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Abstract: Decreases in wind speed (i.e., terrestrial stilling) and radiation (i.e., solar dimming) have
been identified as important causes of aridity change both globally and regionally. To understand how
their roles have varied across different natural and socioeconomic circumstances in China, this study
presents a nationwide attribution analysis of land surface drying/wetting across the ten first-level
river basins. The results suggest that consistent warming and reductions in relative humidity have
significantly enhanced atmospheric evaporative demand and driven the land surface to become
drier over the past six decades. However, the widespread terrestrial stilling and solar dimming
have largely offset such trends by suppressing evaporation. While spatially varying changes in
precipitation were the most influential driver of aridity change over half of the 713 used climate sites,
decreasing wind speed and radiation were identified as the dominant cause of wetting at 15% and
13% of the sites, respectively. The impacts of terrestrial stilling and solar dimming were generally
more prominent in the north (e.g., the Liao River, Songhuajiang, Hai River, and Huai River basins)
and south (e.g., the Southeast, Pearl River, and Yangtze River basins) respectively, which could
be associated with the weakening monsoon and intensified anthropogenic disturbances such as
ecological restoration, urbanization, and air pollution. We conclude that more attention needs to be
paid to the independent and combined climatological impacts of global- and regional-level human
activities to develop proactive adaptation strategies of water and land management.
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1. Introduction

There is evidence from both observation and simulation studies that climate change causes
land surface drying in many regions across the world [1–3] which leads to depletion in water
availability [4], larger irrigation water demand [5], more frequent wildfire [6], and land degradation
and desertification [7]. Previous studies usually interpreted dryness from the perspective of either
aridity (i.e., the long-term background state of moisture availability in ecosystems) [2,8] or drought
(i.e., temporal anomalies of wet/dry condition) [1,9,10]. Changes in dryness/wetness status are usually
measured by changes in precipitation, potential evapotranspiration (PET), and related water-balance
components. While precipitation represents the total water supply for land surfaces, PET indicates the
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maximum water exchange from the land to the atmosphere (i.e., atmospheric evaporative demand),
which is determined by the status of ambient air and energy supplies. Although global average
precipitation increases as the earth warms, a drier future is expected to occur as the warming climate
increases the evaporative demand of the atmosphere to a degree that cannot be fully compensated by
the increase in precipitation [11].

It has been well established that air temperature, solar radiation, air humidity, and wind speed
are the key climatological parameters for assessing the evaporation process [12–14]. Many climate
change studies only considered the effects of precipitation variability and rising temperature [15],
i.e., modeling terrestrial water balance or evaluating dryness on the basis of temperature-based PET
methods such as Thornthwaite [16] and Hamon [17]. These methods have been commonly used
because they only require temperature data as input and are well validated for historical periods.
Essentially, the physical base of these empirical equations is the correlation between temperature
and other radiative and aerodynamic variables that control the evaporation and transpiration fluxes.
Nevertheless, such correlation may not remain valid in a rapidly changing environment, and failure
to explicitly account for changes in humidity, radiation, and wind could cause fundamental biases.
Recent studies suggested that the bias in temperature-based methods could be amplified in a warming
future, and thus lead to the overestimation of PET and the severity of drying [18,19]. For example,
Duan et al. [15] investigated the independent effects of five major climatic variables on future runoff

over the United States, and found that the increasing air humidity would largely offset the additional
evaporative demand caused by warming and lead to a wetter future in the eastern United States.

On-site observations have also shown a decline in the aerodynamic or radiative components
of PET over the globe, which are usually referred to as global terrestrial stilling [20] and global
dimming [21], respectively. Such trends of terrestrial stilling and solar dimming can counterbalance
the warming-induced increases in PET and alter regional aridity along with changes in precipitation.
However, the timing and magnitude of the changes in different climatic variables, as well as their
independent and combined effects on terrestrial water balance, vary greatly both temporally and
spatially across the world [20,22] and have led to different drying or wetting characteristics at regional
scales [23,24].

China covers a wide range of climatic, geophysical, and ecological circumstances. Previous studies
have reported the spatiotemporal variations in PET and the associated drying/wetting characteristics
in China from different perspectives [10,24,25]. The roles of specific climatic variables have also been
investigated for various regions of China. For example, Xu et al. [26] found that decreasing solar
radiation and wind speed caused reduction in both pan evaporation and PET in the Yangtze River basin
in 1960–2000; Zhang et al. [27] discussed historical variations in reference to evapotranspiration and the
influences of changing radiation and humidity caused by human activities; Liu et al. [28] investigated
the causes of the “pan evaporation paradox” [29] in China. However, the relative contributions
of changing climatic variables to aridity have not been rigorously quantified and compared across
climatic regimes and river basins. Therefore, we aim to expand upon previous studies by providing
an assessment of aridity variations and the key climatic driving factors using up-to-date on-site
observations in China. Specifically, the goal of this study is: (1) to investigate the drying and wetting
paradigms over China in recent decades; (2) to quantify the direct and compound effects of changing
precipitation, temperature, wind, humidity, and solar radiation on aridity; and (3) to explore the
linkages between the changing climate and large-scale anthropogenic disturbances and the implications
for the hydrological cycle across the major river basins.

2. Methods

2.1. Climate Data

Daily historical climate records from 1951 to 2016 at 824 climate stations were obtained from the
China Meteorological Administration (CMA). The up-to-date “China surface climate daily dataset
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V3.0” (http://data.cma.cn/data) includes daily precipitation, maximum and minimum air temperature,
wind speed, air pressure, relative humidity, and sunshine duration. The records from the 1950s were
discarded for containing a large portion of missing values. The climate stations were distributed
across the ten first-level basins in China, including the Songhuajiang (1), Liao River (2), Hai River (3),
Yellow River (4), Huai River (5), Yangtze River (6), Southeast (7), Pearl River (8), Southwest (9),
and Northwest (10) basins. The density of climate stations was generally in line with population
density, and there were over 30 sites within each basin to represent the regional characteristics (Table 1).
We excluded 98 out of the total available 824 sites for containing consecutive gaps longer than 365 days,
and another 13 sites located outside of the 10 basins. Daily records from January 1961 to December
2016 at 713 sites (Figure 1) were eventually used for this analysis. Among the selected 713 stations,
there were 22 sites containing more than 1% missing days in the precipitation data, and 174 sites
containing gaps longer than one week. The durations of gaps in the records of temperature, humidity,
wind, and sunshine duration were mostly only one day. The daily missing values were filled as follows.
First, small gaps were filled by the averages of the two nearest days; then, consecutive gaps longer than
one week were filled by the multi-decadal averages of the same days in other years to avoid affecting
the long-term trends of climate series.

Table 1. Categories of aridity.

Category Aridity Index

Hyper-arid <0.05
Arid 0.05 to 0.2

Semi-arid 0.2 to 0.5
Dry sub-humid 0.5 to 0.65

Sub-humid 0.65 to 0.75
Humid >0.75Water 2020, 12, x FOR PEER REVIEW 4 of 19 

 

 
Figure 1. Distribution of the 713 used climate stations in the ten first-level basins in China. The ten 
basins include Songhuajiang (1), Liao River (2), Hai River (3), Yellow River (4), Huai River (5), Yangtze 
River (6), Southeast rivers (7), Pearl River (8), Southwest rivers (9), and Northwest rivers (10). 
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The Aridity Index (AI), defined as the ratio of annual precipitation (P) to annual PET, was used 
to quantify long-term land dryness [30]. Drylands can be divided into hyper-arid (AI < 0.05), arid 
(0.05 ≤ AI < 0.2), semi-arid (0.2 ≤ AI < 0.5), and dry subhumid (0.5 ≤ AI < 0.65), while sub-humid and 
humid lands are regions with 0.65 ≤ AI < 0.75 and AI > 0.75 [31] (Table 1). PET was calculated at daily 
scale using the Penman–Monteith equation suggested by the Food and Agricultural Organization of 
the United Nations (FAO) [12], as:  
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where Z is the elevation above sea level of the climate station (m). Compared with temperature-
based and radiation-based PET methods, the Penman–Monteith PET is derived from physical 
principles and is considered the most reliable PET approach where sufficient meteorological data 
exist [13,19]. The FAO PET represents the evapotranspiration rate of a hypothetical well-watered 
grass reference crop with a height of 0.12 m, a surface resistance of 70 s m−1, and an albedo of 0.23. 
Therefore, it is suitable for comparing the individual effects of surface temperature, air humidity, 
wind, and solar radiation across various climate and landscape conditions. 

2.3. Attribution Analysis 

The changes in AI are attributed to the impacts of changing P and PET as:  = 1PET ∙ P − PPET ∙ PET + PPET ∙ ( PET)  (4) 

Figure 1. Distribution of the 713 used climate stations in the ten first-level basins in China. The ten basins
include Songhuajiang (1), Liao River (2), Hai River (3), Yellow River (4), Huai River (5), Yangtze River (6),
Southeast rivers (7), Pearl River (8), Southwest rivers (9), and Northwest rivers (10).

Radiation fluxes have not been measured as widely as other variables in China. We used the
records of sunshine duration to estimate solar radiation, as:

Rs =
(
as + bs·

S
N

)
·Ra (1)

http://data.cma.cn/data
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where S is daily sunshine duration (h); N is the maximum possible duration of sunshine in a day (h);
Ra is daily extraterrestrial radiation (MJ m−2 d−1) that can be calculated by the solar constant, the latitude
of the station, and the Julian date of the year [12]. The empirical coefficients as and bs were obtained
from previous studies [8,25]: as ranged from 0.12 to 0.29 and bs ranged from 0.45 to 0.73, where these
were calibrated and validated based on radiation observations from 116 stations across the country.
The optimized radiation model using these as and bs values achieved a mean relative error of 6.5%,
and has been proved useful for reflecting the impacts of regional climatic and geographic characteristics
on radiation balance [25].

2.2. Dryness Indicator

The Aridity Index (AI), defined as the ratio of annual precipitation (P) to annual PET, was used
to quantify long-term land dryness [30]. Drylands can be divided into hyper-arid (AI < 0.05),
arid (0.05 ≤ AI < 0.2), semi-arid (0.2 ≤ AI < 0.5), and dry subhumid (0.5 ≤ AI < 0.65), while sub-humid
and humid lands are regions with 0.65 ≤ AI < 0.75 and AI > 0.75 [31] (Table 1). PET was calculated at
daily scale using the Penman–Monteith equation suggested by the Food and Agricultural Organization
of the United Nations (FAO) [12], as:

PET =
0.408∆(Rn −G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(2)

where ∆ is slope of vapor pressure curve (kPa ◦C−1); Rn is net radiation (MJ m−2 d−1); G is soil heat
flux density (MJ m−2 d−1); γ is the psychrometric constant (kPa ◦C−1); T is mean daily temperature
(◦C); es − ea is saturation vapor pressure deficit (kPa); u2 is wind speed at 2 m height (m/s), which is
converted from the CMA wind speed observed at 10 m height as:

u2 =
4.87u10

log(67.8·Z− 5.42)
(3)

where Z is the elevation above sea level of the climate station (m). Compared with temperature-based
and radiation-based PET methods, the Penman–Monteith PET is derived from physical principles
and is considered the most reliable PET approach where sufficient meteorological data exist [13,19].
The FAO PET represents the evapotranspiration rate of a hypothetical well-watered grass reference
crop with a height of 0.12 m, a surface resistance of 70 s m−1, and an albedo of 0.23. Therefore, it is
suitable for comparing the individual effects of surface temperature, air humidity, wind, and solar
radiation across various climate and landscape conditions.

2.3. Attribution Analysis

The changes in AI are attributed to the impacts of changing P and PET as:

dAI
dt

=
1

PET
·
dP
dt
−

P

PET2 ·
dPET

dt
+

P

PET3 ·

(
dPET

dt

)2

(4)

where dAI
dt is the change in the ratio of P to PET; 1

PET ·
dP
dt is the independent effect of P change to

AI change; the sum of the second and third terms on the right side of the equation is the independent
effect of PET change [2]. Then, the PET effect is further attributed to changing temperature (including
max and min temperature, i.e., Tmax and Tmin), relative humidity (Rh), wind speed (Ws), and solar
radiation (Rs) by a differentiating equation [28,32], as:

dPET
dt = E(Tmax) + E(Tmin) + E(Rh) + E(Ws) + E(Rs)

≈
∂PET
∂Tmax ·

dTmax
dt + ∂PET

∂Tmin ·
dTmin

dt + ∂PET
∂Rh ·

dRh
dt + ∂PET

∂Ws ·
dWs

dt + ∂PET
∂Rs ·

dRs
dt

(5)
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Given that the changing climatic variables may cause either positive or negative effects on AI,
their contributions (%) are quantified by the relative weights, as:

C(i) = 100×

∣∣∣E(i)∣∣∣∑N
i=1

∣∣∣E(i)∣∣∣ (6)

We here specifically focus on quantifying the climatic drivers of aridity change from 1961–1988 to
1989–2016. These two time periods were chosen for two reasons. First, the time series of climatic variables
show different statistical variations (e.g., changing points, trends) across basins and sites. These two time
periods, which each cover nearly 30 years, are the longest valid observations available at the national
scale to provide a consistent comparison of the long-term climate change in different regions. Second,
large-scale industrialization and urbanization in China sped up after the late 1980s, and in the meantime
the environmental impacts of rapid socioeconomic developments have become more evident [33–35].
The nominal gross domestic product had grown eightfold (from 50 to 408 billion) from 1961 to 1988, yet grew
twenty-five-fold (from 456 to 11,195 billion) from 1989 to 2016 (http://data.stats.gov.cn/english/). A rigorous
quantification of aridity changes and the contributions of individual climatic drivers during these two time
periods can provide useful information for understanding the climatological and hydrological impacts of
industrialization and urbanization in China.

3. Results

3.1. Observed Long-Term Trends in Climate

The multi-decade average aridity in the time period of 1961–2016 (Table 2) suggests that the
Southeast (AI = 1.89), Pearl River (1.78), Yangtze River (1.58), Huai River (1.05), and Southwest
(1.01) basins were the most humid regions, where P exceeded the commonly used threshold value
of 800 mm yr−1 and Rh exceeded 70%. In northeastern China, Liao River and Songhuajiang were
categorized as “humid” (0.81) and “sub-humid” (0.73), respectively. The Hai River (0.62) and
Yellow River (0.55) basins were identified as “arid”, or dryland. The Northwest basin was the driest
region with the lowest P (183 mm yr−1) and AI (0.17), where low Rh (49%) and high Rs (16 MJ m−2 d−1)
had led to the highest basin-average PET of up to 1086 mm yr−1.

We first used the Mann–Kendall test [36,37] to detect the long-term monotonic trends in the time
series of aridity and climatic variables from 1961 to 2016 (Figure 2). Significant increasing trends in P at
the 5% significance level were found at 11% of the sites, mostly in the Northwest, while significant
decreases (8% of the sites) occurred across the Southwest, Pearl, Yangtze, and Yellow River basins.
Meanwhile, increases in both Tmax and Tmin occurred at nearly all of the sites (>98%), and significant
trends were detected at 84% and 95% of them. Widespread decreases were also found in the series
of Rh, Ws, and Rs, with significant decreasing trends accounting for 45%, 69%, and 67% of the sites,
respectively. In spite of the warming trend all over the country, the decrease in PET still covered as
many as 68% of the sites (significant at 37%) due to the decreasing Ws and Rs. The spatial distributions
of the trends of AI were generally similar to that of P, yet more increases (59%) than for P (48%) could be
found as a result of the widespread decreases in PET. Note that most of these trends of AI (>80%) were
not significant at the 5% significance level, reflecting the strong temporal variability in regional P and
PET. Significant increasing (mainly in the Northwest, Songhuajiang, lower Yangtze, and Southeast) and
decreasing (mostly in the Southwest, Yellow, upper Yangtze, and upper Pearl) trends of AI accounted
for 11% and 6% of the sites, respectively.

http://data.stats.gov.cn/english/


Water 2020, 12, 1996 6 of 19

Table 2. Mean annual precipitation (P), maximum temperature (Tmax), minimum temperature (Tmin), relative humidity (Rh), wind speed (Ws), radiation (Rs),
potential evapotranspiration (PET), and aridity (AI) in 1961–2016 in the ten first-level basins in China.

ID Basin Sites Area (104 km2) P (mm) Tmax (°C) Tmin (°C) Rh (%) Ws (m/s) Rs (MJ m−2 d−1) PET (mm) AI

1 Songhuajiang 60 90 573 9.4 −2.7 65.0 3.0 13.3 783 0.73
2 Liao River 45 35 709 13.7 2.3 62.0 2.8 13.4 873 0.81
3 Hai River 36 32 596 16.4 4.8 59.6 2.5 14.0 956 0.62
4 Yellow River 78 79 517 15.0 2.5 59.3 2.2 14.6 936 0.55
5 Huai River 43 33 981 19.4 10.0 71.5 2.7 12.9 930 1.05
6 Yangtze River 201 181 1369 20.5 11.9 75.9 1.9 11.6 866 1.58
7 Southeast 33 24 1766 23.3 14.6 78.5 1.8 12.4 933 1.89
8 Pearl River 84 58 1802 25.2 17.2 78.5 1.9 12.7 1011 1.78
9 Southwest 32 85 1035 19.3 6.5 64.2 1.6 16.1 1023 1.01

10 Northwest 101 337 183 13.9 0.1 49.2 2.7 16.0 1086 0.17
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Figure 2. Trends of annual precipitation (P), maximum temperature (Tmax), minimum temperature
(Tmin), relative humidity (Rh), wind speed (Ws), radiation (Rs), potential evapotranspiration (PET),
and aridity index (AI) from 1961 to 2016 across the 713 climate stations. The trends were detected
using the Mann–Kendall test at the significance level of 5%. The changes in climatic variables that
drive AI to increase (i.e., increasing P and Rh; decreasing Tmax, Tmin, Ws, Rs, and PET) and decrease
(i.e., decreasing P and Rh; increasing Tmax, Tmin, Ws, Rs, and PET) are denoted by blue and red
dots, respectively.

3.2. Drying/Wetting Patterns

The changes in multi-decadal average climate from 1961–1988 to 1989–2016 were calculated to
provide a quantitative evaluation of the extent and intensity of drying/wetting. Both the proportions
of drying/wetting sites and the averaged aridity change within each basin (Figure 3) suggest that the
Liao River, Hai River, Yellow River, Pearl River, and Southwest basins have been generally drying,
while a wetting signal can be found in the Songhuajiang, Huai River, Yangtze River, Southeast,
and Northwest basins.
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Figure 3. (a) Average precipitation (P), potential evapotranspiration (PET), and aridity index (AI)
in 1961–1988 and 1989–2016 in the ten basins in China. (b) Number of sites getting drier or wetter
from 1961–1988 to 1989–2016 within each basin. The first (1961–1988) and second time periods
(1989–2016) are denoted by “-1” and “-2” in Figure 2a. On the x-axis, 1~10 represent the basins of
Songhuajiang (1), Liao River (2), Hai River (3), Yellow River (4), Huai River (5), Yangtze River (6),
Southeast (7), Pearl River (8), Southwest (9), and Northwest (10), respectively.

The counterpart results at the seasonal scale (Figure 4) show that climate change and the associated
changes in aridity did not occur homogeneously within each year. In spring, it became more humid
in the west (i.e., Southwest and Northwest) and northeast (i.e., Songhuajiang, Liao River, Hai River),
but more arid in the south of the Huai River basin (i.e., Huai River, Yangtze River, Southeast,
and Pearl River). Drying trends occurred widely in the Southwest and across northern China in
summer, including the Songhuajiang, Liao River, Hai River, and Yellow River basins, while wetting
trends were found in the south from the Huai River to the Pearl River basins. Similar spatial patterns
can be found in autumn compared to the trends in spring, except that there were more drying sites
in the northeast and the Southwest basin. Wetting signals were detected in winter at over 95% of all
the sites.

The spatial distributions of drying and wetting signals suggest that the frequently discussed “dry
gets drier, wet gets wetter” paradigm [38] only holds true at 51% of the 713 sites, including 78 out
of the 220 (35%) dry sites (AI < 0.65) getting drier and 283 out of the 493 (57%) wet sites (AI > 0.65)
getting wetter. The changes in aridity were caused by changes in precipitation and other climatic
variables through their impacts on PET. We here categorize the aridity change across the 713 sites
into four types, including water-driven drying/wetting where precipitation is identified as the largest
contributor, and energy-driven drying/wetting where wind, radiation, or humidity is identified as
the largest contributor (Figures 5 and 6). At the basin scale, mean annual P increased significantly
in the Northwest (+20%), Southeast (+5%), and Songhuajiang (+2%) basins. No change in average
precipitation was found in the Yangtze River as the increase in lower reach counterbalanced the decrease
in the upper reach. The reductions in P in the other six basins varied from 2% to 7%. The relative
changes in P and PET show that increasing P has been the major cause of the wetting trends in the
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Southeast (29 wetting sites and 4 drying sites) and Northwest (89 wetting sites and 12 drying sites)
basins. Particularly, wetting trends can be found in all four seasons in the arid Northwest driven by
the increasing precipitation. The Hai River and Yellow River basins have become drier largely due to
the reduction in summer precipitation, where a drying signal can be found at 67% (24 out of 36) and
73% (57 out of 78) of the sites in each basin. The changing PET also significantly altered the aridity.
Decreases in basin-average PET occurred in all the basins except for the Yellow River and Southwest
basins. The magnitude of PET reduction exceeded the decrease in precipitation in the Huai River basin,
which was the major cause of wetting. It should be noted that there were large discrepancies in the
energy condition across the climate stations within each basin. Particularly within large basins such as
the Yangtze River and Yellow River basins, diverse climatic changes have triggered generally different
wetting/drying patterns in the upper-reach and lower-reach regions.
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Figure 6. Driving factors of aridity changes at annual (a) and seasonal (b–e) scales across China.
The drying/wetting site is marked as “water-driven” where precipitation was identified as the largest
contributor to aridity change, and “energy-driven” where wind, radiation, or humidity was identified
as the largest contributor.

3.3. Independent Effects of individual Climatic Variables

To further investigate the independent effect of each climatic variable, we attributed the changes
in aridity from 1961–1988 to 1989–2016 to the changes in the six individual climatic variables (Figure 7).
The independent effects of P at site level straddle wide ranges across the zero line within each basin.
The distributions of median values and coverages of the 25% quartile to the 75% quartile suggest that
positive effects of P on AI can be found at most sites in the Northwest and Southeast basins. In the
meantime, negative effects of P prevailed within the Liao River, Hai River, and Yellow River basins.
The most notable decrease in P occurred in the Hai River (−7%) and Yellow River (−4%) basins.

Unlike the diverse changes in P, the other climatic variables showed highly consistent changing
directions at basin scale. While the increasing Tmax and Tmin (0.5 ± 1.5 ◦C) and decreasing Rh
(−0.01 – −3%) enhanced PET and led to land surface drying, the reductions in Ws (−5 – −18%) and
Rs (−0.4 – −7%) suppressed evaporation and drove the AI to increase. For example, the significantly
increasing T and decreasing Rh caused the basin-average AI in the Hai River basin to decrease by −0.36
and −0.13, while the decreasing Ws and Rs drove AI to increase by +0.32 and +0.19 at the same time
and offset the drying trend induced by T and Rh.
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Figure 7. Attribution of changes in the aridity index (CAI) from 1961–1988 to 1989–2016 in the
ten basins. The climatic variables are denoted by P (precipitation), Tmax (maximum temperature),
Tmin (minimum temperature), Rh (relative humidity), Ws (wind speed), and Rs (radiation) on the
x axis. The vertical spread of the box-whisker plots shows the variations in results among climate
stations within each basin. The boxes cover the ranges from the 25% quartile to the 75% quartile of the
distributions, with the median values marked by red lines within each box and outliers marked by
plus signs.

Basin-average contributions of the climatic drivers (Figure 8) suggest that P was the largest
contributor in most of the basins, with the relative contributions varying from 27% (Hai) to
58% (Northwest). The only exception was the Liao River basin, where changes in Ws, P, and T
can explain 32%, 28%, and 26% of the AI change, respectively. Ws can also be recognized as the second
most prominent factor in the Songhuajiang (29%), Hai River (25%), and Huai River (24%) basins.
Meanwhile, changes in Rs played a major role in altering water-energy balance in the Southeast, Pearl,
and Yangtze basins, accounting for 28%, 26%, and 23% of the changes in AI, respectively.
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Figure 8. Relative contributions (%) of climatic drivers to the changes in aridity from 1961–1988 to 1989–2016
in the ten basins. The contributors are denoted by P (precipitation), Tmax (maximum temperature),
Tmin (minimum temperature), Rh (relative humidity), Ws (wind speed), and Rs (radiation) on the x axis.
The vertical spread of the box–whisker plots shows the variations in relative contribution among climate
stations within each basin. The boxes cover the ranges from the 25% quartile to the 75% quartile of the
distributions, with the median values marked by red lines within each box and outliers marked by plus
signs. The mean contributions of each factor are marked with black circles.

The results of attribution analysis (Table 3) suggest that P was the largest driver of AI change
at 51% (367 out of 713) of the climate sites, including 60% (174 out of 288) of the drying sites and
45% (193 out of 425) of the wetting sites. On the other hand, T was the most influential driver of
PET change at only 28% (199) of the 713 sites, although the warming trend covered nearly the entire
country (Figure 2). Ws, Rs, and Rh were the largest contributors to PET change at 37% (267), 27% (190),
and 8% (57) of the sites, respectively. When compared to the individual effects of P, the sites where
Ws, Rs, T, and Rh were identified as the largest contributors to AI change accounted for 22% (156),
17% (118), 8% (60), and 2% (12), respectively. It is clear that Ws and Rs were the second and third most
influential climatic drivers of aridity change across the country, following P. We then cross-compared
the drying/wetting patterns and the changing directions of the largest climatic drivers to examine
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the consistency between them. The results show that the drying and wetting trends were consistent
with the independent effects of the largest drivers at 93% of the sites, implying the dominant role of
fast-changing individual variables at site level. Unsurprisingly, the decreasing Ws and Rs were found
to be the dominant cause of wetting at 15% (109) and 13% (96) of the sites, respectively. The effects of
decreasing Ws and Rs were overwhelmed by the combined effects of other variables at another 4% (28)
and 2% (12) of the sites, where they were respectively identified as the largest individual contributors.

Table 3. Cross-comparison of the drying/wetting patterns and the changing directions of the largest
climatic drivers from 1961–1988 to 1989–2016. The 713 climate stations are categorized into five groups
according to the largest climatic driver of drying or wetting, including precipitation (P), temperature (T),
relative humidity (Rh), wind speed (Ws), and radiation (Rs). Increase and decrease in the climatic
drivers are denoted by “↗” and “↘”, respectively.

Largest
Driver

Drying/Wetting
Pattern No. of Sites Changing

Direction No. of Sites
Changing

Direction +
Drying/Wetting

No. of Sites

P

Dry gets drier 5.3%
P↘ 25% P↘ + drying 24%Wet gets drier 19%

Dry gets wetter 13%
P↗ 27% P↗ + wetting 27%Wet gets wetter 14%

T

Dry gets drier 2.2%
T↗ 6.0% T↗ + drying 5.8%Wet gets drier 3.5%

Dry gets wetter 0.7%
T↘ 2.4% T↘ + wetting 2.4%Wet gets wetter 2.0%

Rh

Dry gets drier 0.0%
Rh↘ 0.8% Rh↘ + drying 0.6%Wet gets drier 0.6%

Dry gets wetter 0.1%
Rh↗ 0.8% Rh↗ + wetting 0.8%Wet gets wetter 1.0%

Ws

Dry gets drier 3.2%
Ws↗ 2.7% Ws↗ + drying 2.7%Wet gets drier 3.4%

Dry gets wetter 5.3%
Ws↘ 19% Ws↘ + wetting 15%Wet gets wetter 10%

Rs

Dry gets drier 0.1%
Rs↗ 1.4% Rs↗ + drying 1.4%Wet gets drier 2.9%

Dry gets wetter 0.4%
Rs↘ 15% Rs↘ + wetting 13%Wet gets wetter 13%

4. Discussion

4.1. Linkage with Large-Scale Climate Change and Socio-Economic Developments

The observed changes in climatic variables across China are connected to the evolution in global
climate systems and monsoon circulation [39]. As the East Asian monsoon weakens, monsoon
precipitation intensifies in the south, but decreases in the Northern China Plain across the Hai River,
Huai River, and Yellow River basins (Figure 6) [40]. Anomalies in moisture transport through the
South Asian monsoon also affect precipitation in the Southwest and the upper reaches of Pearl River
and Yangtze River basins. A weakened moisture supply from the Indian Ocean could be largely
responsible for the drying trends over these areas [41].

Besides the background climate change, the variations in regional aridity and climatic drivers are
intrinsically affected by local socio-economic developments. Over the past four decades, China has
experienced both economic growth and environmental change at an unprecedented scale in human
history [42]. Ecological restoration projects have been implemented since the late 1970s and accelerated
after the 1980s as the financial support increased, and these have significantly enhanced vegetation
growth. Satellite images suggest that leaf area in China increased by 1.35 million km2 during 2000–2017
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and accounted for 25% of the global net increase [33]. A plausible hypothesis for terrestrial stilling is an
increase in surface roughness after revegetation in land surface [43]. The widely observed reduction in
Ws over northern China could be partially due to the implementation of the “Great Green Wall” project,
where vast forests were planted across the northern aridlands of China to reduce desertification [44].
The increasing coverage of forests and croplands could also enhance local air humidity when soil
moisture is sufficient and lead to a lower evaporative demand and higher AI.

Meanwhile, rapid urbanization, particularly after 1980s, has caused profound climatological effects
across China. Urbanization causes landscape fragmentation and alters local weather patterns such
as the processes of cloud formation, turbulence, and convection [45]. The widely observed increases
in T and decreases in Ws and Rh have stimulated studies on the climate–land surface interactions in
urbanized areas, such as the well-known urban heat island effect [46] and urban dry island effect [47].
Moreover, large amounts of anthropogenic aerosols have been released into the atmosphere along with
urbanization and industrialization. These air pollutants can enhance the scattering and absorption
of solar radiation, disturb the formation of precipitation, and alter regional-scale water and energy
balances [48,49]. Although the impacts of aerosols on local climate vary with atmospheric backgrounds
and cloud types, large-scale air pollution is likely to suppress eco-hydrological fluxes and compromise
water yield and ecosystem productivity [50]. Previous climate modeling studies also suggest that
increasing anthropogenic sulfate aerosol emissions over the Northern Hemisphere could be the
dominant cause of Asian summer monsoon weakening [51].

Generally speaking, energy-driven changes in aridity were mostly observed throughout eastern
China, and the impacts of changes in wind and radiation were more prominent in the north (i.e., the Liao,
Songhuajiang, Hai, and Huai River basins) and south (i.e., the Southeast, Pearl, and Yangtze basins),
respectively. Although there is increasing evidence that these changes in climatic variables are
associated with the growing population and great anthropogenic disturbances in the past several
decades [21,43,52], further studies are needed to identify how these disturbances contribute to the
changes in specific variables and the subsequent land surface drying and wetting.

4.2. Implications for Water and Land Management

Our results have important implications for water and land management in a changing climate
across China. Water resources planning needs to prepare different management strategies for regions
facing contrasting hydro-climatological conditions. Additional water storage and regulation facilities
are needed in wet-gets-wetter regions such as the lower reach of the Yangtze River and Southeast basins.
Precipitation-induced wetting and warming-induced changes in snowmelt runoff can also cause more
flash floods in the arid Northwest [53]. On the other hand, the decreasing rainfall results in the tendency
toward increased droughts in northern China. The most notable reduction in precipitation occurred
in the Hai River (−7%) and Yellow River (−4%) basins. These two basins are densely populated arid
regions and have been the most water stressed areas in the past decades. The situation could be
worsening as climate change and anthropogenic disturbances intensify [54]. As well as the ongoing
South-to-North water transfer project [55], other water conservation measures such as upgrading
the economic structure, harvesting storm rainfall, promoting waste water recycling technology, and
improving water use efficiency should be implemented to alleviate water stress in these regions [56,57].

The vast croplands across northern China (i.e., the Songhuajiang, Liao, Hai, Yellow, and Huai
River basins) are threatened by rising temperatures and diminishing water availability for irrigation
and food production, particularly the drying trends in summer (Figure 6c) when paddy rice fields
require large amounts of water. Adaptations in the agricultural system and irrigation technology
are needed to secure crop supply and to reduce vulnerability to climate change and droughts [58,59].
The warmer and drier conditions may also result in higher risks of insects, disease, and catastrophic
wildfires in forests and grasslands [60,61]. Proper land management practices such as forest thinning
and planting drought-tolerant species are critical to increase resiliency to climate change and reduce
the potential threats to ecosystems and society [62,63]. Land management policies need to consider
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the drying/wetting trends of the land surface and variations in the regional water demands of human
and ecosystems. For example, the wetting and warming trends have facilitated revegetation efforts in
western China, while the increasing water uses for revegetation (i.e., evapotranspiration) and the drying
climate have caused significant decline in runoff in the Yellow River basin and have challenged the
sustainability of the water resources system [64]. It is vital to consider the trade-offs among ecosystem
services, water security, and economic growth, and to balance the environmental and socio-economic
demands in a changing climate.

4.3. Caveats

Several limitations and caveats apply to our study. Considerable uncertainties could be involved
in the long-term climate data due to the changes in instruments, data management, and surroundings
of climate stations during the past decades. In particular, humidity, wind, and radiation components
have not been as widely observed and analyzed as precipitation and temperature. These uncertainties
are unlikely to challenge our findings at the basin scale, yet could alter the site-level quantifications of
individual variables’ effects to various extents. Moreover, we have focused on attributing the observed
changes in PET and AI to individual climatic variables based on the Penman–Monteith equation in this
assessment. We did not consider the interactions among these variables. For example, changes in local
moisture supply and radiative and aerodynamic conditions also affect the processes of precipitation
formation, and thus lead to changes in aridity indirectly [49,50]. The relative roles of precipitation and
other variables could be different when causality is interpreted from different temporal scales due to
the complex interactions among aerosols, greenhouse gases, and cloud properties [65]. More efforts
in on-site weather monitoring, data assimilation, and interdisciplinary research are needed to better
understand the relationship among varying individual climatic factors and climatic responses to
human activities.

5. Conclusions

This study examined the independent contributions of individual climatic drivers of aridity
change across China, and particularly highlighted the roles of terrestrial stilling and solar dimming
in a warming climate. Results suggest that the drying and wetting features varied greatly across
climatic regimes and river basins during the past six decades. Significant wetting can be mostly
found in the Northwest, Songhuajiang, lower Yangtze River, and Southeast basins, while significant
drying occurred extensively in the Southwest, Yellow River, upper Yangtze River, and upper Pearl
River basins. Inhomogeneous drying/wetting paradigms were also detected across the seasons.
In spring and autumn, it became more humid in western and northeastern China, but more arid
to the south of the Huai River basin (i.e., Huai, Yangtze, Southeast, and Pearl). On the contrary,
summer precipitation was enhanced in the south yet suppressed in the north as the East Asian monsoon
weakened, causing wetting trends in the lower Yangtze and Southeast and drying trends in the Hai and
Yellow River basins. A consistent wetting signal in winter, which was mostly driven by the increasing
precipitation, was found over the entire country.

While changes in precipitation differed spatially, increases in both maximum and minimum daily
temperature were observed at nearly all of the climate stations. The warming and reductions in relative
humidity significantly enhanced PET and caused the land surface to be drier across China. On the
other hand, significant decreases in wind speed and radiation affected more than two thirds of the sites
and caused widespread decreases in PET. Such trends of terrestrial stilling and solar dimming largely
offset warming-induced drying and were found to be the dominant causes of wetting at 15% (109) and
13% (96) of the sites, respectively. In particular, the role of decreasing wind speed was more prominent
in northern China, and was identified as the largest contributor in the Liao River basin (32%) and the
second largest in the Songhuajiang (29%), Hai River (25%), and Huai River (24%) basins. Meanwhile,
reduction in radiation can explain a major part of AI changes in the south at basin level, including the
Southeast (28%), Pearl River (26%), and Yangtze River (23%) basins.



Water 2020, 12, 1996 16 of 19

Besides the impacts of weakening East Asian monsoon and South Asian monsoon, these changes
in aridity and climatic drivers could be related to the rapid urbanization, anthropogenic aerosol
emissions, and large-scale revegetation projects across China in recent decades. Our results highlight
the need for more emphasis to be placed on the climatological impacts of regional-level anthropogenic
disturbances under the background of climate change. Further studies on the interactions among
individual climatic variables and multiple environmental stressors are warranted for sustainable water
and land management.
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