Geochemical Fractionation and Risk Assessment of Potentially Toxic Elements in Sediments from Kupa River, Croatia

Sanja Sakan ^{1,*}, Stanislav Frančišković-Bilinski ^{2,*}, Dragana Đorđević ¹, Aleksandar Popović ³, Sandra Škrivanj ³ and Halka Bilinski ²

- ¹ Centre of Excellence in Environmental Chemistry and Engineering–ICTM, University of Belgrade, Njegoševa 12, 11158 Belgrade, Serbia; dragadj@chem.bg.ac.rs
- ² Ruđer Bošković Institute, Division for marine and environmental research, 10000 Zagreb, Croatia; bilinski@irb.hr
- ³ Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11000, Serbia; apopovic@chem.bg.ac.rs (A.P.); sandra_skrivanj@chem.bg.ac.rs (S.Š.)
- * Correspondence: ssakan@chem.bg.ac.rs (S.S.); francis@irb.hr (S.F.-B.)

Figure Captions:

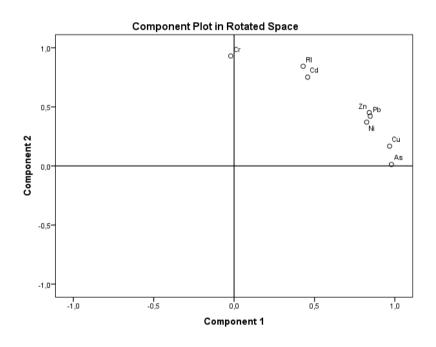
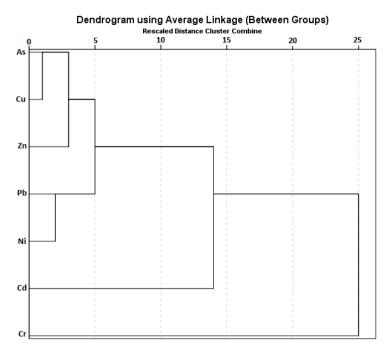
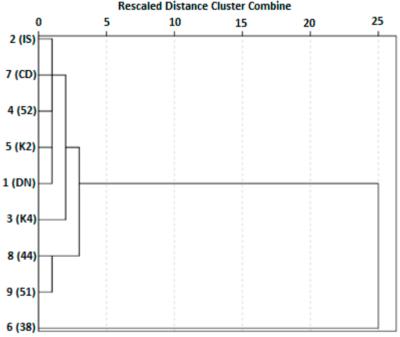




Figure S1. Loading plot of studied elements and RI.

Dendrogram using Average Linkage (Between Groups) Rescaled Distance Cluster Combine

Figure S3. Dendrogram showing clusters of the studied sites.

Table Captions:

Table S1. Certified values, analytical values, and recovery of the BCR Reference Material (BCR 701).

		Cd	Cr	Cu	Ni	Pb	Zn
		7.61 ±	2.59 ±	$48.5 \pm$	13.4 ±	2.98 ±	$188.7 \pm$
	Analytical value (mg/kg)	0.23	0.11	0.87	0.36	0.13	5.4
F1*	Contified value (maller)	7.34 ±	$2.26 \pm$	49.3 ± 1.7	15.4 ± 0.9	3.18 ±	205 . (0
	Certified value (mg/kg)	0.35	0.16	49.3 ± 1.7	15.4 ± 0.9	0.21	205 ± 6.0
	Recovery (%)	103.6	114.5	98.4	86.9	93.7	92.0

	Analytical value (mg/kg)	3.96 ± 0.22	45.4 ± 1.6	122.8 ± 3.8	24.9 ± 2.1	120.0 ± 4.3	105.6 ± 6.1
F2**	Certified value (mg/kg)	3.77 ± 0.28	45.7 ± 2.0	124 ± 3.0	26.6 ± 1.3	126 ± 3.0	114 ± 5.0
	Recovery (%)	105.1	99.5	99.0	93.8	95.2	92.6
	Analytical value (mg/kg)	0.25 ± 0.01	130 ± 7.6	45.3 ± 1.8	13.4 ± 1.1	10.6 ± 1.8	42.7 ± 3.1
F3***	Certified value (mg/kg)	0.27 ± 0.06	143 ± 7.0	55.2 ± 4.0	15.3 ± 0.9	9.3 ± 2.0	45.7 ± 4.0
	Recovery (%)	91.1	90.9	82.1	87.8	114.1	93.4

*F1-Exchangeable fraction; **F2-Reducible fraction; ***F3-Oxidizable fraction;

Class	RAC	Category
1	RAC≤1	No risk
2	1 < RAC≤ 10	Light risk
3	10< RAC≤ 30	Medium risk
4	30 < RAC≤ 50	High risk
5	50 < RAC	Very high risk

Table S3. Values of I_{geo} and the pollution level.

Igeo rank	Igeo	Pollution Level	
0	<0	Uncontaminated	
1	0–1	Uncontaminated to moderately contaminated	
2	1–2	Moderately contaminated	
3	2–3	Moderately to strongly contaminated	
4	3–4	Strongly contaminated	
5	4–5	Strongly to extremely strongly contaminated	
6	>5	Extremely contaminated	

Table S4. Values of EF and pollution level.

Value	Pollution Category
EF < 1	No enrichment
$1 < EF \le 3$	Minor
$3 < EF \le 5$	Moderate
$5 < EF \le 10$	Moderately severe
$10 < \text{EF} \le 25$	Severe
$25 < EF \le 50$	Very severe
> 50	Extremely severe

Table S5. Category of Ecological risk factor (Erⁱ) and Ecological risk index (RI).

Ecological risk factor (Er ⁱ)	RI	Category
$Eri \le 40$	$RI \le 150$	Low ecological risk
$40 < Er^i \le 80$	$150 < \text{RI} \le 300$	Moderate ecological risk
$80 < Er^i \le 160$	$300 < \text{RI} \le 600$	Considerable ecological risk
$160 < Er^i \le 320$	600 < RI	High ecological risk
$320 < Er^i$		Very high ecological risk

Table S6. Magnetic susceptibility measurements (1)	10 ⁻³ SI units).
---	-----------------------------

Sample	MS-1	MS-2	MS-3	MS-Avg
DN-2	0.02	0.019	0.017	0.019
IŠ-2018	0.011	0.011	0.01	0.011
K-4-2018	0.012	0.011	0.011	0.011

52-2018	0.007	0.007	0.007	0.007
K-2-2018	0.017	0.019	0.015	0.017
38-2018	0.038	0.041	0.034	0.038
ČD-2018	0.016	0.011	0.016	0.014
44-2018	0.015	0.015	0.015	0.015
51-2018	0.017	0.017	0.019	0.018

Table S7.	Rotated	Com	ponent	Matrix.
-----------	---------	-----	--------	---------

	Component 1	Component 2
Cd		0.752
Cr		0.931
Cu	0.967	
Pb	0.847	
Zn	0.841	
RI		0.844
Ni	0.825	
As	0.979	

Details of BCR sequential extraction procedure:

Sediment samples were analysed by the optimized BCR three step sequential extraction procedure [1–3]. A description of this procedure is given below and is as follows:

Step 1 (fraction soluble in acid—metals exchangeable or associated with carbonates): Each 1 g of sample was added to 40 mL of a 0.11 mol L⁻¹ acetic acid solution, with agitation for 16 h at 22 °C. The extract was separated from the solid phase by centrifugation at 3000 rpm for 20 min and the supernatant was stored for later analysis.

Step 2 (reducible fraction—metals associated with oxides of Fe and Mn): Residue from Stage 1 was added to 40 mL of a 0.5 mol L⁻¹ acid hydroxyl ammonium chloride solution (pH 1.5). The suspension was then agitated for 16 h at 22 °C. The extract was separated from the solid phase by centrifugation, as described for Stage 1.

Step 3 (oxidizable fraction—metals associated with organic matter and sulfides): Residue from Stage 2 was added to 10 mL of 8.8 mol L⁻¹ H₂O₂ solution (pH 2–3) and the mixture was left at room temperature for 1 h. It was then heated to 85 °C for 1 h in a water bath. Another 10 mL portion of 8.8 mol L⁻¹ H₂O₂ solution was added and the mixture was heated to dryness at 85 °C. After cooling, 50 mL of a 1.0 mol L⁻¹ solution of ammonium acetate (pH 2) was added to the residue, followed by agitation for 16 h at 22 °C. The extract was separated from the solid phase by centrifugation, as above.

After the first three extraction steps, the extract was separated from solid residue by centrifugation at $3000 \times \text{g}$ for 10 min, supernatant was decanted, diluted to 50 mL with 1M HNO₃, and stored in a polyethylene bottle at 4 °C until metal analysis. The residue was washed with 20 mL deionized water and shaken for 15 min, followed by centrifugation for 10 min at $3000 \times \text{g}$. The supernatant was decanted and discarded, acting cautiously to avoid discarding any solid residues. In this way, the residue was prepared for the next BCR step.

Step 4 (residual fraction—metals strongly associated with the crystalline structure of minerals): The Stage 3 residue was digested using a mixture of the acids (8 mL aqua regia, 3:1, v/v, HCl to HNO₃) on water bath at 85 °C, until the volume was reduced to 2–3 mL. Another 8 mL portion of aqua regia was added and the mixture was heated to dryness at 85 °C for 1 h. The final residue was dissolved in 1 M HNO₃ and diluted to 50 mL and stored in a polyethylene bottle at 4 °C until metal analysis. Digestion of the residual material is not specified in the BCR protocol.

References

- 1. de Andrade Passos, E.; Alves, J. C.; dos Santos, I.S.; Alves, J. P.H.; Garcia, C.A.B.; Costa C. S. Assessment of trace metals contamination in estuarine sediments using a sequential extraction technique and principal component analysis. *Microchem.* J. **2010**, *96*, 50–57.
- 2. Relić, D.; Đorđević, D.; Sakan, S.; Anđelković, I.; Pantelić, A.; Stanković, R.; Popović, A. Conventional, microwave, and ultrasound sequential extractions for the fractionation of metals in sediments within the Petrochemical Industry, Serbia. *Environ. Monit. Assess.* **2013**, *185* (9), 7627–7645.
- 3. Sakan, S.; Popović, A.; Anđelković, I.; Đorđević, D. Aquatic sediments pollution estimate using the metal fractionation, secondary phase enrichment factor calculation, and used statistical methods. *Env. Geochem. Health* **2016**, *38*, 855–867.
- 4.