithm, the breaks for
additive seasonal and trend (BFAST) method, and the hidden Markov model (HMM) were used to
identify the shifts in low frequency. The HMM was also used to forecast the low frequency. As part
of the results, the regime shifts detected by the BFAST approach are not entirely consistent with
results from the other methods. A common shift occurs in the mid-1980s and can be attributed to the
construction of the reservoir. Climate variability modulates the streamflow low-frequency variability,
and anthropogenic activities and climate change can modify this modulation. The identification of
shifts reveals the impact of low frequency in the streamflow time series, showing that the low-frequency
variability conditions the flows of a given year.
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1. Introduction

Climate change and intensive human activities extensively influence hydrological regimes and
water resource systems. Consequently, many world rivers have suffered quality and quantity problems.
Rivers are considered one of the most vulnerable resources to human disturbances, e.g., land cover
changes, agricultural irrigation, and reservoir construction [1–4]. Further assessing the changes in
streamflow regimes is a critical challenge for understanding hydrologic mechanisms, which can
improve water resource management.

Many water resource studies have applied stochastic methods to identify temporal uncertainties.
The early time series models assumed that the time series came from a stationary or a cyclostationary
process [5]. These models performed well for hydrological data without signs of long-term memory
or nonlinear dependence [6–9]. However, as records length increased, low-frequency structures of
climate were associated with hydrologic time series. These structures became an essential feature
in the hydrological analysis, especially in streamflow analysis, due to the extremely non-uniform
temporal distribution of global runoff. In addition, several studies have associated the changes in
hydrological records with the effects of natural climate variability, particularly from low-frequency
climate indices such as the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation

Water 2020, 12, 2058; doi:10.3390/w12072058 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-2550-1691
http://dx.doi.org/10.3390/w12072058
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/7/2058?type=check_update&version=3


Water 2020, 12, 2058 2 of 16

(AMO) [5,10,11]. Thus, recognizing variability patterns and the shift linked to climate variability and
human activities such as dam construction and water withdrawal remains a significant challenge.
The low-frequency variability modifies the occurrence of extreme events, such as droughts and floods,
in the decadal and multidecadal time frames. Consequently, the risk of extreme events is dynamic and
changes from one decade to another.

Over the years, several studies have focused on the changes in streamflow at various spatial and
temporal scales, including studies in Brazilian basins [4,12–16]. Climate fluctuations in the decadal and
interdecadal time frames control water availability, affect ecosystems, and modulate higher frequency
variability, thus having a significant social and economic impact [17,18]. Proper assessment of this type
of variability is important in medium and long-range water resource management, particularly for
hydropower generation planning.

The recent intensive drought (2010–2017) in the northeast region of Brazil (NEB) significantly
affected hydroelectric production. Thus, variations in hydrological systems require regime shift
detection and forecasting for better planning and management of water resources. This is particularly
so for the case study where the Brazilian National Operator of the Electrical System (ONS) is seeking
to estimate water availability from the forecast of inflows to optimize the interconnected hydroelectric
system. The models commonly used by the ONS belong to the class of autoregressive models, which
considers the series stationary [19]. Consequently, these models do not represent the best forecasting
methods, given the climatic variability that exerts pressure on water systems. The case study is one
of the greatest hydroelectric power plants of the NEB, the Sobradinho dam. Several studies have
investigated trends and different characteristics of the Sobradinho streamflow times series [4,20,21].
However, studies have not analyzed changes in the low-frequency streamflow regime of the Sobradinho
dam, including the possible causes. Further motivation for analysis of the low-frequency variability
is provided by the inspection of filtered streamflow series in the chosen region and their significant
contribution to the total variability.

Climate variables can exhibit low-frequency and regime-switching variability at multiple time
scales, which are likely to cause risks associated with climate extremes to vary in time. To analyze the
shifts in hydrological variables, which are directly influenced by climate change and anthropogenic
activities, four different methods were applied to identify the shifts in the low-frequency streamflow:
(i) the Standardized Runoff Index (SRI), which is extensively used for monitoring hydrological drought
due to its simplicity in computation and relatively low data requirements; (ii) the Pruned Exact Linear
Time (PELT) algorithm used as a typical search method for segmentation; (iii) the breaks for additive
seasonal and trend (BFAST) method, which has the advantage of decomposing the time series, not only
for performing trend analysis but also for detecting the regime shift of seasonal data; and (iv) the
hidden Markov model (HMM), which has been successfully used in modeling regime-like behavior.

As extreme climatic events become more frequent and threatening, it becomes critical to assess the
sensitivity of watersheds to climatic change and its impact on important aspects for human life such
as energy and water supply. Much knowledge could be gained from detecting shifts and predicting
low-frequency streamflow regimes considering dynamic variations over time. Accurate and reliable
prediction models for streamflow are tools of great importance in the management and optimal
allocation of water systems. This is especially the case in systems under significant stress due to
surface and groundwater scarcity [22]. Therefore, an HMM is proposed to forecast the low-frequency
streamflow. The HMM is a doubly embedded stochastic process model. This feature fits well
with the complicated occurrence and development process of nonlinear hydrological phenomena.
Therefore, the objectives of this study were (i) to develop a methodology for investigating low-frequency
streamflow shifts and (ii) to predict the system’s states in the low-frequency time frame. Identifying the
current state of low frequency allows the assessment of the risk of extreme events and an accurate
forecast of streamflow.
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2. Study Area and Data

The Sobradinho reservoir is located in the São Francisco River Basin, Brazil (Figure 1). The basin
has an area of approximately 639,219 km2, equivalent to 8% of the country. It is the longest river that
runs entirely in Brazilian territory. The São Francisco River runs through six Brazilian states (Minas
Gerais, Goiás, Bahia, Pernambuco, Alagoas, and Sergipe) and the Federal District. The São Francisco
River originates in Minas Gerais and runs 2863 km to the Atlantic Ocean [23].
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Figure 1. Location of the Sobradinho Reservoir, Brazil.

The water and climate characteristics of the basin are highly variable. The Sobradinho reservoir
presents critical periods of prolonged droughts due to low rainfall and high evapotranspiration.
The rainfall season starts approximately in November and ends in April [23,24]. The average annual
flow of the São Francisco River is 2846 m3/s, and, until 2013, the water withdrawn was 278 m3/s [25].
One of the uses of water resources in the São Francisco River is irrigation, whose withdrawal is 77% of
the region’s total demand.

The São Francisco Region plays an essential role in generating electricity, with a potential installed
in 2013 of 10,708 MW, coming from 28 small plants and 12 large plants (12% of the country’s total).
The hydroelectric exploitation of the São Francisco River represents the NEB’s energy supply base [24].
There are several large dams along the São Francisco River, namely Três Marias, Sobradinho, Itaparica,
Moxotó, Paulo Afonso I, II, III, and IV, and Xingó, which were constructed between 1962 (Três Marias)
and 1994 (Xingó). The Sobradinho dam (coordinates: 9◦25’49” S, 40◦49’37” W; construction: 1973–1979;
the beginning of operations: 1979–1982) is located 742 km from the mouth, in the Bahia state. The dam
has a height of 41 m and length of 12.5 km. The reservoir has a maximum length of 320 km, a surface
area of 4214 km2, and a storage capacity of 34.1 × 109 m3. The Sobradinho reservoir was built to
achieve multiple uses such as multiannual flow regulation for hydropower, navigation, irrigation,
and flood control management for the riverine communities of the São Francisco River Basin.

Monthly naturalized flows measured at a gauging station along the São Francisco River were
obtained from the ONS. The naturalized flow of a hydroelectric plant is the flow that would be
observed in that measurement gauge considering the river in its natural condition, that is, assuming
that there is no reservoir regulating the flow and no human activity impacts. The streamflow time
series range from January 1931 to December 2016 without any missing values. The gauge station is
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located approximately 95 km upstream of the Sobradinho dam. This station is likely to suffer minor
effects of the Três Marias reservoir, the largest reservoir upstream of Sobradinho, and located about
1087 km from Sobradinho [4].

3. Materials and Methods

This section provides a brief description of the methods and the steps used for shift identification
and projection of the low-frequency streamflow time series. All experiments were carried out in
the R environment for statistical computing [26]. In this study, (i) the wavelet transform was used
to decompose and reconstruct the low-frequency streamflow from the streamflow time series and
(ii) a classical method (SRI) and three state-of-the-art methods (PELT, BFAST, and HMM) were used
to identify the shifts in the low-frequency streamflow series. After the identification of the shifts
present in the series and knowing how they repeated themselves, (iii) an HMM was used to project the
low-frequency streamflow. The main advantage of applying this method to streamflow time series
is its ability to simulate long persistence and regime-switching behavior [27]. Then, the degree of
improvement in prediction accuracy from using the HMM as the projection method for low-frequency
streamflow time series was assessed. Figure 2 illustrates the flowchart describing the key steps in
this study.
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3.1. Time Series Decomposition Using Wavelet Transform

An extensive method used in extracting the low-frequency part of a time series is the wavelet
transform [28–30], which decomposes the series in the time-frequency domain and identifies the
dominant modes of variability. A wavelet transform decomposes a time series into a set of functions,
also known as the “daughter wavelet”, derived from the translation in time and scaling of the “mother
wavelet”. The choice of the mother wavelet is a significant one, where the kind of wavelet transform
chosen depends on the type of output information needed. There are many mother wavelet functions
from which to choose, such as Haar wavelet, Daubechies wavelet, Mexican Hat wavelet, Morlet wavelet,
and others. This study applied the Morlet wavelet, which is commonly used in hydrological time
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series because of its power to describe the time series adequately and provide a better time-frequency
localization [31,32].

The signal component of the time series is identified by the 90–95% significance test using the
white noise as a null hypothesis and the interpretation of the wavelet power spectrum. The identified
significant component is then extracted from the original series using the reconstruction function.
Reconstruction of the original time series over a set of periods can be obtained as follows:

xt =
d j.dt

1
2

C. ψ(0)

∑
s

Re(Wave(s))

s
1
2

, (1)

where C is the reconstruction factor; d j and dt are the scale and time factor, respectively; ψ(0) is the
factor that removes the energy scaling for the Morlet wavelet function; Re(Wave(s)) is the real part of
the wavelet transform; and s is the scale parameter.

We used the WaveletComp package [33] to decompose the time series and reconstruct the
low-frequency streamflow. More details of the wavelet technique can be found in [5,28,30].

3.2. Regime Shift Detection

In this study, we applied the PELT algorithm and the HMM to detect shifts in the annual
low-frequency streamflow time series, and the BFAST model and the SRI to detect shifts in the monthly
low-frequency streamflow series.

3.2.1. SRI

Drought indices, such as SRI, are used for drought identification and the description of its intensity.
The SRI is based on the concept of the Standardized Precipitation Index [34], discussed by the authors
of [35]. Although the indices show similarities, the SRI incorporates hydrological processes that
control the seasonal loss in streamflow due to the climate’s influence, thus being able to describe the
hydrological aspects of droughts.

First, a long-term record was fitted to a probability distribution. A variety of probability distributions
(e.g., gamma, lognormal, generalized extreme value, log-logistic, and generalized Pareto) have been used
to fit monthly observations of different hydro-climatic variables for calculating drought indices [36,37].
Then, the cumulative distribution function (CDF) of the fitted marginal distribution was transformed into
a standard normal variate Z.

After the low-frequency streamflow was decomposed and reconstructed using the wavelet
transform to a significant variability frequency range, we tested three different distributions, where the
best one was chosen to fit the reconstructed time series. The adjusted SRI (Ad-SRI), as we are calling
the SRI of the low frequency, is not the same as the classical SRI as they present different information.
Consequently, their variability range is different. The Ad-SRI uses the mean of a 12-month time scale
to characterize the system’s state in that year. Afterward, the values are classified. Years with negative
values were termed State 1 and years with positive values were termed State 2.

3.2.2. PELT Algorithm

The detection of breakpoints was based on the method presented in [38]. A data set is defined as being
y1:n = (y1, . . . , yn). In a model with multiple breakpoints (m) and their positions τ1:m = (τ1, . . . ,τm),
each point is an integer between 1 and n − 1. It is defined that τ0 = 0 and τm+1 = n. Consequently,
the m breakpoints will split the data into m+1 segments. A common approach in the methodology to
detect multiple breakpoints is to minimize the cost function as follows:

m+1∑
i = 1

[
C
(
yτi−1+1):τi

)]
+ β f (m), (2)
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where C is a cost function for a segment, e.g., negative log-likelihood, and βf (m) is a penalty to guard
against overfitting (a multiple breakpoint version of the threshold c).

Many breakpoints algorithms are implemented in the R package changepoint [39] used in this study,
such as the binary segmentation algorithm, segmentation neighborhood, and the PELT algorithm [38].
The PELT shows speed gains and increased accuracy over the other methods. The method is an
adaptation of the optimal partitioning, and for computational efficiency it removes points that can never
be minima from the minimization performed at each iteration by the cost function [39]. We assessed
the annual low-frequency streamflow with the PELT algorithm and divided the shifts into two states
based on the breakpoint found by the algorithm. Negative values of low-frequency streamflow were
termed State 1, whereas positive values were termed State 2.

3.2.3. BFAST

The BFAST method, proposed by the authors of [40], is a decomposition method that integrates
the iterative decomposition of a time series into trend, seasonal, and remainder components to examine
changes (i.e., trends and breakpoints) within the time series. The method has been applied to detect
long-term seasonal changes in satellite image time series [40]. The general model is described as follows:

Yt = Tt + St + ξt, t = 1, 2, . . . , n, (3)

where Yt is the observed data at time t, Tt is the trend component, St is the seasonal component and
the remainder component ξt denotes the remaining variation in the data beyond that in the seasonal
and trend components.

Assuming that the entire time series has m breakpoints τ1, . . . , τm in the trend component Tt, then
the segment-specific slopes and intercepts can be calculated on each segment. The trend component
can be expressed as follows:

Tt = αi + βit, (τi−1 < t < τl), (4)

where i = 1, . . . , m and we define τ0 = 0 and τm+1 = n. The intercept αi and slope βi can be used to
assess the magnitude and direction of the abrupt change.

Similarly, a harmonic model is applied to parameterize the seasonal component. The seasonal
component is fixed between breakpoints. Given the time series has p seasonal breakpoints t1, . . . , tp,
then the seasonal component St can be calculated as follows:

St =
k∑

k = 1

γk sin
(

2πkt
f

+ δk

)
, (5)

where the unknown parameters are the segment-specific amplitude γk and phase δk, which must be
estimated. The known frequency f is equal to 12 for the monthly observations used here. The moving
sum test based on ordinary least squares residuals (OLS-MOSUM) is applied to detect whether one or
more breakpoints occur [41]. The breakpoints are estimated using Bai and Perron’s method if the test
indicates a significant change (p < 0.05). [42] argues that the Akaike information criterion (AIC) usually
overestimates the number of breaks, and the Bayesian information criterion (BIC) is a more suitable
procedure in many situations. Thus, in the method, the number of breaks was determined by the BIC,
and the date and confidence interval of the date for each break were estimated. The BFAST model
parameters were estimated by iterating the following steps:

Step 1: If the OLS-MOSUM test shows that breakpoints occur in the trend component, then the
number and positions of the breakpoints in the trend component τ1, . . . , τm are estimated through least
squares from the seasonally adjusted data Yt − St. For a specific segment, the trend component can be
estimated by Equation (4). Then, the trend coefficient αi and βi are calculated for different segments
using robust regression method based on M-estimation to account for potential outliers.
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Step 2: Similarly, if the OLS-MOSUM test indicates that breakpoints occur in the seasonal
component, then the number and positions of the breakpoints in the seasonal component t1, . . . , tp are
estimated from the detrended data Yt − St. The parameters γk and δk for each segment are calculated
using a robust regression method based on M-estimation. We applied the BFAST model to monthly
data and identified the shifts in the low-frequency streamflow.

3.2.4. HMM

HMM [43] is a statistical model in which the realizations from an unobserved Markov process
represent the observed time series [44,45]. A Markov process is a random process whose future
probabilities are determined by its most recent values. The HMM was developed for speech recognition
and has been successfully used in many knowledge areas, including hydrology [27,44,46].

An HMM consists of state (S1:T) and observation (O1:T) variables. The distribution of Ot can be
written as fi(Ot) = f (Ot|St = i) and the marginal distribution for a discrete number of states can be
described as mixture distribution with n components [45–47]. The equation is written as follows:

f (Ot) =
n∑

i = 1

pi fi(Ot), (6)

where
n∑

i = 1
pi = 1, pi ≥ 0 and fi() is the conditional distribution of the data.

The transition between states is governed by probabilities described as transition probabilities.
They are denoted by the matrix A(t), where the first row (a1 j) has the probabilities from moving from
state St = 1 to St+1. When dealing with the transition’s parameters in A, one must define the initial
state or the prior probabilities π that define where the process begins.

P(St = 1, St = 2, . . . , St) = πAt−1, (7)

The forward algorithm is used for calculating the joint likelihood [48]. The expectation–maximization
algorithm is used to optimally estimate the parameters of the HMM. In this algorithm, the parameters are
obtained with the maximization of the expected joint log-likelihood given the observations and states
through an iterative process [45,49]. The Viterbi algorithm is applied to decode the observation sequences
into hidden state sequences.

3.2.5. HMM for Projection

For the simulation of the model, the low-frequency streamflow was fitted to different HMMs,
varying the number of hidden states. The model with the lowest BIC was chosen. Then, the model’s
parameters were estimated, including the mean and standard deviation of each state and the transition
matrix of the model.

The prediction method was based on the work proposed by the authors of [50], which is divided
into three steps:

Step 1: The HMM parameters are calibrated using the training data, and the probability of the
observed data is calculated.

Step 2: Based on similar data sets in the past data, we find parts of the training data with a
similar likelihood.

Step 3: The difference between the streamflow of the previous year and the streamflow of the
consecutive year is calculated to forecast the future streamflow.

When predicting the streamflow at a time step T + 1 of the time series, a part-time series of length
D is chosen to be the training data, used to calibrate the HMM’s parameters, λ (π,A,B). Consequently,
streamflow patterns similar to the current year are located in the past data. Considering that the
predicted value must assume a similar pattern from the training data, the difference of a year’s
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streamflow and the next year’s value is calculated. The difference between years is estimated by the
summation of the probability of being in a previous state multiplied by the mean of its respective states.

Similarly, to predict the streamflow at time T + 2, new training data is used by adding the predicted
value and repeating the three-step-prediction process for the time step T + 2 and so on. Data length
and quality are limitations in the method because shorter records cannot show the low-frequency
variability efficiently needed in multidecadal projections.

3.2.6. Model Performance Metrics

The projection performance of the model for the low-frequency streamflow time series is estimated
by comparing the observation and prediction. The root mean square error (RMSE), mean absolute error
(MAE), and correlation coefficient (R) are used to estimate the performance of the HMM, as defined in
Equations (8)–(10).

RMSE =

√√√
1
n

N∑
i = 1

(
yi − y∗i

)2
, (8)

MAE =
1
n

N∑
i = 1

|yi − y∗i |, (9)

R =

∑N
i = 1(yi − y)

(
y∗i − y∗

)
√∑N

i = 1(yi − y)2 ∑N
i = 1

(
y∗i − y∗

)2
, (10)

N is the number of input samples; yi and y∗i represent the observed and predicted runoff at time t,
respectively; and y and y∗ represent the averages of the observed and predicted runoff, respectively.

In the evaluation, the target values are R close to 1, MAE and RMSE close to 0. The RMSE is
an ideal error index used to evaluate the global fitness of high streamflow values, whereas the MAE
provides a more balanced measure of overall errors [22].

4. Results

4.1. Time Series Decomposition

A wavelet transform is used to decompose and extract the low frequency from the time series
of Sobradinho’s inflow. Figure 3a illustrates the annual streamflow time series, while Figure 3b
shows the wavelet power spectrum and the average wavelet power over that period. The red points
represent the significance levels and show which regions of the spectrum meet the significance level.
The frequency chosen in this study was between 16 and 32 years since it presented significance in
its power spectrum and the average wavelet power. The 16- to 32-year frequency represents 10.20%
of the explained variance of the streamflow time series. Figure 4 illustrates the reconstructed time
series using the wavelet transform decomposition. The series was reconstructed for high (2–8 years),
medium (8–16 years), low (16–32 years) frequency, and the residue, which is represented with the
frequency higher than 32 years.



Water 2020, 12, 2058 9 of 16

Water 2020, 12, x FOR PEER REVIEW 8 of 16 

 

RMSE =  1 ( − ∗) , (8) 

MAE =  1 | − ∗|, (9) 

R =  ∑ ( − )( ∗ − ∗)∑ ( − )  ∑ ( ∗ − ∗) , (10) 

N is the number of input samples;  and ∗ represent the observed and predicted runoff at 
time t, respectively; and  and ∗  represent the averages of the observed and predicted runoff, 
respectively. 

In the evaluation, the target values are R close to 1, MAE and RMSE close to 0. The RMSE is an 
ideal error index used to evaluate the global fitness of high streamflow values, whereas the MAE 
provides a more balanced measure of overall errors [22]. 

4. Results 

4.1. Time Series Decomposition 

A wavelet transform is used to decompose and extract the low frequency from the time series of 
Sobradinho’s inflow. Figure 3a illustrates the annual streamflow time series, while Figure 3b shows 
the wavelet power spectrum and the average wavelet power over that period. The red points 
represent the significance levels and show which regions of the spectrum meet the significance level. 
The frequency chosen in this study was between 16 and 32 years since it presented significance in its 
power spectrum and the average wavelet power. The 16- to 32-year frequency represents 10.20% of 
the explained variance of the streamflow time series. Figure 4 illustrates the reconstructed time series 
using the wavelet transform decomposition. The series was reconstructed for high (2–8 years), 
medium (8–16 years), low (16–32 years) frequency, and the residue, which is represented with the 
frequency higher than 32 years. 

 
(a) 

(b) 

Figure 3. (a) Annual streamflow time series of the Sobradinho reservoir; (b) the wavelet power 
spectrum and the average wavelet power over that period. 
Figure 3. (a) Annual streamflow time series of the Sobradinho reservoir; (b) the wavelet power
spectrum and the average wavelet power over that period.Water 2020, 12, x FOR PEER REVIEW 9 of 16 

 

 

Figure 4. The reconstructed time series of the wavelet transforms decomposition. The y-axis 
represents the different frequencies selected for a band-pass filter of wavelets for the reconstruction 
of the time series. The first series is the high-frequency (2–8 years), next is the medium-frequency (8–
16 years), followed by the low-frequency (16–32 years) and the residue, which is the frequency higher 
than 32 years. 

4.2. Low-Frequency Streamflow Shift Detection 

The identification of shifts in time series is still the subject of different methods that try to 
comprehend changes in hydrological records due to the effect of natural climatic variability and 
human activities. An analysis of the low-frequency streamflow time series was made using Ad-SRI, 
PELT, BFAST, and HMM, aiming to identify states in the time series. 

In the Ad-SRI analysis, we tested three distributions (generalized Pareto, Pearson type III, and 
gamma), and the best fit for the low-frequency streamflow was Pearson type III. The Pearson type III 
distribution has also been widely used for flow frequency analyses [51]. Although the authors of [51] 
reported an excessive frequency of negative values, the analyzed low-frequency streamflow seems 
to present bias for positive values. The BFAST was also used to assess the shifts in a monthly time 
frame. The model did not present any seasonal breakpoints, only trend breakpoints. The PELT 
algorithm and the HMM with two states were applied to evaluate the low-frequency streamflow 
annually. Figure 5 illustrates the shifts in the low-frequency streamflow dynamics. 

Figure 5 shows that the classification of the Ad-SRI, HMM, and PELT were very similar, 
presenting a cycling behavior of seven to nine years duration up until the mid-1980s. In that period, 
State 1 of the Ad-SRI model started later compared with the PELT and the HMM. The BFAST 
classification produced longer cycles, of approximately 11 to 16 years, compared with the other 
models in this study. 

Figure 4. The reconstructed time series of the wavelet transforms decomposition. The y-axis represents
the different frequencies selected for a band-pass filter of wavelets for the reconstruction of the time
series. The first series is the high-frequency (2–8 years), next is the medium-frequency (8–16 years),
followed by the low-frequency (16–32 years) and the residue, which is the frequency higher than
32 years.
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4.2. Low-Frequency Streamflow Shift Detection

The identification of shifts in time series is still the subject of different methods that try to
comprehend changes in hydrological records due to the effect of natural climatic variability and human
activities. An analysis of the low-frequency streamflow time series was made using Ad-SRI, PELT,
BFAST, and HMM, aiming to identify states in the time series.

In the Ad-SRI analysis, we tested three distributions (generalized Pareto, Pearson type III,
and gamma), and the best fit for the low-frequency streamflow was Pearson type III. The Pearson type
III distribution has also been widely used for flow frequency analyses [51]. Although the authors of [51]
reported an excessive frequency of negative values, the analyzed low-frequency streamflow seems to
present bias for positive values. The BFAST was also used to assess the shifts in a monthly time frame.
The model did not present any seasonal breakpoints, only trend breakpoints. The PELT algorithm and
the HMM with two states were applied to evaluate the low-frequency streamflow annually. Figure 5
illustrates the shifts in the low-frequency streamflow dynamics.Water 2020, 12, x FOR PEER REVIEW 10 of 16 
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Figure 5. Comparison of the state classification methodologies for low-frequency variability. The first
line is the identification using the breaks for additive seasonal and trend (BFAST) method, then
the Standardized Runoff Index (SRI), followed by the Pruned Exact Linear Time (PELT) algorithm,
and two-state hidden Markov model (HMM) classification.

Figure 5 shows that the classification of the Ad-SRI, HMM, and PELT were very similar, presenting
a cycling behavior of seven to nine years duration up until the mid-1980s. In that period, State 1 of the
Ad-SRI model started later compared with the PELT and the HMM. The BFAST classification produced
longer cycles, of approximately 11 to 16 years, compared with the other models in this study.

The first shift from State 1 to State 2 occurred in the beginning of the 1950s for most models,
whereas for the BFAST it started five years later and lasted for approximately three years more than
the other models. The BFAST showed a similar classification as the other models from 1985 onward.

The low-frequency streamflow shift models showed a clear separation of the states. Then, the CDF
for each state was calculated using the series’ data without being decomposed by the wavelet transform
to verify if those periods followed a similar statistical distribution.

Figure 6 illustrates that the two states of the series without being decomposed by the wavelet
transform do not follow the same distribution in the CDF plot. When comparing the CDFs across the
four methods, the BFAST is unable to distinguish states well. Results of the Ad-SRI, PELT, and HMM
were similar. State 2 presented a probability of higher streamflow values than in State 1 in all models.
Hence, the wet periods have a higher likelihood of occurring than the dry periods. The low frequency
shows a clear effect in the pattern of the time series, which justifies its study as one of the influencing
components of the time series behavior. Knowing that the states have a different probability distribution
and identifying the states in which the system presents itself give the modeler great insight on how to
project the time series.



Water 2020, 12, 2058 11 of 16Water 2020, 12, x FOR PEER REVIEW 11 of 16 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. The cumulative distribution functions (CDFs) of the series without being decomposed by 
the wavelet transform for the state classification using (a) BFAST, (b) adjusted SRI (Ad-SRI), (c) PELT, 
and (d) HMM. 

4.3. Projection of the Low-Frequency Streamflow with the HMM 

The method applied to predict the low-frequency streamflow time series of the Sobradinho 
reservoir was based on the work proposed by the authors of [50]. In this case, the lowest BIC was the 
criterion for the number of states in the HMM. The model was used to predict periods of 5, 10, and 
15 years. Figure 7 shows the CDFs of the predicted low-frequency streamflow, observed low-
frequency streamflow for the test period, and the observed low-frequency streamflow from 1931 to 
2016 in the (a) 5-year, (b) 10-year, and (c) 15-year projection. 

Although the models overestimated the low-frequency streamflow values, they were able to 
accompany the shifts in the streamflow regime. Compared with the mean of the training periods 
(1931–2012, 1931–2007, and 1931–2001), the models were able to follow the dry and wet periods better 
than the mean values. Figure 7 presents an improvement in the information of the dry period. Low-
frequency streamflow (1931–2016) has a high probability of average low flow than the observed-test, 
and the model prediction can model this behavior. The entire time series (observed low-frequency 
streamflow from 1931 to 2016) presents a variance that is greater than the observation. The model 
prediction has the same scale as the variance of observation of the test period. 
  

Figure 6. The cumulative distribution functions (CDFs) of the series without being decomposed by
the wavelet transform for the state classification using (a) BFAST, (b) adjusted SRI (Ad-SRI), (c) PELT,
and (d) HMM.

4.3. Projection of the Low-Frequency Streamflow with the HMM

The method applied to predict the low-frequency streamflow time series of the Sobradinho
reservoir was based on the work proposed by the authors of [50]. In this case, the lowest BIC was
the criterion for the number of states in the HMM. The model was used to predict periods of 5,
10, and 15 years. Figure 7 shows the CDFs of the predicted low-frequency streamflow, observed
low-frequency streamflow for the test period, and the observed low-frequency streamflow from 1931
to 2016 in the (a) 5-year, (b) 10-year, and (c) 15-year projection.

Although the models overestimated the low-frequency streamflow values, they were able to
accompany the shifts in the streamflow regime. Compared with the mean of the training periods
(1931–2012, 1931–2007, and 1931–2001), the models were able to follow the dry and wet periods
better than the mean values. Figure 7 presents an improvement in the information of the dry
period. Low-frequency streamflow (1931–2016) has a high probability of average low flow than the
observed-test, and the model prediction can model this behavior. The entire time series (observed
low-frequency streamflow from 1931 to 2016) presents a variance that is greater than the observation.
The model prediction has the same scale as the variance of observation of the test period.
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Table 1 shows the statistical accuracy of the predictions by different models, indicated by RMSE,
MAE, and R. Smaller values of RMSE and MAE suggest more accurate predictions. High values of R
indicate a better fit between prediction and observation. Table 1 shows that the period of 15 years had
the lowest RMSE and MAE. However, it presented the lowest value of R as well. The RMSE and MAE
values are still close to those of 5 years and 10 years, with an increase of 8% and 17%, respectively,
for the RMSE. Furthermore, there was a decrease of 63% for the R in the 15-year period compared with
the other projections.

Table 1. Statistical results of the predictive accuracy.

Projection Period RMSE MAE R

5 years 647.24 647.18 0.99
10 years 722.57 721.35 0.99
15 years 599.83 545.08 0.36

5. Discussion and Conclusions

The nonlinearity of hydrological systems has been recognized for many years. The recent
development of computational power and data acquisition provided us with tools and new methods to
study temporal and spatial variability in hydrological variables [20]. Different studies [4,20] provided
evidence that the time series of the Sobradinho reservoir presents nonlinear behavior, particularly after
its construction. Therefore, the wavelet transform was applied in this paper as a pre-processing tool to
extract significant features such as the low-frequency variability and to gain insight into time-varying
characteristics that the streamflow time series may present.

Previous studies have indicated that a hydrological regime shift may occur due to anthropogenic
activities, such as dam construction. In this context, the analysis of the low-frequency streamflow
using the BFAST model showed a shift in 1986, and for the other models, the shift started in 1985.
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We also observed a reduction in the low-frequency streamflow peaks from 1985. These alterations in the
low-frequency streamflow regime might indicate the influence on the river regime of the Sobradinho
dam, which was constructed between 1973 and 1979 and started functioning between 1979 and 1982.
According to the authors of [52], downstream areas of the Sobradinho dam presented significant
changes in the annual seasonality of floods. Although more events that contributed to increases in
precipitation occurred during the 1986–2006 period, this was not reflected in the flood data, concluding
that dam impacts combined with other water withdrawals, particularly for agriculture, are the main
reasons for changes in floods along the São Francisco River [52]. Other concerns raised for the region
are the increase in the amount of water removed from the São Francisco River due to the increase in
irrigation farming and illegal water removal from the river [53]. These anthropogenic actions are tough
to measure and carry a great impact on flow rates.

Some authors [54,55] observed a systematic change in the hydrological time series of the NEB
in the late 1970s and early 1980s that are associated with the natural fluctuations such as decadal
variability. Several studies point out that precipitation records over South America exhibit decadal and
interdecadal variability. This precipitation variability has been associated with sea surface temperature
(SST) anomalies such as the PDO [20,56] and the AMO [57] in the NEB. Thus, although there was no
apparent correlation between the climate indices and the analyzed low-frequency streamflow, these
variables may influence some periods of the low-frequency streamflow behavior and the shifts present
in hydrological variables.

Another significant perturbation that can cause changes in the hydrological system is extreme
events such as droughts. The recent intensive drought developed in the NEB region for the period
2010–2017 has been one of the worst in the last decades. We can see an apparent decrease in
low-frequency streamflow. However, in the low-frequency streamflow, the decrease is not that intense.
That phenomenon may be because the drought was associated with the strong 2015–2016 El Niño,
which brought warmer weather and SSTs [58]. That influence may be present in the high frequency of
the time series (2- to 8-year frequency in Figure 4).

Future projections state that temperatures in the NEB should increase, while rainfall could decline
by approximately 25–50% in semi-arid areas. Consequently, flow rates will be reduced for various
rivers in the NEB [58,59]. Hydroelectric potential in the São Francisco River Basin will be reduced
due to more frequent and intense climate-induced droughts. Water allocation and appropriate land
management are necessary for the region [52]. Consequently, more realistic projections can help to
improve water management in the region.

In this study, we also proposed a model to forecast the nonlinear low-frequency streamflow
series. Three scenarios of projection were modeled and evaluated using three statistical performance
evaluation measures (RMSE, MAE, and R). The forecasts for 5- and 10-year periods presented
remarkably high values of R. Although the value for the 15-year period was low, the result is significant
when compared with the results provided in [7], whose authors used a climate hidden Markov
model and presented an R2 of approximately 0.26 for a lead time of 15 years. The model presents
an improvement in the information of the dry period. Low-frequency streamflow (1931–2016) has a
higher probability of average low flow than the test data set, and the model prediction can capture this
behavior. This information is relevant for water resource planning, in particular for drought planning.
Furthermore, as extreme climatic events become more frequent and threatening, it is essential to assess
watersheds and prepare strategies for those situations.

Identifying different state periods also reveals the impact of low frequency in the streamflow time
series. Due to the clear separation of states in the analysis, we observed that the patterns have different
probability distributions through the CDF plots; thus, the low-frequency variability conditions the flows
of a given year. The model comparison in this paper provides an insight into a modified version of a
classical method such as the SRI and state-of-the-art methods such as BFAST, PELT, and HMM available
for identifying shifts in the time series. Assessing the current state of low-frequency streamflow allows
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the assessment of the dynamic risk of extreme events and an accurate forecast of streamflow. The HMM
forecast model is a tool to aid in the management and operation of this reservoir.
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