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Abstract: Integrated decision support tools are needed to investigate the tradeoffs of stormwater
control measures (SCMs) and determine the optimal suite of SCMs based on the needs of watersheds.
In this study, an urbanized watershed undergoing infill development (the Berkeley neighborhood
located in Denver, CO, USA) was modeled using a modified version of the U.S. Environmental
Protection Agency’s (EPA) System for Urban Stormwater Treatment and Analysis IntegratioN
(SUSTAIN). The primary goal was to compare the relative performance between green and grey
SCMs, use optimizations and a planning-level approach to assist in decision-making, and discuss
how stakeholder and community preferences can shift which SCMs are optimal for the watershed.
Green and grey SCMs have variable hydrologic performance based on design and function, and both
offer benefits that may be important to decision makers. Our results showed that infiltration trenches
and underground infiltration were optimal for reducing flow volumes while vegetated swales and
underground detention were optimal for pollutant concentration reduction. Stakeholders value both
of these benefits and so the optimal stormwater solution in the Berkeley neighborhood included a
mix of green and grey SCMs. Determining the optimal SCMs while considering tradeoffs in costs and
associated benefits was complex and multifaceted. Modeling results such as those presented here are
critical for informing stakeholders’ decision-making process.

Keywords: stormwater; green infrastructures; grey infrastructures; sustainable water management;
decision support tool; urban planning; evaluation framework; urban flooding risk mitigation; water
quality control

1. Introduction

Alterations to the hydrologic regime and degradation to water quality are major issues associated
with rising percent imperviousness in cities undergoing urbanization [1–5]. Cities across the United
States and the world have adopted stormwater management plans that utilize stormwater control
measures (SCMs) (also known as best management practices, low impact development, and/or
green/grey infrastructure). SCMs mitigate the impacts of urbanization [6–10] detrimental to both public
health and the environment [11,12]. There is usually a primary driver for municipalities to manage
stormwater, such as reducing flood risk or meeting water quality regulations such as those derived
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from the Clean Water Act [13]. However, there can be incentives to implement SCMs for the multiple
hydrologic and ancillary benefits they offer [14–16], such as groundwater recharge potential [17,18] or
improved eco-hydrologic conditions [19].

SCMs come in a wide range of designs that exist on a grey-to-green continuum where a particular
SCM is considered either “greener,” “greyer,” or “hybrid” based on design materials, drainage area,
dominant hydrologic/water quality processes, community benefits, and cost [20]. Examples of SCMs
that fall on the greener side (henceforth, green SCMs) of the continuum include bioretention, dry ponds,
infiltration trenches, and vegetated swales. Green SCMs serve to incorporate green space into the
urban environment by using vegetation as part of the design and are considered an integral component
of stormwater management plans [9,20]. The U.S. Environmental Protection Agency (EPA) has
encouraged municipalities to implement green SCMs throughout their watersheds [7]. On the far grey
side of the continuum, large concrete structures, such as waste-water treatment plants and regional
storage facilities, are built and designed to store and retain stormwater [20–23]. These systems are
occasionally designed in conjunction with a treatment facility. Green and large grey SCMs are well
documented and have been extensively modeled.

Lesser-known SCMs that fall on the continuum in between the green SCMs and large grey SCMs
include smaller distributed grey and hybrid SCMs (henceforth, grey SCMs). Grey SCMs include
above and underground storage systems designed to either retain and infiltrate stormwater into the
subsurface (infiltration-based) or temporally detain and slowly release stormwater (treat-and-release)
back into the storm sewer network [9,22–24]. Grey SCMs deviate from the well-known combined
sewer systems by incorporating both small- and large-scale vaults, pipes, and gravel beds that have
a wide variety of designs [25]. While these systems have been utilized and implemented since at
least 2001 [26], they are recently gaining popularity due to improved designs and the benefits they
offer [27,28]. Their flexible design and ability to be implemented underneath parking lots, structures,
and parks in areas with limited space makes them a viable option, especially for high density cities
such as New York City [9,24]. However, there is a paucity of water quantity and quality data from
these structures as well as studies that have modeled them [29–34].

Hydrologic modeling is a practice commonly used to assist in solving problems and making
decisions about stormwater management particularly given the complicated water quantity and
quality issues of urban environments [8]. However, there exists uncertainty in how distributed SCMs,
are designed to capture a specific stormwater runoff volume from one site, will scale up and impact
the watershed as a whole [35,36]. Jefferson et al. (2017) and Golden et al. (2018) conducted extensive
literature reviews on watershed-scale SCM studies and found that green SCMs in general will provide
water quantity benefits as well as water quality improvement [35,36]. Benefits such as these are often
used as a primary objective, also known as an evaluation factor, in modeling studies. However, these
studies only explore the use of green SCMs. Additionally, there is a lack of studies that evaluate
the hydrologic impacts of green versus grey SCMs on hydrology. This is important to consider
as Gallo et al. (2020) and Wolfand et al. (2018) demonstrated the importance in considering multiple
SCM types to determine which types most effectively achieve the primary goal of a watershed [37,38].
Additionally, Spahr et al. (2020) demonstrated in a cross-city public survey that the consideration of
multiple benefits is important to the general public. Grey SCMs may be able to provide some of these
benefits [14].

Strategic planning is defined as “the process by which the guiding members of an organization
envision its future and develop necessary procedures and operations to achieve that future” [39].
A strategic plan helps direct decision makers to set priorities and determine a pathway that will best
achieve those priorities [40]. In regard to stormwater management, the most effective SCMs need
to be determined before more site-scale or design decisions are made. A planning-level modeling
approach can help stakeholders take the first step in identifying optimal SCM solutions based on
the specific needs of their watershed. Models that use optimizations, such as the EPA’s System for
Urban Stormwater Treatment and Analysis Integration (SUSTAIN), can be used to evaluate multiple
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SCM types and thousands of different solutions to analyze the performance and impacts of SCMs [41].
However, SUSTAIN currently only includes green SCMs. Additionally, most studies that have
used optimizations to decide between SCMs focus on SCM placement [42–44], a limited number of
SCM types or hydrologic outputs [45–49], or a site-scale/design-level analysis [50–52]. While these
design-level considerations may initially identify which SCMs may be optimal to achieve a primary
goal, the consideration of multiple benefits may expose which additional SCMs should be included to
achieve other goals of a watershed-scale stormwater plan. Multi-SCM and multi-benefit analyses are
needed at watershed-scales in order to determine the suite of SCMs that will maximize environmental
and community benefits that are crucial to an integrated water management plan.

In the current study, we develop a modeling framework that encompasses green and grey SCMs
to (1) compare the relative hydrologic performance of green to grey SCM designs on a watershed-scale,
(2) demonstrate how to use optimizations to perform a planning-level analysis, and (3) investigate
how the varying priorities of stakeholders can shift which SCM solutions are considered optimal based
on their needs. We apply the model to the Berkeley neighborhood watershed in Denver, Colorado,
to demonstrate its use.

2. Study Area

The Berkeley neighborhood, located in northwest Denver, is a 419-ha watershed that had 53%
impervious cover in 2014 [53]. This neighborhood is undergoing rapid infill development, also referred
to as redevelopment, which is a phenomenon where developed parcels of land are redeveloped
into denser land uses resulting in less green space and higher imperviousness [54,55]. Residential
parcels with moderately sized structures and vacant areas are being redeveloped into high-density
residential parcels with structures that take up a larger percentage of the parcel area [56]. Cherry et al.
(2019) predicted that between 2014 and 2024, 15% of the total parcels in Berkeley will undergo infill
development resulting in a 1% absolute increase in imperviousness percentage [56]. Panos et al. (2018)
applied the work done in Cherry et al. (2019) to a calibrated and validated hydrologic model in
PCSWMM to assess the impacts of infill development on current stormwater runoff volumes [53,56].
Panos et al. (2018) developed a Current Baseline scenario and represented the Berkeley watershed land
use and runoff volumes in 2014 with an assumption that no infill development had taken place [53].
A Future Baseline scenario in the same study represented land use characteristics and resulting runoff

volumes due to a moderate scenario of predicted future infill development, showing a 4.7% increase in
impervious percentage in the Berkeley neighborhood. Panos et al. (2018) found that a 4.7% increase in
imperviousness will result in an increase of 7.3%, 5.7%, and 4.1% in total watershed runoff volume
from the Current Baseline scenario for the 2-year, 10-year, and 100-year, 24-hour rainfall events,
respectively [53]. Simulations from Panos et al. (2018) were chosen to be further explored in this
study [53]. Table 1 shows land use area throughout the watershed for the Current Baseline total area,
Future Baseline non-infill developed area, and Future Baseline infill developed area. In the Future
Baseline scenario, single family homes are redeveloped into multi-family units, so all infill developed
areas in the Future Baseline scenario is classified as a residential land use (Table 1). A small area of
vacant open space is also redeveloped to residential land use (Table 1). The impacts of redevelopment
include surcharging or overflowing of the stormwater drainage network and increased risk of flooding
and thus the need for planning-level stormwater management [53,56].

Urbanization occurring throughout the City of Denver has placed stress on the storm drainage
network and engineered channels that were not designed to accommodate the resulting larger volumes
of water. The City and County of Denver has established a Storm Drainage Master Plan, which gives
guidance on the implementation of stormwater management strategies in accordance to regulations and
policies to reduce the risk of flooding [9,57–59]. One objective of this plan includes on-site detention of
flood flows for all development and infill development projects that are 0.202 ha or greater. It should be
noted that Panos et al. (2018) determined that the average area of parcels predicted for redevelopment
in the Berkeley neighborhood is 0.053 ha [53]. A second objective is to reduce pollutant loadings
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while also achieving a wide range of ancillary benefits [59]. While nitrate and E. coli are the only
established total maximum daily loads (TMDLs) regulations in Denver, there is concern about other
urban pollutants such as nutrients, heavy metals, and total suspended solids (TSS) [59], and many other
large cities are regulated on these pollutants (e.g., Los Angeles, California). The Berkeley neighborhood
watershed was scored as medium-high risk for E. coli, medium-low for TSS, and medium-high for
nutrients [59]. Additional objectives include maximizing benefits associated with the implementation
of green infrastructure such as reducing effects of urban heat island, improved equity, and increased
biodiversity and habitat [59]. The Berkeley neighborhood watershed was chosen as a case study to
demonstrate the capabilities of a planning-level watershed tool to achieve these objectives.

Table 1. Land use area in the Berkeley neighborhood for the Current Baseline and Future Baseline
scenarios. The Future Baseline scenario is split into infill developed and non-infill developed areas.

Current Baseline
(No Infill

Development) (ha)
% of Total

Future Baseline
(Non-Infill

Developed Area) (ha)
% of Total

Future Baseline
(Infill Developed

Area) (ha)
% of Total

Commercial 18 3.81 18 4.68 0.00 0.00
Industrial 13 2.68 13 3.30 0.00 0.00

Residential 222 46.72 134 34.69 89 100.00
Transportation 134 28.15 134 34.60 0.00 0.00

Parks 65 13.63 64 16.56 0.00 0.00
Surface Water 24 5.02 24 6.17 0.00 0.00

Total Area 475 100.00 387 100.00 89 100.00

3. Methods

3.1. Model

This work used an integrated decision support tool (i-DST), which is currently being developed
and will be available to the public when completed, that includes both a watershed-scale and site-scale
hydrologic model, life cycle cost and assessments, and a benefit assessment to explore the tradeoffs of
green to grey stormwater infrastructure in the Berkeley neighborhood. We performed an analysis with
the i-DST to help determine the optimal number and suite of SCMs to mitigate the impacts of future
infill development in the Berkeley neighborhood. The i-DST watershed-scale module utilizes the EPA’s
SUSTAIN model [41]. The external SCM simulation module in SUSTAIN implements aggregate SCMs
on a watershed-scale and assesses SCM performance on calibrated and validated stormwater flow
and pollutant load time series. These time series outputs can be acquired from either the SUSTAIN
internal land simulation or any other hydrologic model that outputs calibrated and validated flow and
loads. To improve the tool and better address the needs of stormwater managers, several changes were
made to the SUSTAIN code in order to represent a larger suite of SCMs (including grey SCMs) and
allow a larger list of stakeholder criteria (called evaluation factors), resulting in an updated version of
SUSTAIN called i-DST SUSTAIN.

An extensive literature review on grey/hybrid/underground infrastructure was conducted to
determine a representative group of grey SCMs to be added to i-DST SUSTAIN [9,21,23–25,60–63].
Four grey-SCMs were added to i-DST SUSTAIN, including underground infiltration structure (UIS),
underground detention structure (UDS) (no infiltration), underground gravel beds, and aboveground
storage. It should be noted that designs and names of these systems vary across the United States,
even though their functions may be the same. For example, UIS is called an infiltration gallery in
Los Angeles, CA but an underground infiltration system in Minneapolis, MN. UIS and UDS designs
may take the form of a box, pipe, or half pipe within i-DST SUSTAIN. Grey-SCMs were simulated
in i-DST SUSTAIN by turning off evapotranspiration and infiltration (when applicable). The i-DST
SUSTAIN function table (a table in the i-DST SUSTAIN executable input file that allows users to define
surface area, volume, weir flow rate, and orifice flow rate at each defined water depth for a specified
SCM) was used to represent accurate stage-volume-surface area relationships in pipes and half pipes,
as well as ensure bypass when the maximum volume capacity of the SCM is reached. An evaluation
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factor is a single summary value calculated from the model output timeseries. In an optimization,
the model records the evaluation factor from each iteration or SCM solution in order to compare
relative SCM performance. Seven new evaluation factors (annual/seasonal groundwater recharge
potential and evapotranspiration, and seasonal flow volume, loads, and concentration) were also
added to i-DST SUSTAIN as targets for the optimization algorithms. Ground water recharge potential
and evapotranspiration were already calculated at each time step during model simulation but were
unavailable to be optimized. Seasonal factors were added in order to offer users multiple time scales
on which to optimize. Table 2 lists all available SCMs and evaluation factors in i-DST SUSTAIN.

Table 2. Available stormwater control measures (SCMs) types and evaluation factors in integrated
decision support tool (i-DST) System for Urban Stormwater Treatment and Analysis IntegratioN
(SUSTAIN). * New option that was not originally available in SUSTAIN.

SCM Types Evaluation Factors

Green roof Annual and seasonal * average flow volume
Bioretention Flow exceedance frequency

Infiltration trench Flow duration curve
Vegetated swale Peak discharge flow

Dry pond Annual and seasonal groundwater recharge potential *
Wet pond Annual and seasonal average evapotranspiration *

Buffer strip Annual and seasonal * average loads
Porous pavement Annual and seasonal * average concentration

Rain barrel Days above concentration threshold
Underground detention structure *

Underground infiltration structure *
Underground gravel bed *
Aboveground gravel bed *

3.1.1. Water Quantity Data

Only the external SCM simulation and optimization modules of SUSTAIN [41] were utilized in
this study and incorporated in the updated i-DST SUSTAIN tool. The external SCM simulation module
is driven by monthly average evapotranspiration data and land use time series of surface runoff

volumes. Monthly evapotranspiration values were derived from the Denver Water Administration
Building gauging station [53] and used to simulate evapotranspiration processes in each SCM in
the model. Validated and calibrated land use time series of surface runoff volumes were acquired
from the Panos et al. (2018, 2020) modeling efforts to simulate water quantity in the model for both
non-redeveloped and redeveloped land use conditions [53,64]. Two sets of time series were extracted
from the outlet in the Berkeley neighborhood PCSWMM hydrologic model. The first set of time series
includes the 2-year, 5-year, and 10-year, 24-hour design storms. The second set of time series includes
continuous summer month (April–September) time series from 2013–2017. The design storms were
used for a validation between the distributed PCSWMM model and the i-DST SUSTAIN lumped model
while the continuous time series were used to drive the external i-DST SUSTAIN SCM module and
simulate the optimization scenarios presented in this work.

3.1.2. Water Quality Data

Pollutant load reduction is a component of the Green Infrastructure Implementation Strategy
throughout Denver [59]. Therefore, water quality was included in this study. However, water
quality was not simulated in the Panos et al. (2018, 2020) modeling efforts [53,64], thus event mean
concentration (EMC) data was obtained from a study that developed regional values from the National
Stormwater Quality Database [65]. Runoff concentrations from the “southwest” NCDC climatic region
for total suspended solids (TSS), total Phosphorous (TP), and total Zinc (Zn) have been identified as
pollutants of concern for wet weather flows in the study area and were chosen to be simulated in the
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model. The median EMC values, which are similar to those presented in other Denver studies [59],
were chosen to be used in this study given that the EMC values are consistent across multiple aggregate
statistics in terms of relative land use EMC levels (Table 3). Nitrate and E. coli were not modeled in
this study even though Denver has established TMDLs for these pollutants. It was determined that
municipal wastewater treatment facilities are the primary point source discharges of nitrate, thus it
is not considered a major nonpoint source pollutant [59]. Dry weather flows not associated with
stormwater runoff were identified as the source of bacteria, thus the only established TMDL for E. Coli
is for dry weather and not relevant to this study [59].

Table 3. Land use event mean concentration (EMC) values extracted from Bell et al. (2019) for total
suspended solids (TSS), total Phosphorous (TP), and total Zinc (Zn) median values were used for
analyses in this study [65]. The light to dark grey shadings show which land use has a lower EMC
(white shading) and a higher EMC (darkest grey shading) for each pollutant type and statistic.

Pollutant EMCs (mg/L) Mean Min 25th Median 75th Max

TSS
Commercial 210.33 1.00 37.83 118.00 275.27 1940.00
Paved area 125.92 0.50 33.08 68.00 130.00 4800.00
Industrial 507.04 16.00 186.00 370.00 773.00 2325.00

Open park space 602.07 194.05 293.57 516.00 845.94 1400.00
Residential 201.76 0.30 49.00 112.50 247.49 2732.43

TP
Commercial 0.40 0.008 0.14 0.26 0.48 6.30
Paved area 0.39 0.070 0.15 0.28 0.42 2.60
Industrial 0.94 0.030 0.27 0.72 1.30 7.90

Open park space 0.52 0.210 0.33 0.53 0.64 1.00
Residential 0.56 0.03 0.29 0.45 0.71 4.96

Zn
Commercial 0.34 0.015 0.16 0.26 0.40 3.61
Paved area 0.24 0.001 0.08 0.16 0.28 2.10
Industrial 0.54 0.005 0.31 0.47 0.69 2.40

Open park space 0.26 0.040 0.09 0.20 0.35 0.73
Residential 0.16 0.0025 0.07 0.13 0.20 1.50

Note: EMC = event mean concentration; TSS = total suspended solids; TP = total phosphorous; Zn = zinc.

An area-weighted approach using the land use area values in Table 1 and the median EMC values
in Table 3 were used to determine a single representative EMC value (Table 4) for each aggregate land
use runoff time series in the model (Current Baseline, Future Baseline non-infill developed, and Future
Baseline infill developed). These EMC values were applied to the five-minute land use surface water
runoff time series to simulate land use pollutant loading in the model.

Table 4. Pollutant EMCs, calculated by using land use area-weights, for Current Baseline and Future
Baseline scenarios.

EMCs (mg/L) Current Baseline (No
Infill Development)

Future Baseline (Non-Infill
Developed Area)

Future Baseline (Infill
Developed Area)

TSS 157.46 164.82 112.47
TP 0.39 0.38 0.45
Zn 0.15 0.16 0.13

Note: EMC = event mean concentration; TSS = total suspended solids; TP = total phosphorous; Zn = zinc.

3.1.3. Modeled SCMs

SCMs selected to be simulated in i-DST SUSTAIN for this research included three green
(bioretention (BR), infiltration trench (IT), and vegetated swale(VS)) and three grey (underground
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infiltration structure (UIS), underground detention structure (UDS), and porous pavement (PP)).
All SCMs represent designs similar to those proposed in the City and County of Denver Ultra-Urban
Green Infrastructure Guidelines as well as the Mile High Flood District (MHFD) stormwater
management manual [9,66]. While it is recommended in Denver that underground SCMs are
not used unless surface treatment has been proven to not be possible, [9] their flexible design offers
alternatives to above ground infrastructure in space-limited sites and stormwater redevelopment
applications, such as those in the Berkeley neighborhood watershed.

Table 5 displays all model inputs and design parameters used for the six individual SCMs in
the model. SCM capital cost data was originally determined by using several SCM projects found
throughout Los Angeles [37]. Projects from several sources were used for VS, BR, IT, and PP. Cost data
acquired from a proprietary company, StormTrap, was used for UDS and UIS [67]. All cost data was
then projected to be representative of the Denver area using the RSMeans 2019 city construction cost
data [68].

All SCMs were designed to capture stormwater runoff from a uniform design drainage area which
was chosen as the average area of predicted infill developed parcels in the Future Baseline scenario,
or 0.053 ha as determined by Panos et al. (2018, 2020) [53,64]. SCMs in Denver are commonly sized
to be 5% of the impervious drainage area [66]. In addition, infill developed areas are predicted to be
70% impervious on average, thus above ground storage-based SCMs (BR, IT, and PP) were sized to be
0.0018 ha or 18.53 m2. Width and length of these SCMs fall within the recommended guidelines for
Denver. The MHFD Stormwater Best Management Practice Design Workbook was used to assist in the
design for vegetated swales, named ‘grass swales’ in the workbook. Construction project design data
from a proprietary company, StormTrap, was used to assist in design of the UDS and UIS systems [67].

All storage-based SCMs (BR, IT, PP, UDS, and UIS) were designed to be able to capture and
treat runoff produced by the water quality capture volume (WQCV) event, which in the study area
corresponds to the 80th percentile storm and a 17.5 mm rainfall depth [9,53]. Design of surface storage
and soil storage layers were informed by this criterion. SCM design was based on this event because it
was found by a study of 36 years of data in Denver that capturing and effectively treating the runoff

produced by this event will significantly improve water quality [69]. BR, IT, and PP were all designed
with underdrains as this is the typical practice in Denver due to underlying native clay soils [9,66].
UDS does not infiltrate and does not need an underdrain. Finally, while UIS may be designed with or
without an underdrain, the authors opted to include one so that the performance and benefits of a
system with full infiltration can be compared to other designs in the study.

A software package, named DeCal for “decay calibration” was developed in order to assist users
in calibrating pollutant first order decay rate, K, or K-C* pollutant treatment parameters for SCMs
utilized in water quality models. The tool uses a stochastic approach and requires inputs of observed
data (influent and effluent EMCs, storm influent volumes, storm influent duration, and precipitation)
as well as SCM parameters (design geometry and substrate properties) to perform a statistical analysis
and find the best fitting K or K-C* values. The current study used a first-order decay model to
simulate SCM performance. Pollutant decay rates were calibrated using the DeCal tool within i-DST
SUSTAIN by using influent and effluent concentrations from SCM sites reported in the international
BMP database (IBMPD) [26]. Projects from Lakewood, Colorado were used for BR, IT, UDS, and UIS.
Due to the lack of data in the IBMPD originating from the southwest area, projects from southern Los
Angeles, with a similar climate and soil type to Denver, were used for VS. Finally, while there are a
limited number of studies that do report influent and effluent values for PP, this study errs on the
conservative side and assumes a decay rate of zero due to the limited SCM sites and number of storms
reported in the IBMPD [9,26].
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Table 5. SCM capital cost, design parameters, soil parameters, and pollutant decay rates.

Parameter VS BR IT UDS PP UIS

Capital cost (per m3) 281.50 I 408.23 I 168.80 I 493.69 J 438.61 I 424.13 J

Surface storage layer
Width (m) 0.30 A 1.52 B 1.52 B 2.52 F 1.52 B 2.31 F

Length (m) 11.06 A 12.19 B 12.17 B 2.52 F 12.17 B 2.31 F

Surface area (m2) 16.86 18.54 18.54 6.35 18.54 5.35
Green space added (m2) 16.86 18.54 18.54 0 0 0

Slope A 5.5% - – - -
Weir height (m) 0.15 A 0.15 B 0.23 B 1.45 C 0.01 B 1.45 C

Weir width (m) - 0.30 0.30 NA 1.52 NA
Vegetative fraction E 0.2 0.2 0.2 0.2 0.2 0.2

Orifice height (m) - 0.01 - 0.03 - -
Orifice diameter (cm) A - 0.39 - 0.39 - -

Soil storage layer

Infiltration method Green
Ampt

Green
Ampt

Green
Ampt

Green
Ampt

Green
Ampt

Green
Ampt

Soil depth (m) B, F 0.15 0.79 0.65 - 0.65 0.65
Porosity D 0.42 0.435 0.41 - 0.435 0.41

Field capacity E 0.1 0.1 0.1 0.1 0.1 0.1
Wilting point E 0.095 0.095 0.095 0.095 0.095 0.095

Soil types Sandy clay
loam

Sandy
loam

Loamy
sand - Sandy

loam
Loamy
sand

Soil layer infiltration
(cm/hour) A 0.13 0.25 0.55 0 0.25 0.55

Suction head (m) E 0.91 0.91 0.91 0 0.91 0.91
Underdrain storage

layer
Consider underdrain? no yes yes no yes no

Void ratio E - 0.3 0.3 - 0.3 -
Back infill rate

(cm/hour) G - 0.08 0.08 - 0.08 -

Media below
drain (m) B - 0.03 0.15 - 0.08 -

Pollutant decay rates

IBMPD data source H CA RVTS
System

Lakewood
CO Iris
Garden

Lakewood
CO Dry

Pond

Lakewood
CO

Retention
Vault

NA

Lakewood
CO

Retention
Vault

TSS (1/year) 0.122 2.15 0.757 0.396 0.00 0.396
TP (1/year) 0.00 0.0997 0.059 0.00015 0.00 0.00015
Zn (1/year) 4.864 0.72 0.615 0.038 0.00 0.038

Note: BR = bioretention; IT = infiltration trench; PP = porous pavement; VS = vegetated swale; UDS = underground
detention structure; UIS = underground infiltration structure; RVTS = roadside vegetated treatment site;
TSS = total suspended solids; TP = total phosphorous; Zn = Zinc. A = [9], B = [66], C = [25,67], D = [41,70,71],
E = [72], F = Based on required WQCV event: [9,69], G = [73], H = [26], I = [37] using [68] to project values for
Denver, J = [67] using [68] to project values for Denver.

3.1.4. Model Routing

The Berkeley neighborhood model was set up in i-DST SUSTAIN as a lumped model (Figure 1)
for a planning-level analysis to focus on the impacts of implementing SCMs on the future infill
developed area as a whole. Distributed models should be used after a planning-level analysis for
a more design-level analysis once the appropriate and preferred SCMs are identified. The Current
Baseline time series (no infill developed area) was simulated through i-DST SUSTAIN as one single
land use time series (surface runoff volumes and pollutant loadings) based on the total watershed
area of 419 (ha). First, flow was routed directly to the virtual outlet without the implementation of
any SCMs to represent the two scenarios without SCM implementation: Current Baseline and Future
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Baseline. Then, the Future Baseline output flow was split into two separate land use time series
representing two lumped watersheds (Figure 1): one for the non-infill developed area (331 ha), which
is routed to the outlet and one for the infill developed area (88 ha) which is routed to SCMs. This new
scenario is referred to as Future SCM. i-DST SUSTAIN can simulate SCMs as an aggregate unit, or in
other words, simulate a specified number of SCMs simultaneously and in parallel. Total outflow from
the aggregate SCM (i.e., through underdrains or surface overflow) is then routed to the virtual outlet
where evaluation factors are analyzed and optimized.
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3.2. Model Validation

This study uses previously calibrated surface water runoff timeseries from the PCSWMM modeling
of Panos et al. (2020) to drive the model, thus calibration of flow in the i-DST SUSTAIN model was
not required [64]. The i-DST SUSTAIN model output of hourly water quantity flow for the Current
Baseline, Future Baseline, and Future SCM scenarios were compared to the PCSWMM calibrated
modeling results [72] to provide model validation for i-DST SUSTAIN. Bioretention units were used in
the Future SCM scenario for this analysis and all BR design parameters used in Panos et al. (2020)
were used in i-DST SUSTAIN [64]. BR units were sized to 1% and 5% of the parcel area draining to
the SCM. Several statistics, i.e., Nash Sutcliffe Efficiency, R2, and percent bias, were used to compare
PCSWMM model outputs to the i-DST SUSTAIN outputs.

The model was not validated for water quality, as there is a lack of observed data throughout the
Berkeley neighborhood watershed. Additionally, the purpose of modeling water quality in this study
was to compare relative water quality improvements across variable SCM types. Pollutant removal
performance was calibrated for each individual SCM (discussed in Section 3.1.3.).

3.3. Optimization Scenarios

The SUSTAIN optimization uses algorithms (NSGA-II or Scatter Search) to determine optimal
SCM solutions by simulating thousands of SCM combinations and optimizing (i.e., reducing) cost
while achieving a specific target evaluation factor, such as pollutant load reduction [41]. The scatter
search algorithm is meta-heuristic and utilizes a deterministic and probabilistic approach to generate
a diverse population of near optimal solutions based on a specific target value. The non-dominated
sorting genetic algorithm (NSGA-II) is a multi-objective evolutionary objective algorithm that finds
the optimal solutions along the first non-dominated Pareto front within the specified target value
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range. Optimization controls that define the optimal solution include cost minimization and a cost
effectiveness curve [41]. Cost minimization aims to minimize cost while achieving a certain evaluation
factor goal (Equation (1)) [41]. Cost minimization can optimize on multiple evaluation factors at
once. A cost effectiveness curve aims to both minimize cost and maximize an evaluation factor (listed
in Table 2) within a target range simultaneously (Equation (2)) [41]. The cost effectiveness curve
optimization control can optimize on only one evaluation factor.

Minimize
∑

Cost (SCMi) subject to Q j ≤ Qmaxj and Lk ≤ Lmaxk (1)

Minimize
∑

Cost (SCMi) and Maximize
∑

EF (2)

where

SCMi = set of SCM solutions associated with location i
Q j = computed amount of water quantity factor at assessment point j
Qmaxj = the maximum value of the water quantity factor targeted at assessment point j
Lk = computed amount of water quality factor at assessment point k
Lmaxk = the maximum value of the water quality factor targeted at assessment point k
EF = the management evaluation factor (EF) at one given assessment point, and the EF can be any of
the options listed in Table 2

The optimization module in i-DST SUSTAIN can be used to simulate a range of optimization
analyses by using various criteria and constraints (see Appendix A for further details on optimization
criteria and constraints). In this study, optimization scenarios are designed to identify the optimal
number of SCMs and evaluate the tradeoffs of varying types to manage the increased volumes of
urban stormwater runoff due to infill development. Each scenario has a primary goal of reducing total
runoff volume while assessing additional tradeoffs of the varying SCM types, such as pollutant load
reduction or green space added. Plotting the average annual flow volume (AAFV) from each SCM
solution simulated in the optimization against the respective cost to implement that SCM solution
creates a scatter plot referred to as a Pareto curve. The varying optimization algorithms and controls
drive the shape of the Pareto curve and how the model searches for the optimal solutions. It is crucial
for the model user to understand these controls and how they may affect the solutions that are being
outputted by the model as these controls can drive the model in certain directions (supplemental
material). This study used scatter search and cost minimization in order to allow consideration of
multiple criteria but also maintain more diverse solution sets in the optimization rather than search for
a single optimal solution.

3.3.1. Individual Optimization

An individual optimization analysis was conducted independently on each of the six SCM types
to compare relative performance. While the model is set up to optimize on average annual flow
reduction and minimize cost, a wide range of model results were outputted. The minimum number of
simulated SCMs in the watershed was one unit (capturing runoff from one 0.053 ha parcel of land)
while the maximum number of simulated SCMs allowed was set to 2000 units, enough to capture all
runoff from the infill developed area. Each individual optimization was simulated 1000 times with a
SCM step of two units. Thus, this analysis explored the additional added hydrologic benefit as two
additional SCM units were added to the watershed until the maximum redeveloped area was treated.

A single solution from each of the six individual optimizations was identified. As the primary
goal of this study was to evaluate stormwater management options that returns AAFV to the Current
Baseline conditions, the first solution that reached this AAFV goal was identified. Each SCM individual
optimization solution has a different number of units. The six individual SCM types were compared
in terms of their cost and the relative hydrologic performance based on several hydrologic variables
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including peak flow, total evapotranspiration, and average annual loads and concentrations for
various pollutants.

3.3.2. Full Optimization

The full optimization scenario simulated 2000 total solutions and was set up to allow consideration
of all six SCM types simultaneously. The number of SCM units set for each SCM type was 1 to 300 units
with a step of 30 units. Only one full optimization scenario was simulated which was set up to
optimize several evaluation factors at once as a multi-objective search algorithm. Spahr et al. (2020)
demonstrated in a public survey that the benefits participants found most important in Denver include
reduced impacts from flooding, improved water quality, increased local groundwater resources, and
community redevelopments and revitalization [14]. The i-DST SUSTAIN model has evaluation factors
that can optimize on the first three of these benefits. Thus, the full optimization was set up to optimize
AAFV, Zn average annual load (Zn AAL), Zn average annual concentration (Zn AAC), and ground
water recharge potential (GWRP) simultaneously while minimizing cost. The primary evaluation
factor target goal was set to reach at least a 5% reduction in AAFV (minimum required reduction to
return Future Baseline flows back to Current Baseline flow values). As there are no reduction targets
set in Denver for the remaining evaluation factors a 5% decrease was also set for Zn AAL and Zn AAC
while a 5% increase was set for GWRP.

3.3.3. Full Optimization Selection Criteria Sensitivity Analysis

Selecting the optimal solutions from a full optimization Pareto curve may be subjective based
on the decision maker. While it is typical in stormwater modeling for hydrologists to identify the
optimal solutions as those located in the “elbow” of the Pareto curve (maximize a single benefit
and minimize cost) [74], it is unclear how these solutions align with varying stakeholder priorities.
Three sensitivity analyses, with varying selection criteria, were explored to isolate 100 solutions from
the full optimization Pareto curve simulated in Section 3.3.2. in order to explore the best way to
identify optimal solutions on a planning-level. Sensitivity Analysis 1 reflects when a stakeholder
aims to maximize a primary goal (AAFV in this study) and minimize cost. The solutions that meet
these criteria are expected to fall along the “elbow” of the curve, also referred to as the Pareto frontier.
The 100 solutions isolated for this analysis fall within a AAFV range of 356,000–361,430 m3 and a cost
range of 1–2 million dollars. Sensitivity Analysis 2 reflects when a stakeholder prioritizes meeting
the primary goal and has a flexible budget. The solutions that meet these criteria must therefore fall
below the Current Baseline AAFV but can fall along a range of costs. The 100 solutions isolated for
this analysis fall within a AAFV range of 361,000–361,430 m3 and a cost range of 1–4.5 million dollars.
Sensitivity Analysis 3 introduces the consideration of a third variable, Zn AAC (where reductions in
AAC do not exhibit a direct relationship to reductions in AAFV thus presenting a tradeoff), within
a wide AAFV and cost range. For this analysis, solutions that meet the AAFV goal, along any cost,
and within a specified AAC range were identified. The 100 solutions isolated for this analysis identify
the solutions with the lowest Zn AAC that fall within a AAFV range of 340,000–361,430 m3 and a cost
range of 1–4.5 million dollars.

3.3.4. Full Optimization Aggregate Multi-Criteria (AMC) Selection

While Sensitivity Analyses 1 and 2 identify SCMs that perform best at achieving the AAFV
goal, SCMs also co-produce various levels of other benefits including (1) water quality improvement,
(2) groundwater recharge, and (3) added green space. Though potentially correlated in their provision,
the benefits to society are distinct. As such, just as a public good [75] creates non-rival benefits that
should be summed across individuals, these benefits should be counted separately and aggregated.
At times, non-primary benefits can rival the scale and importance of the targeted goal, making them
important to consider [76]. Thus, Sensitivity Analysis 3 was determined to be the most efficient method
for a planning-level analysis. To further improve Sensitivity Analysis 3, this study used an aggregate
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multi-criteria (AMC) selection methodology to identify the optimal solutions from the full optimization
by aggregating multiple hydrologic benefits and applying a user prioritization by weighting the
benefits. This methodology first splits all of the solutions (j in Equations (3) and (4)) up into ten evenly
distributed cost bins (i in Equations (3) and (4)). It should be noted that cost bins may be further
divided to suit needs of a model user. Solutions within each cost bin were then compared to one
another based on their performance in terms of each evaluation criteria. A rating system was used to
weight criteria that are more important on a scale of 1 to 5, where a rating of 5 receives higher priority.
Finally, each solution was given an overall score. Five benefits (n in Equations (3) and (4)), AAFV, Zn
AAL, Zn AAC, GWRP, and potential green space added (Table 5), were weighted and aggregated for
each solution. Equations (3) and (4) calculate the benefit score for each solution and benefit type in
each of the ten cost bins. Equation (3) was used for GWRP and green space added as higher values are
preferred. Equation (4) was used for AAFV, AAC, and AAL as lower values are preferred. Equation (5)
calculates the overall score, respectively, for each SCM solution in each of the ten cost bins. The solution
with the highest overall score was determined to be the optimal solution for that cost bin.

Bene f it Score j,i,n =

[ Bene f it Value j,i,n −min[Bene f it Valuei,n]

max[Bene f it Valuei,n] −min[Bene f it Valuei,n]

]
×Ratingn (3)

Bene f it Score j,i,n = 1−
[ Bene f it Value j,i,n −min[Bene f it Valuei,n]

max[Bene f it Valuei,n] −min[Bene f it Valuei,n]

]
×Ratingn (4)

Overall Score j,i =

∑
n Bene f it Score j,i∑

Ratingn
(5)

where j = Future SCM Solutions (2000); i = Cost Bin (10); and n = benefit type (5)
While using weights indicative of monetary marginal values across various benefits would

arguably achieve a SCM mix that optimizes aggregate efficiency [11], this would need to be done
with local estimates rather than transferring values from studies elsewhere. Local policymakers
could endeavor to take on such steps by scaling the weights by the relative economic measures,
or they can balance preferences of the city as expressed through alternative non-monetary means.
This study explored four sets of ratings using the AMC methodology as displayed in Table 6. AMC1
and AMC2 explored two general rating systems that are not directly related to the preferences of
Denver. AMC1 prioritized all factors equally while AMC2 prioritized only Zn AAC. AMC 3 and AMC4
use ratings that are established by the City and County of Denver [66] and results from the Spahr et al.
(2020) public survey [14], respectively.

Table 6. Ratings used for four separate benefit weighting options in the Berkeley neighborhood. Ratings
are on a scale of 1 to 5, where a rating of 5 is higher priority.

Benefit Ratings AMC1 (Equal) AMC2
(Prioritize AAC)

AMC3
(City of Denver)

AMC4
(Public Survey)

AAFV 5 0 4 3
Zn AAC 5 5 4 5
Zn AAL 5 0 5 3
GWRP 5 0 0 2

Green Space Added 5 0 4 1

Note: AMC = aggregate multi-criteria; AAFV = average annual flow volume; AAC = average annual concentration;
AAL = average annual load; GWRP = ground water recharge potential.
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4. Results

4.1. Model Validation Results

The i-DST SUSTAIN Current Baseline and Future Baseline time series are identical to PCSWMM
results [72] with an R2 of 1, NSE of 1, and % Bias of −0.007. This is expected as the PCSWMM model
outputs were used to drive the i-DST SUSTAIN model. Table 7 displays summary statistics (Nash
Sutcliffe Efficiency (NSE), R2, and % Bias) for the 2, 5, and 10-year, 24-h design storm time series
between i-DST SUSTAIN and PCSWMM with 1% sizing and 5% sizing for BR. The 1% and 5% BR
sizing scenarios are very similar to the PCSWMM modeling results with R2 values of 0.994–0.997.

Table 7. Statistical values for the comparison between i-DST SUSTAIN and PCSWMM Future SCM
scenarios with BR.

Current Baseline Future Baseline Future BR 1% Sizing Future BR 5% Sizing

2-year storm
NSE 1 1 0.991 0.844
R2 1 1 0.996 0.996

% Bias −0.007 −0.0008 −1.710 1.920
5-year storm

NSE 1 1 0.995 0.933
R2 1 1 0.997 0.997

% Bias −0.007 −0.0008 −1.953 −6.276
10-year storm

NSE 1 1 0.996 0.936
R2 1 1 0.994 0.996

% Bias −0.007 −0.0008 −1.682 −7.041

4.2. Individual Optimization Results

4.2.1. Water Quantity Results

Figure 2 displays the average annual flow volume (AAFV) results based on the number of SCM
units installed (Figure 2A) and the total capital cost (Figure 2B) for the six SCM types. The Current
AAFV Baseline (361,430 m3), which is the primary goal for the Berkeley neighborhood, is represented by
the black horizontal line in Figure 2. All solutions above this line are considered non-viable stormwater
solutions as they do not successfully reduce AAFV back to the Current Baseline. Green and grey SCMs
show mixed performance. The two grey underground SCMs have very different water quantity results
based on their varying designs. UIS reaches the Current Baseline AAFV with the lowest number of
installed SCM units. UDS does not reduce AAFV as the design is a concrete box without infiltration.
The remaining grey SCMs (PP) and three green (BR, IT, and VS) all have results that fall between UDS
and UIS. The three above ground storage-based SCMs (IT, PP, BR) perform similarly in terms of AAFV
reduction while the above ground flow rating-based SCM (VS) requires more SCM units.

VS reaches the Current AAFV Baseline with the lowest cost (Figure 2B) even though the largest
number of SCM units is required to do so. In addition to having a relatively lower capital cost per
cubic feet, VS are flow rating-based and thus require less volume per parcel of land treated as VS
are designed to ensure flow requirements are met rather than the capture of the WQCV. IT performs
similarly to VS even though they have a higher storage volume; this is due to having the lowest capital
cost per cubic foot out of the six SCM types. BR units reach the AAFV reduction goal at the highest
cost while UDS does not reach the AAFV goal at any cost.
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Figure 2. Water quantity results from the individual optimizations for each of the six SCM types.
Plots show the impact of SCMs on AAFV with an incremental increase in SCM units implemented (A)
and total capital cost (B). Viable SCM solutions fall below the Current AAFV Baseline.

4.2.2. Water Quality Results

Figure 3 displays the resulting water quality evaluation factors, pollutant average annual load (AAL),
and average annual concentration (AAC) based on the number of SCM units installed for the six SCM
types. Similar to Figure 2, results show that the green and grey SCMs have mixed results. All SCMs
reduce pollutant AAL (Figure 3A–C) except for UDS total Phosphorous which is due to the combination
of a low decay rate and a lack of infiltration. Infiltration-based SCMs (UIS, IT) are better at reducing AAL
than treat-and-release-based SCMs (UDS and VS). BR and PP perform relatively average in terms of AAL
reduction with BR slightly outperforming PP despite being a treat-and-release-based SCM. Results for
reduction in AAC (Figure 3D–F) are very different from the AAL-based results. While treat-and-release
SCMs (UDS, VS, and BR) generally perform better in terms of reducing pollutant AAC in the SCM effluent
compared to the influent, as they return more diluted water to the storm sewer network, it should be
noted that five out of six SCMs (BR, IT, VS, UIS, PP) result in higher TSS AAC and two out of six SCMs
(UIS, PP) result in higher Zn AAC at the watershed outlet.Water 2020, 12, x FOR PEER REVIEW 15 of 28 
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4.2.3. AAFV Criteria Solution Selection Results

Table 8 displays the range of hydrologic results for each SCM type and the respective solution that
first reached the Current AAFV Baseline. Hydrologic results include those based off design properties,
number of SCMs simulated, water quantity results, and water quality results. The developed color
scale highlights the SCMs that perform the best (dark grey shading) and worst (white shading) in terms
of the several criteria listed. All SCMs that perform in between are shaded in a light grey. For example,
BR is shaded white for total capital costs which reflects the high cost requirement in order to reach the
Current AAFV Baseline while VS has the dark grey shading as it requires the lowest cost. BR and IT
both perform on average or above average for all criteria. However, while VS, PP, and UIS have mixed
results across all criteria, in some cases they outperform IT and BR. For example, while IT performs the
best in terms of reducing the peak flows from large storms, VS performs the best in terms of reducing
smaller storm peak flows. Finally, UDS performs relatively the worst out of the six SCM types across
the board with an exception to required storage volume, TSS AAC, and Zn AAL and AAC, in which
UDS outperforms the other five SCM types.

Table 8. Hydrologic results from the six SCM individual optimization solutions that first achieve the
Current AAFV Baseline. SCMs that perform best at a hydrologic criterion are highlighted in dark grey
while SCMs that perform the worst are shaded white. All SCMs that perform in between are shaded
light grey.

VS BR IT UDS PP UIS

% difference from Current AAFV Baseline 0.007 −0.002 −0.014 +6.20* −0.014 0.003
Units of SCMs 806 548 485 545 507 379

Area treated (ha) 42.73 29.05 25.71 28.89 26.88 20.09
Cost per cubic foot ($) 281.45 408.23 168.8 493.69 424.13 438.61
Total capital cost ($) 1,165,900 3,919,800 1,341,900 2,475,000 2,664,200 1,871,100

Surface area (ha) 1.36 1.02 0.90 0.00 0.94 0.00
Surface storage volume (m3) 2060 1542 2048 5008 123 2936

Soil storage volume (m3) 876 3503 2405 0 2677 543
Watershed outlet peak flow (cms) 5.51 5.28 5.12 5.35 5.40 5.24

95th percentile peak flow above 0 (cms) 1.59 1.51 1.49 1.63 1.51 1.52
25th percentile peak flow above 0 (cms) 0.016 0.016 0.017 0.018 0.017 0.017

Peak flow downstream of aggregate SCM (cms) 1.38 1.27 0.99 1.30 1.27 1.08
Total ET (m3) 13,065 37,722 33,244 0 34,720 0

Average annual GWRP (m3) 19,806 14,939 15,855 0 15,493 22,396
AAL TSS at outlet (kg) 55,573 54,733 54,984 56,461 55,640 55,592

AAC TSS at outlet (mg/L) 153.77 151.44 152.15 147.09 153.97 153.82
AAL TP at outlet (kg) 141.67 140.75 140.85 151.51 141.69 141.50

AAC TP at outlet (mg/L) 0.392 0.389 0.390 0.395 0.392 0.392
AAL Zn at outlet(kg) 53.81 54.24 54.28 56.99 55.00 54.95

AAC Zn at outlet (mg/L) 0.149 0.150 0.150 0.149 0.152 0.152

Note: BR = Bio-retention; DP = Dry Pond; IT = Infiltration Trench; PP = Porous Pavement; VS = Vegetated Swale;
UDS = Underground Detention Structure; UIS = Underground Infiltration Structure; TSS = Total Suspended Solids;
TP = Total Phosphorous; Zn = Zinc; AAFV = Average Annual Flow Volume; AAC = Average Annual Concentration;
AAL = Average Annual Load; GWRP = Ground Water Recharge Potential. *UIS never reaches the Current AAFV
Goal as it does not allow infiltration or evapotranspiration.

4.3. Full Optimization Results

Results from the full optimization in the Berkeley neighborhood show that while AAFV, AAL,
and ground water recharge potential (GWRP) have a generally linear relationship with cost of SCM
implementation (as AAFV decreases, AAL decreases and GWRP increases) there is not a linear
relationship between AAFV, AAC, and green space added (Figure 4). For example, the solutions
with the lowest AAC values (dark blue shading) are found throughout the whole optimization curve.
However, there are groupings of solutions that perform similarly. For example, a group of solutions
with high Zn AAC (0.1515 mg/L) is located between 332,000 and 340,000 m3 of AAFV range and
between the 3.5- and 4.5-million-dollar cost range.



Water 2020, 12, 2005 16 of 27
Water 2020, 12, x FOR PEER REVIEW 17 of 28 

 

 

Figure 4. Full optimization results from the Berkeley neighborhood (A) Zinc concentration, (B) Zinc 

average annual load, (C) groundwater recharge potential, (D) green space added. Each subplot shows 

the same solutions from the full optimization, each with a different color based on a different 

additional benefit. Darker shading represents solutions that perform better in terms of the subplot 

benefit. Viable SCM solutions fall below the Current AAFV Baseline. 

4.3.1. Selection Criteria Sensitivity Analysis Results 

Figure 5A–C shows the optimal 100 solutions based on the full optimization sensitivity analysis. 

Figure 5D–F uses a whisker box plot to show the spread of the number of SCM units simulated for 

each type across all selected 100 solutions. For example, the minimum number of VS units simulated 

in Figure 5D is 231 units while the maximum number of units simulated is 300. The 100 solutions 

identified with Sensitivity Analysis 1 (achieve AAFV goal and minimize cost) are dominated by a 

high number of VS and IT units, with between 175 and 300 SCM units of each type. This is because 

these two SCMs reduce AAFVs at the lowest cost as seen in the individual optimization results. The 

other four SCM types (BR, PP, UDS, and UIS) do not exceed 125 units. With the 100 solutions 

identified using Sensitivity Analysis 2 (achieve AAFV goal without a cost restriction), the spread of 

the solutions widens for all SCM types (with fewer units for VS and IT and more units for BR, PP, 

DS, and UIS). This is because this criterion introduces solutions that prioritize SCMs that may cost 

more to reach the Current AAFV Baseline (such as BR and PP, Table 8). Considering zinc AAC in 

Sensitivity Analysis 3 (achieve the AAFV goal and minimize Zn AAC) shows a further increase for 

the spread of BR and UDS as they perform the best in terms of reducing Zn AAC values. As more 

benefits are considered, the solutions become more diverse in that they include a wider range of SCM 

types as multiple SCM types will result in solutions with more available benefits. The solutions for 

Sensitivity Analysis 1 (Figure 5D) show a high preference for green SCMs, but as more diverse criteria 

are included in the selection process for the “optimal” solutions (Sensitivity Analyses 2 and 3; 

Figure.5E,F), a larger mix of green and grey SCMs are simulated to meet the specified requirement 

(evaluation factor) of the model user. A mix of treat-and-release-based and infiltration-based SCMs 

is observed in all situations. 

Figure 4. Full optimization results from the Berkeley neighborhood (A) Zinc concentration, (B) Zinc
average annual load, (C) groundwater recharge potential, (D) green space added. Each subplot shows
the same solutions from the full optimization, each with a different color based on a different additional
benefit. Darker shading represents solutions that perform better in terms of the subplot benefit. Viable
SCM solutions fall below the Current AAFV Baseline.

4.3.1. Selection Criteria Sensitivity Analysis Results

Figure 5A–C shows the optimal 100 solutions based on the full optimization sensitivity analysis.
Figure 5D–F uses a whisker box plot to show the spread of the number of SCM units simulated for
each type across all selected 100 solutions. For example, the minimum number of VS units simulated
in Figure 5D is 231 units while the maximum number of units simulated is 300. The 100 solutions
identified with Sensitivity Analysis 1 (achieve AAFV goal and minimize cost) are dominated by a high
number of VS and IT units, with between 175 and 300 SCM units of each type. This is because these
two SCMs reduce AAFVs at the lowest cost as seen in the individual optimization results. The other
four SCM types (BR, PP, UDS, and UIS) do not exceed 125 units. With the 100 solutions identified
using Sensitivity Analysis 2 (achieve AAFV goal without a cost restriction), the spread of the solutions
widens for all SCM types (with fewer units for VS and IT and more units for BR, PP, DS, and UIS).
This is because this criterion introduces solutions that prioritize SCMs that may cost more to reach the
Current AAFV Baseline (such as BR and PP, Table 8). Considering zinc AAC in Sensitivity Analysis 3
(achieve the AAFV goal and minimize Zn AAC) shows a further increase for the spread of BR and
UDS as they perform the best in terms of reducing Zn AAC values. As more benefits are considered,
the solutions become more diverse in that they include a wider range of SCM types as multiple SCM
types will result in solutions with more available benefits. The solutions for Sensitivity Analysis 1
(Figure 5D) show a high preference for green SCMs, but as more diverse criteria are included in the
selection process for the “optimal” solutions (Sensitivity Analyses 2 and 3; Figure 5E,F), a larger mix of
green and grey SCMs are simulated to meet the specified requirement (evaluation factor) of the model
user. A mix of treat-and-release-based and infiltration-based SCMs is observed in all situations.
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Figure 5. (A–C): Location of the 100 “optimal” isolated solutions based on the three sensitivity selection
criteria. A = Achieve Current AAFV Baseline goal and minimize cost. B = Achieve Current AAFV
Baseline Goal. C = Achieve Current AAFV Baseline Goal and minimize AAC. (D–F): Spread of the
number of simulated SCM units for the 100 “optimal solutions”, each SCM type, and the respective
three Sensitivity Analysis.

4.3.2. Aggregate Multi-Criteria Results

Solutions identified using the aggregate multi-criteria (AMC) methodology can be seen in Figure 6.
The 10 cost bins were determined by using the minimum (1.5 million dollar) and maximum (4.5 million
dollar) cost that falls along the Current AAFV Baseline goal. The optimal solutions identified with
AMC1 and AMC2 (rate all equally and City of Denver ratings, respectively) fall along the Pareto
frontier (Figure 6A,C). The City of Denver rating system generally weights all benefits equally with an
exception to GWRP. Solutions identified using AMC4 (Denver public survey) fall closer to the Pareto
frontier (Figure 6D) while solutions that prioritized AAC (AMC2) are found throughout the whole
Pareto curve (Figure 6B). When AAC is prioritized (AMC2 and AMC4) the optimal solutions shift away
from the Pareto frontier and towards the Current AAFV Baseline line where the solutions simulate a
higher number of BR and UDS, which both have a higher capital cost and perform better at reducing
Zn AAC. While the optimal solutions from the Denver Public Survey rating (AMC4), which weights
AAFV reduction and added green space higher, do vary from AMC1 and AMC3 (rate all equally and
City of Denver ratings, respectively) in that all of the solutions do not fall as closely along the Pareto
frontier, they do not shift as close to the Current AAFV Baseline as the solutions that solely prioritize
AAC (AMC2).

The number of SCM units by type simulated in the optimal solutions identified with the four
AMC ratings are highlighted in Figure 7. The green SCMs (BR, IT, and VS) are shown in shades of
green while the grey SCMs (PP, UDS, and UIS) are shown in shades of grey. Comparing AMC1 (rate all
equally) to AMC2 (prioritize AAC) shows that the optimal solution in all ten cost bins changed. When
AAC is weighted higher, the solutions shift to implement more of the treat-and-release-based SCMs, BR
and UDS (best at reducing AAC), and less of the infiltration-based SCMs (IT, PP, and UIS). The number
of IT units simulated across all cost bins in AMC1 is consistent. However, AMC2 (prioritize AAC),
shows a decline in simulated IT units as the cost bin increases. This is because while IT do reduce Zn
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AAC they do not perform as well as BR, UDS, and VS which become more prevalent in the higher cost
bins as they cost more. VS are dominant and consistent in all solutions in both Figure 7A,B as they
reduce AAFV at the lowest cost and also perform well in terms of reducing Zn AAC.

Comparing AMC3 to AMC4 shows that the optimal solution in 7 of the 10 cost bins changed
when shifting from the City of Denver ratings to the Denver Public Survey ratings. The Denver Public
Survey solutions favor more BR and UDS and less PP. IT and VS are dominant and consistent in all
solutions in AMC3 and AMC4. It should be noted that for all solutions from the four AMC ratings,
green SCMs are generally favored over grey. However, there is a presence of grey in all solutions and
in some cases, the rating shifts solutions to include more grey SCMs so that there is an equal balance of
green and grey SCMs. Only two solutions (cost bins 4 and 8) differ between AMC1 (rate all equally)
and AMC3 (City of Denver ratings) (Figure 7A,C).Water 2020, 12, x FOR PEER REVIEW 19 of 28 
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Figure 6. Location of the 10 “optimal” solutions (1 per cost bin) based on the four multi-benefit
aggregate rating systems (A) rate all equally, (B) prioritize AAC, (C) City of Denver, (D) Denver Public
Survey. Cost bins were set to fall between ~1 million and ~4.5 million dollars, where SCM solutions fall
along the Current AAFV Baseline.
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Figure 7. Number of each SCM type simulated in the ten solutions identified using the multi-benefit
aggregate equation for the four rating scenarios (A) rate all equally, (B) prioritize AAC, (C) City of
Denver, and (D) Denver Public Survey. Bar plots are stacked in the same order as displayed in the
legend, VS on the bottom and UIS on the top.

5. Discussion

5.1. Benefits and Tradeoffs of Green to Grey Infrastructure

5.1.1. Hydrologic Performance

Relative hydrologic performance depends more on the primary function an SCM is designed for
rather than where the SCM falls on the green to grey continuum. Results show that UIS and UDS (both
underground grey SCMs) have contrasting performance in AAFV, AAL, and AAC reductions while all
other SCMs (BR, IT, PP, and VS) perform somewhere in between. The above ground storage-based
SCMs (BR, IT, and PP) perform similarly in terms of water quantity criteria due to designing the
SCMs to have the same surface area, same drainage area, and inclusion of underdrains and orifices.
The flow rating-based SCM in this study, VS, performs fairly independent of the other five SCMs.
Overall, infiltration-based SCMs (UIS, IT, and PP) perform generally better in terms of reducing
volumes of water and loads of pollutants than treat-and-release-based SCMs (UDS, BR, VS). It should
be noted that PP and BR performed similarly in terms of pollutant AAL reductions. BR has a high
pollutant removal decay rate and thus they perform similarly to the infiltration-based SCMs. PP is
only reducing pollutants by way of infiltration and has a decay rate of zero, thus it does not perform
as well. Treat-and-release-based SCMs generally perform better at reducing pollutant concentrations
as they are designed to treat stormwater and then release the mitigated stormwater back into the
storm drainage network [37,38]. However, results showed that the implementation of SCMs may
actually increase pollutant AAC at the watershed outlet. This is because the SCMs are treating water
from only the infill developed residential land uses which have a lower TSS and Zn EMC than other
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untreated land uses (Tables 3 and 4). The SCMs are removing water from the infill developed area
by way of infiltration, thus removing water that was previously working to dilute overall watershed
discharge. The treated water that does return to the whole network from the SCMs is not enough to
counter-balance this phenomenon. UDS is the only SCM type that does not increase pollutant AAC for
all three pollutant types as it does not promote any infiltration. This study assumes that residential
EMCs remain constant between their pre-redeveloped and redeveloped (infill) states; there is not
enough available data to explore the potential differences from pre-redeveloped to infill developed
conditions. One way to account for these potential differences is to use single-family vs multi-family
residential land use EMCs. Some cities, such as Los Angeles, have this data available. Policies are
needed to incentivize treatment of stormwater from other land uses. Individual optimization results
demonstrate the multiple tradeoffs between varying SCM types based on their design and primary
function which dictates their relative performance.

Results show that both green and grey infrastructure offer hydrologic benefits that may be
important for stakeholders, thus a range of SCMs should be considered when developing a stormwater
management plan. Even though green SCMs tend to perform better in a wider range of benefits, results
demonstrate how grey SCMs outperform green in some cases (Table 8). For example, UIS requires the
smallest number of SCM units to reach the Current AAFV Baseline and promotes the highest GWRP.
Additionally, it should also be noted that grey SCMs are flexible in terms of both their water quantity
and quality design. While UDS has relatively poor performance in water quantity criteria for the
Berkeley neighborhood, which is likely due to the orifice design and lack of infiltration, they can be
designed with a more controlled release of water which would drastically reduce peak flows. The use
of controlled outflow and water quality removal systems in greyer underground SCMs allows for a
design that is tailored to the needs of the watershed. Overall, green SCMs performed best at achieving
the primary goal in the Berkeley neighborhood and thus were prioritized in the model optimization
(IT and VS reduce AAFV at the lowest cost in the Berkeley neighborhood watershed). However, the use
of other green and grey SCMs offers the ability to maximize the available hydrologic benefits to both
the environment and the community. A planning-level modeling analysis such as presented in this
work can assist in evaluating the tradeoffs and benefits of SCMs for the watershed in question.

5.1.2. Cost

While cost at first shows a clear distinction between green vs grey SCMs, a more in-depth analysis
shows the complexities and tradeoffs that exist. Capital cost per cubic foot clearly shows that green
SCMs have a lower cost than grey (IT, VS, BR, PP, UIS, and UDS in order from lowest to highest cost).
This is due to less use of grey materials such as concrete. However, when considering the total cost per
SCM unit, taking into account the cost per cubic foot as well as storage, soil, and underdrain volumes
required for construction, there is a shift in the benefit-to-cost ratio (VS, IT, UIS, UDS, PP, and BR,
in order from lowest to highest cost). BR has the highest cost per SCM unit while VS has the lowest
cost. UDS has the highest capital cost per cubic foot; however, construction does not require excavation
for soil or underdrain storage, so it has a relatively lower cost per SCM unit. It should also be noted
that as grey SCMs increase in project size, the cost per cubic foot decreases. Thus, larger underground
grey structures, when designed to be more centralized than distributed, may be more cost efficient
to implement.

When considering hydrologic performance relative to cost several tradeoffs were presented.
For example, while UIS achieves the AAFV goal with the lowest number of SCM units, VS achieves the
AAFV goal at the lowest cost despite requiring the highest number of SCM units. However, VS does
not perform as well in other hydrologic criteria. Even though BR has the highest cost per SCM unit
and thus requires the highest cost to reach the AAFV in the Berkeley neighborhood, they have more
available benefits and outperform other SCMs in most criteria. This discussion on capital cost begins to
show how a more in-depth cost analysis is needed and can shift the decision-making process towards
different SCMs. A full cost analysis of varying stormwater alternatives including life cycle costs and life
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cycle assessments should be used to evaluate the array of benefits and costs of SCMs over time [77–79]
especially at a watershed-scale [80]. Life cycle costs including planning and permitting, construction,
operation, maintenance, decommissioning, and relative lifespan and replacement costs [20] may shift
which SCMs are most cost effective, especially in terms of green verses grey SCMs.

5.1.3. Added Greenness

There is a clear distinction between the green and grey SCMs in terms of potential green space
added which may be more accurately described as a vegetated-related benefit rather than a hydrologic
benefit. Grey SCMs do not contribute green space to an urbanized watershed while green SCMs may
include grasses, shrubs, and trees. In a time when cities are defining stormwater management plans
around greenness, this is a crucial criterion to consider. Green SCMs offer a way to both improve
stormwater management while also introducing the suite of benefits that are associated with an
increase of greenness or vegetation. One positive tradeoff of underground grey SCMs is that they can
be implemented in highly dense areas that do not have room for the implementation of green SCMs.
The flexibility in design can allow for construction below parking lots or other infrastructure. SCMs
offer a wide variety of ancillary benefits beyond those that are strictly considered hydrologic [81,82].
While these other benefits are not necessarily the driving motivation for stormwater managers and
municipalities to manage stormwater, it has been found that community members care just as much
about the ancillary benefits as they do flood management and water quality conditions [14,83].
While these positive ancillary benefits (ecological, environmental, and social) are not directly measured
and optimized in a hydrologic model, they can be estimated or extrapolated based on SCM design. It is
crucial to represent these ancillary benefits in order to maximize the net benefits of the watershed [11].

5.2. Impact of Decision Maker Priorities on Planning-Level Decisions

While the individual SCM analysis provides important insight on relative performance and
cost, comparing stormwater solutions that include multiple types of SCMs is more representative
of the impact stormwater management will have on a watershed as a whole. How decision makers
and stakeholders choose the optimal solutions from an optimization curve has implications on the
environment and the community and is a critical step in a planning-level analysis. Results show that
solutions in the typical “elbow” of the optimization curve (i.e., “Pareto Frontier”) may not be optimal
based on the needs of the watershed or the preference of the community. In the Berkeley neighborhood,
the use of IT and VS should be prioritized if stakeholders want a stormwater management plan that
will achieve the AAFV goal while minimizing cost. If stakeholders have more flexibility in their
budget, a wider range of SCM types is available for implementation as all SCM types will achieve
the AAFV goal, with an exception of UDS. The ability to consider multiple SCM types also allows
for the consideration of a wider range of benefits. For example, stormwater management solutions
that perform well at reducing pollutant AAC, in addition to achieving the Current AAFV Baseline,
exhibit a fairly equal balance of VS, IT, UDS, and BR. Results show that solutions that fall in higher cost
bins have more diversity in SCM types. Even though the cost may be higher for these solutions rather
than one that only uses VS and IT, a stormwater management plan that considers multiple SCMs will
maximize environmental and social benefits, thus justifying the higher cost for some stakeholders.
If decision makers had chosen solutions from the elbow of the curve without these considerations,
a stormwater management plan may be implemented that does not achieve additional goals of the
watershed. If a stakeholder prioritizes only one criterion, they should restrict the selection criteria to
optimize only the SCMs that achieve their goal. However, if stakeholders care about maximizing the
environmental benefits across the watershed, they need to consider multiple criteria and SCM types.

While the primary goal of a watershed may initially put more weight on particular SCM types,
the consideration of multiple benefits and use of a rating system exposes which additional SCMs
should be included in order to maximize the benefits of a watershed. These results and discussion were
found to be similar to a relevant study by Alves et al. (2020), which also looked at using optimizations
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to maximize multiple benefits associated with green, blue, and traditional grey infrastructure [84].
All of the final solutions identified using the AMC methodology show a dominance of VS and IT to
reach the primary goal of this study as they reduce AAFV and minimize cost most efficiently and thus
were prioritized by the i-DST SUSTAIN optimization algorithms. However, all solutions also include a
mix of the other four SCMs (UDS, BR, PP, UIS). Results show that user priorities and weights shift
which of these four SCM types are prioritized in addition to the dominant VS and IT. For example,
when weighting AAC higher above all other criteria there is a shift to include a higher number of BR
and UDS units, as they perform better at reducing pollutant AAC. Stakeholders with differing priorities
such as those concerned about river ecosystems and fish health, may use this rating system to reflect
their priorities within the model optimization. The City of Denver ratings weight all benefits similarly
except for GWRP which explains why solutions do not change much from the scenario that weights all
criteria equally (AMC1). The City of Denver has laid out in its stormwater and green infrastructure
plans that volume control and the benefits of green space added are priorities to the City. Reducing
pollutant AAL and AAC for possible future water quality regulations is also a goal. Prioritizing green
SCMs with some UIS is most likely to reach all of these goals. Finally, the Denver public survey did
not weight green space as highly as the City and weighted GWRP potential higher, thus the solutions
have a higher number of UIS units. It should be noted that these ratings are Denver specific. Other
cities will have a different rating system based on their needs. For example, the City of Los Angeles
would weight AAL and GWRP higher than the City of Denver. Incorporating community preference
into the decision-making process is one way to ensure that the selected stormwater management plan
will benefit both the environment and the community.

Even though green SCMs tend to have a higher ratio of SCMs for all tested scenarios, all solutions
have a mixture of green and grey SCMs as well as a mixture of SCMs with varying primary functions.
While the SCMs needed to address primary goals may be obvious, the additional considerations
and criteria come into play and ultimately determine what additional SCMs should also be included
in order to have a well-balanced stormwater management plan that maximizes all benefits. While
grey SCMs perform similarly to green in terms of reaching a primary hydrologic goal, such as AAFV,
and presents tradeoffs with green in terms of capital costs, benefits related to vegetation and life cycle
costs are expected to change the prioritization of grey or green SCMs.

6. Conclusions

Determining the optimal stormwater management strategy requires the consideration of multiple
SCM types, associated benefits, and the consideration of stakeholder and community preferences.
However, combining all of these variables into one analysis is complex and there is a lack of available
tools for stakeholders to use. The i-DST SUSTAIN hydrologic model uses a multi-SCM optimization
approach to simulate a wide range of hydrologic benefits for thousands of solutions on a watershed-scale.
This provides decision makers a first step planning-level analysis to evaluate the tradeoffs of green
to grey SCMs while taking into account the stakeholder and community preferences for associated
benefits. Modeling results show that green and grey SCMs have variable performances across multiple
hydrologic outputs and that they each individually provide at least one benefit that may be valuable to
the environment and community. Results also show that there exist tradeoffs between SCM types in
terms of both hydrologic performance and capital costs. SCM types that perform best at the primary
goal of a watershed may not necessarily provide the best “bundle” of benefits. Similarly, SCMs that
have a higher cost may actually perform on or above average across multiple types of benefits making
the extra cost potentially worth it.

While evaluating different SCM types against each other individually provides insight on their
relative performance, a realistic stormwater management plan will incorporate multiple SCM types
throughout the watershed. Thus, the simulation of SCM solutions that include multiple SCM types is
needed. Optimization curves are one way to identify the optimal solutions for a watershed. However,
results show that watershed priorities and needs may shift where the optimal solutions fall within
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an optimization. Using an aggregate multi-criteria selection methodology to identify solutions that
maximize the available benefits based on stakeholder or community preference is one way to determine
the optimal stormwater management plan. While all solutions identified in this study using the
AMC equation prioritized green SCMs, grey SCMs were also prevalent, and in some cases replaced
a green SCM type depending on which benefits were weighted higher. This research shows the
importance of using a planning-level approach to identify the optimal suites of SCMs that both achieve
the primary goal of a watershed but also maximize the benefits that are important to stakeholders and
the community.
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Appendix A

It is crucial for the model user to understand the varying optimization algorithms and controls,
and how they may affect the solutions that are being outputted by the model as these controls can drive
the model in certain directions. For example, NSGAII finds the optimal solutions along each Pareto
frontier and creates the following populations based on those optimal solutions. Thus, the solutions
tend to have the same suite of SCMs without any variability. Setting the optimization controls to be
stricter is useful when the user knows a certain goal that they wish to meet. However, on a planning
level, not restricting the model allows a wider range of potential solutions over a large cost and target
evaluation range. The following optimization controls play a factor in the optimization module of
i-DST SUSTAIN and should be considered.

• Algorithms: Scatter search and NSGAII determine how the optimization module creates a
population of solutions and how that population evolves over time based on the optimal solutions
(determined by the controls). While scatter search uses a clumping of the best solutions, NSGAII
uses the single best solution along the Pareto frontier.

• Controls: Cost minimization and a cost effectiveness curve determine how the optimization
module determines the optimal solutions. Cost minimization aims to minimize cost while
achieving a certain evaluation factor goal. A cost effectiveness curve aims to both minimize cost
and maximize an evaluation curve within a target range simultaneously.

• Number of SCM units: This sets the lower and higher bounds of the number of SCM units the
model can simulate in each solution. Users can set these bounds to be wide so that the model
looks at only implementing one SCM unit all the way to enough SCM units to capture water from
the whole watershed. The user can also set a stricter bound if they know a general range of SCMs
that will reach a desired goal.

• Step of SCM unit: This sets the step at which the optimization module may select SCM units.
For example, if the user sets a step of five, the model will only simulate 5, 10, 15, etc. units of a
certain SCM type.
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• Target evaluation range: The target evaluation range is what tells the optimization module where
to look for the optimal solutions. Cost minimization only uses one target evaluation number.
The model looks for the best solutions that reach this goal at a minimum cost. The cost evaluation
control uses two evaluation targets. The optimization module looks for the optimal solutions
within that range.
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