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Abstract: This study examined eight Great Plains moderate-sized (832 to 4892 km2) watersheds.
The Soil and Water Assessment Tool (SWAT) autocalibration routine SUFI-2 was executed using
twenty-three model parameters, from 1995 to 2015 in each basin, to identify highly sensitive parameters
(HSP). The model was then run on a year-by-year basis, generating optimal parameter values for each
year (1995 to 2015). HSP were correlated against annual precipitation (Parameter-elevation Regressions
on Independent Slopes Model—PRISM) and root zone soil moisture (Soil MERGE—SMERGE 2.0)
anomaly data. HSP with robust correlation (r > 0.5) were used to calibrate the model on an annual basis
(2016 to 2018). Results were compared against a baseline simulation, in which optimal parameters
were obtained by running the model for the entire period (1992 to 2015). This approach improved
performance for annual simulations generated from 2016 to 2018. SMERGE 2.0 produced more robust
results compared with the PRISM product. The main virtue of this approach is that it constrains
parameter space, minimizesing equifinality and promotesing modeling based on more physically
realistic parameter values.
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1. Introduction

The Soil and Water Assessment Tool (SWAT) is a physically based model with demonstrated global
applications and has been validated at the watershed scale through the publication of thousands of
referred papers (see [1]). The SWAT model is moderate in terms of complexity, i.e., it is a semi-distributed
model where the watershed is divided into subbasins, in which water balance is calculated on a daily
basis. Many SWAT modeling studies have focused on matching simulated and observed streamflow
at the basin’s outlet. Calibration based on multiple gauges within a basin has been demonstrated
to more realistically capture surface flow throughout an entire watershed (e.g., [2,3]). However,
this approach, while an improvement, can fail to provide a realistic depiction of landscape conditions
that strongly influence runoff production. During recent years, hydrologists have begun to leverage
remote sensing observations to improve model calibration and achieve a more accurate picture of
processes at a watershed scale. Examples of such studies that utilized the SWAT model span diverse
aspects of the hydrologic cycle and include quantifying total terrestrial water [4,5], soil moisture [6–8],
evapotranspiration [9–11], and groundwater recharge [12,13].

Since SWAT was designed as a tool to first and foremost simulate runoff, issues can arise when
simulating other fluxes and state variables, such as soil moisture or evapotranspiration. New approaches
have been developed to facilitate the incorporation of remotely sensed data to support watershed scale
studies [14]. Of particular promise are data assimilation (DA) techniques adopted from the atmospheric
science community, which have been increasingly applied to watershed hydrology studies [15–17].
However, the improvements that can be potentially conferred by DA have limitations. DA has difficulty
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in improving streamflow performance under high flow conditions [15,16] because runoff production is
largely decoupled from the control of soil moisture under these circumstances. In addition, SWAT has
some structural issues related to how soil moisture is accounted for that limits the benefits of DA of
root zone soil moisture (RZSM) in this model. For example, the authors in reference [17] used DA to
incorporate RZSM into SWAT and achieved worse results than open loop simulations. This is because
the physics of the SWAT model without modification are not sufficiently complicated to account for
vertical coupling between different soil layers. Despite these issues, soil moisture remains an important
control on surface runoff production. One of the most important parameters within SWAT is the Curve
Number (CN2), which is initialized based on the moisture content within soils. Therefore, finding a
way of leveraging soil moisture to support more realistic modeling of streamflow remains important.

Another approach that provides a more holistic prospective is a mass balance accounting
of the overall water budget. This method has yielded meaningful insights particularly at the
regional and watershed scales (e.g., [18–20]). In reference [21], it is indicated that inter-seasonal and
inter-annual variations in surface water storage volumes, as well as their impact on precipitation
(P), evapotranspiration (ET), surface water storage (S), and runoff (Q), are not well understood.
There remains a fundamental lack of knowledge, both in terms of spatial and temporal scales, regarding
the hydrologic processes that influence each of the terms of the basic hydrologic equation. Incorporation
of multiple observations (both in situ and remotely sensing) into model calibration can force modeling
to be based on more realistic parameter selection. Therefore, the objective of this study is to demonstrate
whether diverse remote sensing observations can improve simulated SWAT streamflow in eight Great
Plains watersheds.

2. Watersheds Examined

Eight, moderate-sized (832 to 4892 square km) watersheds were examined (Table 1; Figure 1).
Basins generally have a dendritic drainage pattern with a rounded shape, except for Chickaskia (CH)
and Ninnescah (NI), which are elongated. Bird Creek (BC), CH, Little Arkansas (LA), and Little Nemaha
(LN) flow in general toward the southeast. Black Vermillion (BV) drainage is oriented southwest
and Walnut (WN) toward the south. Mill Creek (MC) and NI flow toward the east. The SWAT
model is subdivided into subbasins as computational units. To enhance inter-comparability of the
results, the number of subbasins was set as consistently as possible. The eight basins had subdued
topography typical of the Great Plains region. Overall relief varied between 130 to 313 m in the
examined watersheds (Table 1). In terms of soils, most watersheds were dominated by some variants
of loam within the top layer that roughly correspond with the upper root zone. The only exception
was NI, where loamy sand was the most abundant texture. Land use/land cover in five watersheds
was dominated by agricultural activity (BV, CH, LA, LN, NI). BC, MC, and WN also had significant
rangeland and grasses.

Table 1. Watershed characteristics.

Basin Size (sq. km.) Subbasins Elevation
(m)

Dominant Soil
Texture

Dominant Land
Cover

Bird Creek (BC) 2360 31 177 to 403 Loam Rangeland/Grass
Black Vermillion (BV) 1071 31 338 to 468 Clay Loam Agricultural

Chickaskia (CH) 4892 33 295 to 608 Silt Loam Agricultural
Little Arkansas (LA) 3402 33 409 to 544 Silt Loam Agricultural
Little Nemaha (LN) 2061 31 274 to 444 Clay Agricultural

Mill Creek (MC) 832 29 291 to 488 Silt Clay Loam Rangeland/Grass
Ninnescah (NI) 2049 35 446 to 637 Loamy Sand Agricultural
Walnut (WN) 4855 33 330 to 512 Silt Loam Rangeland/Grass
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Figure 1. Locality map illustrating the position of the eight examined watersheds.

3. Datasets Used

3.1. SWAT Model Input

The SWAT model incorporates landscape information about elevation, soils, and land use/land
cover. Elevation data were derived from the National Map Download service from the United States
Geological Survey. Tiles of this seamless product were downloaded in an ArcGrid format, with a spatial
resolution of 1 arc-second. For soils, the Digital General Soil Map of the United States or STATSGO2
(United States (US) Department of Agriculture, Washington, DC, USA) developed by the National
Cooperative Soil Survey, was selected. This product was downloaded from the Natural Resources
Conservation Service Geospatial Data Gateway in polygon shapefile format and it has an inherent
1:250,000 spatial scale. Finally, land use/land cover data came from the 2011 National Land Cover Data
Set, accessed through the Natural Conservation Service Geospatial Data Gateway. This product was
developed by the Multi-Resolution Land Characteristics Consortium. It was obtained in a GeoTIFF
format with a spatial resolution of 30 m.

Hydrometeorological data (daily precipitation and temperature) were obtained from the PRISM
Climate Group at Oregon State University. This product has a 4 km spatial resolution covering all of
the continental United States (CONUS). To support execution of the SWAT model, daily PRISM data
for all SWAT subbasins was averaged using zonal statistics based on the intersection of PRISM grid
cell with each subbasin. In addition, annual basin-wide averages for precipitation were obtained for all
eight basins by simple averaging.

3.2. Other Soft Data

For RZSM, the SMERGE 2.0 product (US National Aeronautics and Space Administration, NASA,
Washington, DC, USA) was selected [22]. This product provided particularly robust results in the Great
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Plains region and reflects a product that blends equally remote sensing and land surface model datasets.
SMERGE 2.0 is available at a daily time step and has a 0.125-degree spatial resolution. Like with
PRISM precipitation data, SMERGE was averaged for each of the eight basins on an annual basis (1992
to 2018). Unlike PRISM data anomalies, not raw volumetric data were used for RZSM.

Three ET products were applied to this study (Moderate Resolution Imagining Spectrometer,
MODIS16A2v5, US NASA Earth Observing System Data and Information System (EOSDIS) Land
Processes Distributed Active Archive Center (DAAC), [23]; Simplified Surface Energy Balance,
SSEBopv4, US Geologic Survey, Center for Integrated Data Analytics, Middleton, Wisconsin [24];
Global Land Evaporation: the Amsterdam Model, GLEAMv3.3a, Vrije Universiteit Amsterdam,
The Netherlands [25]). The MODIS product was obtained in a monthly HDF file with a 1 km resolution.
This dataset was extracted into a raster layer and zonal statistics tools were utilized to obtain the
average of the pixels intersecting with the watershed outline. The same method was applied to SSEBop,
which was obtained in a GeoTiff raster format with a 0.009-degree spatial resolution in monthly files.
GLEAM was available in netCDF files in a grid of 0.25 × 0.25 degrees with a monthly temporal
resolution. The values of the grids with centroids within the watershed were extracted and summed to
obtain the average. Values were summed to calculate an annual estimate of ET (2016–2018) for the
eight examined watersheds.

Total terrestrial water was estimated from the NASA Gravity Recovery and Climate Experiment
(GRACE) using the GRCTellus JPL-Mascons dataset [26,27]. This product combined monthly gravity
solutions from GRACE and GRACE-FO, as determined from the JPL RL06Mv2 mascon solution with
the coastline resolution improvement filter. The GRACE product was available in a monthly netCDf file
(missing values exist) at a 0.5-degree spatial resolution. The average of intersecting GRACE grids with
the watershed was summed to obtain an annual estimate (2015–2018) of total terrestrial water change.

Finally, to constrain an interception-related SWAT parameter, the MOD15A2H Terra version 006
combined Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (US NASA
EOSDIS Land Processes DAAC, Sioux Falls, ND, USA) was used [28]. This product had a 500 m spatial
resolution and was an eight-day composite dataset based on the best available from acquisitions from
each period. Values were aggregated to obtain a basin-wide estimate of LAI.

4. Methodology

4.1. SWAT Model Setup

In SWAT, the automatic watershed delineation tool was used to define the stream network and
number of subbasins within a watershed. Subbasin number was based on the area of the watershed
present upstream of the beginning point for each tributary channel. Within each subbasin, water
balance calculations were based on the aerially weighted proportions of unique combinations of
soil and land use, referred to as hydrologic response units (HRU). Each HRU had a unique Curve
Number (CN), adjusted for antecedent moisture conditions, which was used to determine infiltration
and surface runoff within each subbasin. Another component of the SWAT model that enhanced
its ability to calculate the water balance within each subbasin was the calculation of daily potential
evapotranspiration values using the Priestley–Taylor method [29]. SWAT does not consider the spatial
location of HRUs within each subbasin, and consequently, this is why SWAT is not considered a
fully distributed model. Excessive runoff generated within each subbasin was conceptually routed as
overland flow. Once overland flow water intersected a stream reach or channel, water was routed
downstream using the variable storage method [30].
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To facilitate autocalibration of the SWAT model, the stand-alone SUFI-2 autocalibration [31]
routine was utilized. Of the autocalibration programs available for the SWAT model, SUFI-2 converges
on an optimal solution with a relatively small number of executed simulations (500 to 1000 model
runs; [32,33]) and was ran at a daily time step. In addition, SUFI-2 provided an estimate of parameter
sensitivity. Note that HRU parameter values were averaged at the subbasin level. Only highly sensitive
parameters (HSP; p-value < 0.02) were varied after the first two global simulations executed, which are
described below.

To evaluate model performance, standard objective measures were used, including the mass
balance error (MBE) and Nash–Sutcliffe efficiency coefficients (NS). To collapse these metrics into one
measure, all model results were evaluated based on the Relative Performance Scale [34]. This combined
metric was based on the criterion of reference [35] (see Table 2). To calculate the RPS, both the MBE
and NS were translated into a single RPS metric. For example, if a simulation has a NS = 0.75 and
MBE of 15%, these values constituted provisional RPS values of 3.00 and 2.00, respectively. To be
conservative, the lower provisional RPS value was always selected so that in this example, the final
RPS value assigned was 2.00. The best model run for each simulation type was evaluated with a single
RPS score to facilitate inter-comparison of results.

Table 2. The Relative Performance Scale (RPS).

Description Nash Sutcliffe (NS) Mass Balance Error Relative Performance Scale (RPS)

Perfect 1.00 0% 4.00
Very Good 0.75 10% 3.00

Good 0.65 15% 2.00
Satisfactory 0.50 25% 1.00

Unacceptable <0.50 >25% <1.00

4.2. Simulation Series

Three series of model runs were executed in this study and include: (1) global simulations
(1995 to 2015); (2) individual year-by-year models runs for each year between (1995 to 2015); (3) final
calibration year-by-year simulations (2016 to 2018). For all series, a three- to four-year warm up period
was executed to initialize SWAT.

4.2.1. Global Simulation Series

For global simulations, one RPS value was calculated for the entire simulation period (1995 to 2015)
in each watershed; shorter for MC (2005 to 2015). This simulation series consisted of two model runs.
The initial simulation was referred to as Base_Q. In this model run, there were no constraints on
parameters values, except for the outer bounds established by reference [29]. Parameter value ranges
for the Base_Q are presented in Table 3.

The next type of global simulation consisted of iterative model runs, which constrained parameters
to improve objective metrics and was referred to as IT_Q. Model parameters were limited in two ways:
(a) using a priori data to set CANMX and ALPHA_BF and (b) examining Dotty plots (Figure 2) to
identify limits for optimal performance for variable HSP. The CANMX parameter was set by using
MODIS_LAI product and the following equation [36].

SMax = ƒ log (1 + LAI) (1)

where SMax was the maximum water storage within the canopy, ƒ was a specific factor dependent
upon vegetation type, and LAI was determined from MODIS_LAI product (MOD15A2). ALPHA_BF
was determined using the baseflow program from reference [37] and was set within a factor of two of
the calculated value. Parameter sensitivity was examined and HSP were identified (Table 4). These
parameters can be divided into two groups (variable and non-variable). Examination of Dotty Plots
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can further constrain variable, HSP values. While some of the parameters lack an optimal range of
values (Figure 2a), others do not (Figure 2b). An iterative approach was used in adjusting parameters
with optimal values to yield better performance. HSP specifically, in all basins, the tightening of the
range of CH_K2 improved results. Additional iterations in BC and WN focused on CH_N2; in NI,
with CN2; in WN, on OV_N. The tightening of variable HSP values had a beneficial impact on the final
IT_Q model executed. From this simulation, the values of non-sensitive (p > 0.02) and non-variable
HSP are set from the optimum parameter values calculated (Table 5). Only variable, HSP (Table 6)
were left unconstrained in subsequent modeling series.

4.2.2. Individual Year-By-Year Series

Individual year-by-year model runs between 1995 to 2015 were executed. In this modeling series,
objective results were obtained for each year (n = 21). All variable, HSP were correlated with annual
SMERGE 2.0 RZSM anomalies and raw PRISM precipitation. Note that years with unacceptable
RPS values were omitted from this analysis. Correlation values based on this modeling series weare
presented in Table 7. The range and average for variable, HSP are shown in Table 8. Only parameters
with a correlation (r) that exceeds 0.5 were considered in the third modeling series described next.

Table 3. Base_Q parameter ranges for all basins.

Parameter Name Low High

CN2 Initial SCS runoff curve number for moisture condition II 35 95
ALPHA_BF Baseflow Alpha Factor 0 1
GW_DELAY Groundwater delay time (days) 30 450

CH_N2 Manning’s “n” value for the main channel 0 0.3
CH_K2 Effective hydraulic conductivity in main channel alluvium (mm/h) 0 500
CH_N1 Manning’s “n” value for the tributary channels 0 0.3
CH_K1 Effective hydraulic conductivity in tributary channel alluvium (mm/h) 0 300
OV_N Manning’s “n” value for overland flow 0.01 0.6

SURLAG Surface runoff lag coefficient 1 34

GWQMN Threshold depth of water in the shallow aquifer required for return
flow to occur (mm H2O) 0 5000

SOL_AWC Available water capacity of the soil layer (mm H2O/mm soil) −0.2 0.4
ESCO Soil evaporation compensation factor 0 1

GW_REVAP Groundwater “revap” coefficient 0.02 0.2

REVAPMN Threshold depth of water in the shallow aquifer for “revap” or
percolation to the deep aquifer to occur (mm H2O) 0 500

CANMX Maximum canopy storage (mm H2O) 0 100
EPCO Plant uptake compensation factor 0 1

SFTMP Snowfall temperature (◦C) −5 5
SMTMP Snow melt base temperature (◦C) −5 5
SMFMX Melt factor for snow on June 21 (mm H2O/◦C-day) 0 10
SMFMN Melt factor for snow on Dec 21 (mm H2O/◦C-day) 0 10

TIMP Snow pack temperature lag factor 0.01 1
SOL_K Saturated hydraulic conductivity (mm/h) −0.8 0.8

SOL_BD Moist bulk density (g/cm3) −0.5 0.6
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Table 4. Highly sensitive parameters (HSP) from IT_Q simulation.

Basin Variable Parameters Non-Variable Parameters

BC CN2, ALPHA_BF, CH_N2, OV_N SOL_BD, GWQMN, ESCO
BV CN2, CH_K2, OV_N, ESCO CH_N2, ALPHA_BF, SOL_AWC
CH CN2, CH_N2, CH_K2, OV_N, ESCO ALPHA_BF
LA CN2, CH_N2, CH_K2, OV_N, SOL_BD ALPHA_BF, SMTMP
LN CN2, OV_N, SOL_AWC, ESCO, SOL_BD SMFMN
MC CN2, CH_K2, ESCO CH_N2, OV_N, SMTMP
NI CN2, CH_N2, CH_K2, OV_N, SOL_BD SMTMP

WN CN2, CH_K2, OV_N, ESCO ALPHA_BF, CH_N2, SOL_AWC

Table 5. Highly sensitive parameters (HSP) from IT_Q simulation.

Parameter BC BV CH LA LN MC NI WN

ALPHA_BF 0.112 0.0444 0.073 0.0427 0.012 0.033 0.0572
GW_DELAY 252 136 43.6 81.4 105 443 166 189

CH_N2 0.255 0.221 0.267 0.065
CH_K2 39.0 3.20
CH_N1 0.184 0.0091 0.300 0.084 0.049 0.254 0.044 0.242
CH_K1 11.0 297 239 83.8 73.9 275 123 190
OV_N 0.582

SURLAG 6.16 12.6 16.3 9.03 4.84 7.02 20.5 3.92
GWQMN 1967 2342 3517 2287 117 2167 4707 4552

SOL_AWC 0.268 0.370 0.352 0.0031 0.384 −0.125 0.114
ESCO 0.043 0.865 0.186

GW_REVAP 0.118 0.056 0.077 0.068 0.159 0.191 0.177 0.026
REVAPMN 353 66.2 337 468 492 19.2 138 72.7

CANMX 0.514 0.405 0.396 0.255 0.322 0.368 0.470 0.691
EPCO 0.863 0.435 0.736 0.743 0.058 0.894 0.254 0.346

SFTMP −2.38 −4.25 −4.32 2.33 −0.245 −0.735 −1.56 0.905
SMTMP −0.845 1.24 2.96 0.975 0.765 4.51 4.98 −2.69
SMFMX 0.095 6.46 0.965 7.46 1.40 3.38 9.49 9.70
SMFMN 5.45 0.665 6.78 0.305 5.65 4.95 4.29 7.57

TIMP 0.869 0.579 0.587 0.795 0.735 0.156 0.671 0.689
SOL_K 0.294 −0.418 0.257 0.036 −0.401 −0.310 −0.015 0.434

SOL_BD −0.142 0.339 −0.092 −0.096 0.281
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Table 6. IT_Q SWAT ranges for parameters that are variable and HSP.

Parameter BC BV CH LA LN MC NI WN

CN2 60–84 76–92.4 72–88 68–84 68–84 70–88 45.9–80 76–90.3
ALPHA_BF 0.035–0.139 0–0.3

CH_N2 0.015–0.04 0–0.3 0–0.3 0–40 0–40 10–30
CH_K2 0–20 0–40 0–40 0.01-0.6 0.01–0.6 0.4–0.6
OV_N 0.01–0.60 0.01–0.6 0.01–0.6 0.01–0.6 −0.2–0.4
ESCO 0–1.0 0–1.0 0–1.0 0–1.0 0–1.0

SOL_BD −0.5–0.6 −0.5–0.6 −0.5–0.6

Table 7. Parameter correlation (r) versus PRISM precipitation and SMERGE 2.0 root zone soil moisture
anomalies based on individual year (1992 to 2015) runs.

SMERGE 2.0

Parameter BC BV CH LA LN MC NI WN

CN2 0.618 0.457 0.658 0.240 0.361 0.727 0.791 0.725
ALPHA_BF 0.266

CH_N2 0.114 −0.116 0.290 0.399 0.179
CH_K2 0.191 0.324 0.345 0.129 −0.150 0.437
OV_N 0.342 0.246 0.015 −0.437 −0.237 0.231

SOL_AWC 0.048
ESCO −0.301 −0.251 −0.707

SOL_BD −0.450 −0.075 0.041

PRISM

Parameter BC BV CH LA LN MC NI WN

CN2 0.462 0.515 0.499 0.293 0.347 0.662 0.539 0.440
ALPHA_BF 0.297

CH_N2 0.031 −0.121 −0.052 0.329 0.321
CH_K2 0.512 0.346 0.577 −0.124 −0.255 0.227
OV_N 0.201 0.172 −0.092 −0.493 −0.433 0.033

SOL_AWC −0.247
ESCO −0.384 −0.572 −0.651

SOL_BD −0.336 −0.219 0.058

HCP with r > 0.5 are in bold.

Table 8. Range and average (in parentheses) of HSP from individual year (1992 to 2015) runs.

Parameter BC BV CH LA

CN2 67.1 to 83.9 (76.7) 77.9 to 89.7 (84.5) 75.4 to 85.6 (81.5) 69.0 to 83.2 (75.8)
ALPHA_BF 0.035 to 0.127 (0.092)

CH_N2 0.016 to 0.060 (0.033) 0.044 to 0.206 (0.104) 0.065 to 0.180 (0.112)
CH_K2 1.5 to 10.5 (7.7) 4.7 to 15.5 (10.1) 2.6 to 17.7 (9.6)
OV_N 0.022 to 0.591 (0.365) 0.101 to 0.441 (0.303) 0.206 to 0.572 (0.381) 0.274 to 0.585 (0.396)
ESCO 0.456 to 0.868 (0.612)

SOL_BD −0.431 to 0.443 (0.008)

Parameter LN MC NI WN

CN2 69.8 to 82.8 (77.8) 70.7 to 85.2 (77.7) 47.9 to 76.3 (68.0) 76.6 to 90.1 (84.7)
CH_N2 0.018 to 0.283 (0.164)
CH_K2 4.0 to 23.1 (11.5) 2.2 to 24.0 (13.4) 10.4 to 25.1 (16.8)
OV_N 0.301 to 0.581 (0.410) 0.211 to 0.578 (0.387) 0.407 to 0.591 (0.519)

SOL_AWC −0.172 to 0.362 (0.089)
ESCO 0.583 to 0.959 (0.756) 0.171 to 0.981 (0.639)

SOL_BD −0.422 to 0.588 (0.0175) −0.389 to 0.523 (0.065)
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4.2.3. Final Calibration Year-By-Year Series

Information from the two prior modeling series was leveraged to improve calibration in the final
year-by-year calibration series (2016 to 2018). Unacceptable objective metrics (RPS < 1.00 for Sens_Q)
were used to omit the following basin–year combinations (BC-2016, BC-2018, NI-2017, and WN-2017).

Four model runs that were executed in this series, which include: (a) Global_Q that applied
IT_Q parameter values (Tables 4 and 6) on a year-by-year basis (i.e., 2016 Global_Q); (b) Sens_Q in
which variable, HSP (Table 8) were set between the range observed during the 1995 to 2015 runs;
(c) SMERGE_Parameter (i.e., 2016 SMERGE_CN2); (d) PRISM_Parameter (i.e., 2016 PRISM_CN2).
For the parameter-based model runs variable, HSP were set at ±10% of the average value obtained
between 1995 to 2015 (Table 8), except for the highly correlated parameters (HCP). HCP values were
calculated using the SMERGE 2.0 RZSM anomaly or raw PRISM precipitation for the examined year
(i.e., 2016; Table 9) using the 1995 to 2015 regression relationship. The parameter range for HCP was
set at ±10% of the calculated value.

4.3. Mass Balance Calculations

Streamflow (Q) simulated from year-by-year series (2016 to 2018) was compared against USGS
gauge observed streamflow (with a nominal ±10% error). The range of simulated Q were produced by
extracting all simulations in a model run that yielded acceptable results (RPS > 1.00). Streamflow was
calculated based on mass balance within each basin based on:

QCalculated = P − ∆S − ET (2)

where P was the annual average PRISM precipitation value within a watershed; ∆S was the change in
annual terrestrial water determined from the GRACE product; ET was evapotranspiration and was
estimated with three products (MODIS16A2v5; GLEAM v.3.3a; SSEBop v.4). A nominal 10% error was
applied to calculated Q values. Note that LN-2018 was omitted in the mass balance analysis because of
incomplete observed USGS streamflow data at the end of 2018.

5. Results

5.1. SWAT Simulations

The initial global series included Base_Q and IT_Q simulations. Only BV and CH have acceptable
Base_Q simulations. The IT_Q results are dramatically better. Only MC was not satisfactory. BC, LA, NI,
and WN were satisfactory to good, CH good to very good, and BV and NH exceeded the threshold for
a very good simulation. Figure 3 combines the results from all eight basins into box plots. The average
for the Base_Q model runs had an RPS value of 0.781, which was unacceptable. The iterative approach
IT_Q improved objective results, with an average RPS of 1.886. T-test comparison between Base_Q
and IT_Q simulations yielded a significant difference (based on t-test results) between the means of
these model runs (p value = 0.0058). This comparison shows how constraining parameters improved
model performance.

The final calibration year-by-year series had four types of model runs that included Global_Q,
Sens_Q, SMERGE_Parameter, and PRISM_Parameter (Figure 4). Global_Q, which was based on
IT_Q parameter values, had an average RPS of 1.282, considered satisfactory to good. In BC and NI,
performance was unsatisfactory for all years (2016 to 2018). In other basins, simulations varied greatly
on a year-by-year basis. In BV, results ranged from unsatisfactory to very good and in LA and MC,
from unsatisfactory to good. LN recorded results between satisfactory and very good. In CH and WN,
performance ranges between unsatisfactory to satisfactory.

The three other model series (Sens_Q, SMERGE_Parameter, and PRISM_Parameter) leveraged the
results from the individual year-by-year simulation series (1995 to 2015) to constrain parameter values.
These series yielded average RPS values (2.032 to 2.623), which ranged from good to very good in
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terms of performance. Notable improvements in the three-model series over Global_Q were noted for
the following basin–year combination, which recorded an over 2.00 increase in RPS values (BV-2018,
CH-2018, LA-2018, MC-2016, and NI-2016). Table 10 provided a summary of t-test results for these
simulation series. The Global_Q model run had a statistically significant difference compared with the
three other simulation series. Conversely, Sens_Q, SMERGE_Parameter, and PRISM_Parameter did
not differ significantly between each other (Table 10). These results demonstrated a range of optimal
solutions achieved with differing parameter values—a prime example of how equifinality can limit the
utility of hydrologic simulations.

Table 9. Highly correlated parameter values for final calibration year-by-year (2016 to 2018) runs.

Basin Year Product CN2 CH_K2 ESCO

BC 2017 SMERGE 2.0 78.5
BC 2017 PRISM 82.5
BV 2016 SMERGE 2.0 84.4 6.7
BV 2016 PRISM 84.2 6.6
BV 2017 SMERGE 2.0 81.0 4.1
BV 2017 PRISM 80.2 3.5
BV 2018 SMERGE 2.0 81.8 4.7
BV 2018 PRISM 83.3 5.8
CH 2016 SMERGE 2.0 81.2
CH 2016 PRISM 81.6
CH 2017 SMERGE 2.0 80.5
CH 2017 PRISM 80.1
CH 2018 SMERGE 2.0 80.1
CH 2018 PRISM 83.7
LA 2016 SMERGE 2.0 12.8
LA 2016 PRISM 17.2
LA 2017 SMERGE 2.0 7.1
LA 2017 PRISM 7.6
LA 2018 SMERGE 2.0 8.0
LA 2018 PRISM 15.7
LN 2016 SMERGE 2.0 0.824
LN 2016 PRISM 0.798
LN 2017 SMERGE 2.0 0.726
LN 2017 PRISM 0.761
LN 2018 SMERGE 2.0 0.798
LN 2018 PRISM 0.810
MC 2016 SMERGE 2.0 79.5 0.693
MC 2016 PRISM 85.1 0.943
MC 2017 SMERGE 2.0 77.5 0.602
MC 2017 PRISM 84.3 0.907
MC 2018 SMERGE 2.0 74.1 0.453
MC 2018 PRISM 81.1 0.764
NI 2016 SMERGE 2.0 62.4
NI 2016 PRISM 67.1
NI 2018 SMERGE 2.0 65.0
NI 2018 PRISM 78.9

WN 2016 SMERGE 2.0 85.0
WN 2016 PRISM 89.2
WN 2017 SMERGE 2.0 81.3
WN 2017 PRISM 82.1
WN 2018 SMERGE 2.0 80.3
WN 2018 PRISM 85.5
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= 1.00, which is the threshold for an acceptable simulation.

Table 10. T-test comparison of mean RPS values from final year-by-year (2016 to 2018) runs.

Model Run #1 Model Run #2 p Value Degree of Significance

Global_Q Sens_Q 0.0001 Highly Significant
Global_Q SMERGE_Parameter 0.0001 Highly Significant
Global_Q PRISM_Parameter 0.0309 Significant
Sens_Q SMERGE_Parameter 0.5269 Not Significant
Sens_Q PRISM_Parameter 0.0659 Not Significant

SMERGE_Parameter PRISM_Parameter 0.1452 Not Significant

5.2. Mass Balance Comparisons

To avoid the equifinality constraint, calculated Q, which used P, ET, and ∆S, was examined.
Observed, SWAT simulated, and calculated Q are compared in Figures 5–10 for the years 2016 to
2018. Similar results were obtained in most the watersheds, as discussed below. Note that BC-2016,
BC-2018, and NI-2017 were omitted because no acceptable simulations were obtained during these
years. LN-2018 was omitted because complete observational data were not available for 2018.

Calculated Q for all three products compared poorly against USGS gauge observed Q and in
general, grossly overestimated this value. MODIS16A2v5 nearly always generated a highly inflated
calculated Q value. GLEAM v.3.3a and SSEBop v.4 exhibited more variability but still had the general
tendency to produce an overestimate of calculated Q. GLEAM v.3.3a (BV-2017, LA-2017, MC-2016,
and MC-2017; Figures 5c, 7b and 9a,b) and SSEBop v.4 (CH-2016, LA-2017, and NI-2017; Figure 6a,
Figure 7b, and Figure 10a) underestimated observed Q four and three times, respectively. Out of
the 20 acceptable basin and year combinations examined, only two of the calculated Q based on
MODIS16A2v5 (MC-2016 and MC-2017; Figure 9a,b) and four based on GLEAM v.3.3a (BV-2017,
CH-2017, MC-2016, and MC-2017; Figures 5a, 6b and 9a,b) overlapped with the nominal observed Q
band. SSEBop v.4 calculated Q matched slightly better with the nominal observational band, with eight
basin and year combinations (BC-2017, CH-2017, LA-2016, LN-2016, MC-2016, MC-2017, WN-2016,
and WN-2017; Figure 5a, Figure 6b, Figure 7a, Figure 8a, Figure 9a,b and Figure 10c).
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Comparing ET products, generally, MODIS16A2v5 yielded the highest calculated Q and SSEBop
v.4 the lowest calculated Q, with GLEAM v.3.3a in the middle. Exceptions to this rule included
BV-2016, BV-2017, LA-2017, MC-2016, MC-2017, and WN-2017 (Figure 5b,c, Figures 7b and 9a,b), which
had GLEAM v.3.3a as the lowest calculated Q value. For MC-2016 (Figure 9a), SSEBop v.4 had the
highest value.

In terms of the final calibration year-by-year series, the simulated Q much better matched
with the USGS gauge observed Q. Sens_Q generally had a wider range of simulated Q values
compared with either SMERGE_Parameter or PRISM_Parameter, in which parameter values were
more constrained. The exception to this is in BV and MC, which had two HPCs (Table 9) that
yielded a range of simulated Q similar to that of Sens_Q. All but one (WN-2017) Sens_Q runs had
acceptable RPS values and overlapped with the nominal ±10% error band associated with USGS
gauge observed Q. Sixteen of the SMERGE_Parameter and only twelve PRISM_Parameter model runs
overlapped with the nominal observational band. SMERGE_Parameter models had two overestimates
(CH-2016, CH-2018; Figure 6a,c) and two underestimates (LN-2017; WN-2017; Figure 8b) relative to
observed Q. PRISM_Parameter had six overestimates (BC-2017, CH-2016, CH-2018, NI-2018, WN-2016,
and WN-2018; Figure 5a, Figure 6a,c and Figure 10b–d) and two underestimates (LA-2017 and
LN-2017; Figures 7b and 8b). In addition, one SMERGE_Parameter and four PRISM_Parameter
model runs had unacceptable RPS values, indicating that parameter constraints on occasion degraded
model performance.
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6. Discussion

This work is a fundamental example of how constraining parameter values in a hydrologic model
can improve objective performance measures during autocalibration. Even so the issue of equifinality
remains (e.g., [38]). During a model run, there were a large number of simulations that clustered
close to the optimum for objective performance over a broad range of parameter values (Figure 2).
There remains an imperative to further reduce the number of unconstrained model parameters, which
is a means of minimizing the impact of equifinality [39,40]. In this work, parameter sensitivity
and variability were leveraged as an approach to accomplish the above objective. Only HSP that
exhibited significant variability were left unconstrained. The impact of this approach greatly improved
performance for both global (1995 to 2015) and final calibration year-by-year (2016 to 2018) series.
Therefore, by the application of parameter constraints, objective metrics transcended the limitations
imposed within initial model runs by equifinality; or more simply put, by focusing on parameters that
really matter, model performance dramatically improved.
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Figure 5. Observed USGS, mass balance calculated with the Moderate Resolution Imagining
Spectrometer, MODIS16A2v5 (MODIS), Global Land Evaporation: the Amsterdam Model (GLEAM),
Simplified Surface Energy Balance (SSEBop), and final calibration year-by-year SWAT simulated
(Sens_Q, SMERGE_Parameter, PRISM_Parameter) streamflow (Q). Gray field indicates nominal ±10%
error of USGS streamflow observations. (a) BC-2017, (b) BV-2016, (c) BV-2017, and (d) BV-2018.
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Another interesting result was the slight preference for leveraging RZSM (SMERGE 2.0) over
precipitation (PRISM) in improving model performance. This result should not be surprising.
While there is no doubt that precipitation is a critical hydrologic variable, no model will yield
meaningful results if erroneous precipitation is utilized. Still, it is soil moisture and not precipitation
that directly modulates the rainfall–runoff response at a watershed scale. Specifically, antecedent soil
moisture strongly governs streamflow response. In all eight examined basins, the Curve Number
(CN2) was consistently the most sensitive parameter, emphasizing the importance of soil moisture in
controlling streamflow. Indeed, research [41] demonstrates how improved soil moisture accounting by
incorporating more realistic Curve Number values can enhance streamflow predictions.

Another approach to minimize equifinality involves the incorporation of remote sensing
observations to directly constrain model parameter values [4–13]. Obviously, the utility of this
approach relies on the robustness of the remote sensing data applied. As indicated previously,
the model structure of SWAT has issues with the direct assimilation of soil moisture data [24]. ET is
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another important flux with the water budget at a watershed scale. In the mass balance approach,
utilized ET is at least two orders of magnitude greater than ∆S. The fact that PRISM precipitation
data was used to drive SWAT simulations and that robust results were obtained supports the general
accuracy of this dataset. Therefore, the discrepancies that exist between the calculated and simulated
Q values must largely lay with three ET datasets used in this study. MODIS16A2v5 tends to perform
less well in the central Great Plains, where there is a more limited vegetation cover [42]. The GLEAM
product also had issues in this region. At its core, GLEAM assimilates satellite estimated precipitation
that has a strong tendency to overestimate summertime particularly over the Great Plains [43,44].
These errors can generate a strong positive bias in annual ET estimates from this region. Because of
these issues, we opted not to utilize data from these ET products to constrain SWAT parameter values.
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Future work will further validate the approaches articulated in this study beyond the Great Plains
within a broad range of land covers, soil, and climatic regimes. From reference [22], SMERGE 2.0
provided optimal estimates for RZSM in the Southern to Northern Great Plains, the Central Valley of
California, and scattered areas in both Southwestern and Southeastern CONUS. In highly forested
regions, including much of Northwestern and Eastern CONUS, land surface models like Noah may
provide a better estimate of RZSM. In scattered areas from Southern California to Arizona and the
corn belt extending from Iowa to Illinois, SMERGE 2.0 also underperforms and land surface model
estimates of RZSM are preferable. Interestingly, in no region within CONUS are satellite soil moisture
estimates preferred. Either the land surface model or merged land surface model and the satellite soil
moisture retrievals yield optimal estimates of RZSM [22].
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7. Conclusions

To summarize, the key results are as follows:
(1) The final calibration year-by-year simulation series (2016 to 2018), which was based on

executing SWAT on an annual basis, outperformed the global simulations series, in which one objective
metric was calculated based on the entire analysis period (1995 to 2015).

(2) For the final calibration year-by-year simulation series, four model runs were executed
(Global_Q; Sens_Q; SMERGE_Parameter; PRISM_Parameter). The Global_Q simulation, which was
based on parameter values fixed during the global simulation series, underperformed compared
with other model runs, in which parameter values were constrained with information derived from
individual year-by-year models as well as SMERGE 2.0 RZSM anomaly and PRISM precipitation data.

(3) SMERGE_Parameter simulations had slightly higher RPS values compared with
PRISM_Parameter simulations and also better matched with USGS gauge observed Q.

(4) Calculated Q based on a mass balance approach did not consistently match observed Q, unlike
SWAT simulated Q. The highest calculated Q was yielded by using the MODIS16A2v5 ET product,
followed by GLEAM v.3.3a, and SSEBop v.4, which best matched with observed Q.
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The significant implication derived from this work is the demonstration that constraining
parameter values can markedly improve SWAT model performance. In addition, that RZSM from
SMERGE 2.0 can be leveraged to also greatly improve SWAT model performance. Therefore, this work
highlights how diverse remote sensing data can be used to support hydrologic modeling of streamflow
at the watershed scale providing more physically realistic results.
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