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Abstract: Soil erosion is a serious threat to sustainable agriculture, food production, and environmental
security. The advancement of accurate models for soil erosion susceptibility and hazard assessment is
of utmost importance for enhancing mitigation policies and laws. This paper proposes novel machine
learning (ML) models for the susceptibility mapping of the water erosion of soil. The weighted
subspace random forest (WSRF), Gaussian process with a radial basis function kernel (Gaussprradial),
and naive Bayes (NB) ML methods were used in the prediction of the soil erosion susceptibility.
Data included 227 samples of erosion and non-erosion locations through field surveys to advance
models of the spatial distribution using predictive factors. In this study, 19 effective factors of
soil erosion were considered. The critical factors were selected using simulated annealing feature
selection (SAFS). The critical factors included aspect, curvature, slope length, flow accumulation,
rainfall erosivity factor, distance from the stream, drainage density, fault density, normalized difference
vegetation index (NDVI), hydrologic soil group, soil texture, and lithology. The dataset cells of
samples (70% for training and 30% for testing) were randomly prepared to assess the robustness
of the different models. The functional relevance between soil erosion and effective factors was
computed using the ML models. The ML models were evaluated using different metrics, including
accuracy, the kappa coefficient, and the probability of detection (POD). The accuracies of the WSRF,
Gaussprradial, and NB methods were 0.91, 0.88, and 0.85, respectively, for the testing data; 0.82,
0.76, and 0.71, respectively, for the kappa coefficient; and 0.94, 0.94, and 0.94, respectively, for POD.
However, the ML models, especially the WSRF, had an acceptable performance regarding producing
soil erosion susceptibility maps. Maps produced with the most robust models can be a useful tool for
sustainable management, watershed conservation, and the reduction of soil and water loss.

Keywords: water erosion; susceptibility; Gaussian process; climate change; radial basis function
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1. Introduction

Soil conservation is of utmost importance for sustainable development, food security,
and environmental protection [1]. Understanding soil erosion is considered to be an essential practice
for soil conservation programs around the world [2]. Currently, soil erosion has increasingly become
known as a severe concern for sustainable agriculture, water resource management, and modern
civilization [3]. Soil erosion is a significant menace for soil, ecology, and for humanity since the
long-term production of soil productive capacity is profoundly affected by the destruction and leaching
of soil’s organic and topsoil matters [4]. Soil erosion is an intricate process that depends on the
plant cover and land use, watershed topography, soil properties, climate, and land management
practices. In the last century, soil erosion has intensified due to human activity and is an environmental
problem [5]. Primary soil segregates when the rainfall or water flow power is greater than the soil’s
resistance to corrosion [6]. Generally, there are different types of water erosion, such as sheet, gully,
landslide, debris flow, streambank, etc. [7].

In semiarid regions, such as Iran, soil erosion is a significant crisis [8] and can be considered
to be one of the critical problems concerning agricultural development, natural resources, and the
environment [9]. In such regions, water is limited, and there are many sources of sediment [10].
The high input of sediment in upstream rivers increases the water turbidity, reduces the lifespan
of dams owing to reservoir siltation, and negatively affects water quality and biological activity [8].
According to scholars, the mean annual rate of soil erosion in Iran is about 25 tons/ha/year, which is
four times more than the mean yearly rate around the world [11,12]. Therefore, the susceptibility
mapping of soil erosion is necessary for controlling this critical problem.

Rather than using traditional and experimental models, such as the universal soil loss equation
(USLE) [13] and multi-criteria decision-making methods [14], that have been used in water erosion
assessments, machine learning (ML) models are known to be successful methods [15,16]. Different ML
methods, such as support vector machine (SVM), boosted regression trees (BRT), random forest
(RF), naive Bayes (NB), and artificial neural network (ANN), have been used for landslides [17–23],
debris flows [24–26], and gully erosion [27–30]. For instance, Angileri et al. [15] used the stochastic
gradient tree boost (SGT) for water erosion susceptibility mapping in central-northern Sicily, Italy.
The results indicated that the applied model had excellent reliability (accuracy from 0.87 to 0.92).
Recently, Garosi et al. [31] applied the RF, SVM, and NB models, along with the generalized additive
model (GAM), to predict the gully erosion susceptibility in the Ekbatan Dam drainage basin, Iran.
The results indicated that the RF model had the highest performance (accuracy = 92.4%) among the
models tested. Svoray et al. [16] used different ML models, namely, SVM, ANN, and decision trees
(DT), for predicting the gully erosion in a watershed scale in Israel and compared them with the results
from topographic threshold (TT) and analytic hierarchy process (AHP) methods. The results indicated
that the ML models produced better performances than the AHP and TT methods. Mao et al. [32]
evaluated the soil erosion in the Shiqiaopu catchment, Hubei province, China, using SVM and ANN
models. They optimized the parameters of the SVM using the particle swarm optimization (PSO)
algorithm. The results indicated that the SVM had higher accuracy in comparison with the ANN
model. Rahmati et al. [28] compared the ML models of SVM, ANN, RF, and BRT when predicting the
gully erosion susceptibility in the Kashkan watershed, Iran. The results indicated that the performance
of the RF and SVM models for predicting the gully occurrences in the watershed were better than the
other models.

Due to the advancement of ML models, applying and evaluating novel methods in water erosion
studies can help to accurately predict hazardous areas, especially in developing countries where soil
erosion data are incomplete. The current study tried to predict water erosion susceptibility using two
novel ML models, namely, a weighted subspace random forest (WSRF) and a Gaussian process with
a radial basis function kernel (Gaussprradial), for the first time and compared their results with the
NB model. Therefore, the primary purposes of this study were: (i) to identify the more significant
factors regarding soil erosion through feature selection, (ii) to compare the performance of the novel
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predictive models (i.e., WSRF and Gaussprradial) with a model previously used for this application
(i.e., NB), and (iii) the prediction of the spatial susceptibility of soil erosion induced by water.

2. Materials and Methods

2.1. Study Area

The Nur-Rood watershed is located in the southwest of the Haraz watershed, in the north of
Iran. The watershed lies within 51◦26′–52◦19′ E and 36◦01′–36◦16′ N (Figure 1). The elevation of
the watershed ranges from 732 to 4333 m. There are six rain gauge stations in the region provided
the long-term mean annual data from 1976 to 2016 that were were used in this study. The study
area is about 1297 km2 and is located upstream of the Haraz dam. The main application of this
dam is to provide drinking and agriculture water for five cities (i.e., Amol, Babol, Babolsar, Nur,
and Mahmoodabad) in the Mazandaran province. According to the literature, the watershed generates
water with a high sediment load such that it causes a reduction in the dam’s capacity [8,33]. Therefore,
identifying the hazardous areas can help to control the upstream erosion and aid with providing
sustainable watershed management in the Nur-Rood watershed.
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Figure 1. Location of the Nur-Rood watershed, Mazandaran province, Iran.

2.2. Methodology

The methodology consisted of several fundamental building blocks to ensure the accuracy of the
susceptibility prediction. Figure 2 presents the schematic of the methodology workflow from data
sampling to the susceptibility prediction. The method consisted of five sections: (i) preparation and
collection of the relevant factors for soil erosion modeling; (ii) extraction of the erosion and non-erosion
locations by the field observations; (iii) selection of the essential factors using the simulated annealing
feature selection (SAFS) algorithm; (iv) water erosion modeling using the Gaussprradial, NB, and WSRF
models in the Nur-Rood watershed; and (v) evaluating the models’ performance.
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2.2.1. Field Data

It was necessary to know the locations of eroded and non-eroded areas for susceptibility
mapping of the Nur-Rood watershed. Therefore, the locations (i.e., x and y coordinates) of 227 area
(116 erosion locations and 111 non-erosion locations) were sampled through field surveys to model
the water erosion susceptibility based on a binary scale (occurrence/non-occurrence). According to
Sajedi-Hosseini et al. [8], the recorded soil erosion areas include different kinds of water erosions (such
as sheet, rill, gully, and mass movements).

2.2.2. Predictive Variables

In this study, according to the literature review, 19 relevant factors regarding soil erosion were
collected and prepared, including the topographic, hydro-climatic, geological, and land cover factors.
The attributes of the factors are presented in Table 1. A brief description of each of the predictive
factors is presented afterward.

Table 1. Characteristics of the considered factors for susceptibility mapping of water erosion.

Factors Range/Class

Topographic factors:
Elevation 732 to 4333 (m)

Slope 0 to 473.8 (%)

Aspect Flat, north, northeast, east, southeast, south, southwest,
west, northwest

Slope length (SL) 0 to 5613 (m)
Curvature −35 to 25

Hydro-climate factors:
Drainage density (DD) 0 to 3 (km/km2)

Distance from stream (DFS) 0 to 5135 (m)
Topographic wetness index (TWI) 6 to 21.3

Stream power index (SPI) 0 to 150,768
Flow accumulation (FA) 0 to 1,630,717 (pixel)

Precipitation (PCP) 0 to 768 (mm)
Rainfall erosivity factor (R) 272 to 2078

Hydrologic soil group (HSG) B 1, C 2, D 3



Water 2020, 12, 1995 5 of 17

Table 1. Cont.

Factors Range/Class

Geological factors 4:
Fault density (FD) 0 to 2.4 (km/km2)

Lithology TRJs, Pr, Mm.s.l, Pd, Odi, Tre, PZ2bvt, Tre1, Qs.D, Ebv, Tra.bv, Jl,
Ek, K1bvt, Ktzl, Pldv, Jk, K2l2, Eksh

Soil texture Sandy loam, loamy sand, loam, clay loam, sandy clay loam, clay

Land-cover factors:
Normalized difference vegetation index (NDVI) −0.07 to 0.63

Land use Rangeland, residential, forest, agriculture, rock
Distance from road (DFR) 0 to 18,978 (m)

1 Silt loam types of soils with a moderate infiltration rate. 2 Sandy clay loam types of soils with low infiltration
rates. 3 Clay loam, silty clay loam, sandy clay, silty clay, or clay with the highest runoff potential. 4 Definition of
the geological factors include; TRJs: Dark grey shale and sandstone; Pr: Dark grey medium - bedded to massive
limestone; Mm.s.l: Marl, calcareous sandstone, sandy limestone and minor conglomerate; Pd: Red sandstone and
shale with subordinate sandy limestone: Odi: Diorite; Tre: Thick bedded grey o’olitic limestone; PZ2bvt: Basaltic
volcanic tuff; Tre1: Thin bedded, yellow to pinkish argillaceous limestone with worm tracks; Qs.D: Unconsolidated
wind-blown sand deposit including sand dunes; Ebv: Basaltic volcanic rocks; Tra.bv: Triassic, andesitic and basaltic
volcanics; Jl: Light grey, thin-bedded to massive limestone; Ek: Well bedded green tuff and tuffaceous shale; K1bvt:
Basaltic volcanic tuff; Ktzl: Thick bedded to massive, white to pinkish orbitolina bearing limestone; Pldv: Rhyolitic to
rhyodacitic volcanics; Jk: Conglomerate, sandstone and shale with plantremains and coal seams; K2l2: Thick-bedded
to massive limestone; Eksh: Greenish-black shale, partly tuffaceous with intercalations of tuff.

Topographic Parameters

The topographic parameters included the elevation, slope, aspect, slope length (SL), and curvature
(Figure 3). These factors are influential regarding soil erosion velocity [34]. The different elevations
(Figure 3a), aspects (Figure 3c), and curvature (Figure 3e) cause different conditions of evaporation,
soil temperature, soil moisture, and solar radiation, which have different effects on the soil erosion.
Furthermore, slope (Figure 3b) and SL (Figure 3d) affect the runoff velocity and volume, where a
steeper slope or a longer SL can increase the soil erosion by water [8].

The topographic factors were produced using a digital elevation model (DEM) with a cell size of
30 m in the ArcGIS 10 software (Environmental Systems Research Institute, Redlands, CA, USA).

Hydro-Climate Factors

The hydro-climate factors included the drainage density (DD), distance from the stream (DFS),
topographic wetness index (TWI), stream power index (SPI), flow accumulation (FA), precipitation
(PCP), rainfall erosivity factor (R), and hydrologic soil group (HSG) (Figure 4). The DD (Figure 4a) is
calculated from the sum of the length of all streams in the watershed area. The DD values depend
on the permeability and resistance of the surface and deeper soil layers that affect water erosion [8].
Regarding the DFS (Figure 4b), the regions near streams are more susceptible to soil erosion [35].
The DD and DFS layers were created using line density and Euclidian distance tools, respectively,
in geographic information system (GIS). TWI (Figure 4c) shows the soil moisture and water-saturated
area of the watershed. SPI (Figure 4d) indicates the potential for erosion due to the water flow, in which
higher values indicate a higher potential. TWI and SPI were produced using the SAGA GIS 2.0.7
software (SAGA User Group Association, Hamburg, Germany). The flow accumulation (FA) function
(Figure 4e) computes the sum of the weight of all accumulated pixels upstream [36], which is most
important for showing the water-accumulated pixels that affect the water erosion. The PCP (Figure 4f)
and R (Figure 4g) were the climate factors considered to affect soil erosion. Their effects depend on soil
attributes such as the soil texture, soil organic matter, and soil structure. The PCP map is produced by
the mean annual precipitation of the gauge stations in the study area. The R factor is directly related
to the soil erodibility. The best method for calculating it is a direct measurement of soil erosion in
plots [37]. However, in this study, according to Takal et al. [38], an empirical equation was used to
calculate this factor, as follows.

R = 0.0483P1.61, (1)
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where R is the precipitation erosivity index (MJ·mm·ha−1
·hr−1) and P is the mean annual precipitation (mm).

The HSG (Figure 4h) indicates the infiltration and runoff generation rates that affect soil erosion.
This layer is extracted from the digital soil map of the world [39] and it includes three groups: B, C,
and D. Group B has moderately low runoff potential when completely humid. Soils in this group have
50 to 90% sand, 10 to 20% clay, and have sandy loam or loamy sand textures. Water transition across
the soil is unrestricted. Group C soils have moderately high runoff potential when completely humid.
They have less than 50% sand, 20 to 40% clay, and include sandy clay loam, silty clay loam, loam,
silt loam, and clay loam textures. Group D soils have high runoff potential and the infiltration across
the soil is very limited [40].

Geological Factors

Geological factors include the fault density (FD), lithology, and soil texture (Figure 5). The FD
affects infiltration and runoff, which can affect soil erosion. Furthermore, the existence of a fault
can accelerate the mass movements [41]. The layer of FD (Figure 5a) was produced in the ArcGIS
environment by using the line density tool on the fault layer. The lithology has the greatest effect on
erosion control. Erosion depends on the exposed material weathering attributes or the lithology [42,43].
The lithology map (Figure 5b) was taken from a geological survey done by the Iranian department
of environment and had a scale of 1:100,000. The other important factor is soil texture (Figure 5c).
Porosity and soil texture, along with the soil profile and surface, are the dominant soil attributes that
influence soil erosion. An increase in the clay value of the soil causes a decrease in soil erosion [44].
The soil textures of the study area were clay, clay loam, loam, loamy sand, sandy clay loam, and sandy
loam (Figure 5c).

Land Cover Factors

The land cover factors considered were the normalized difference vegetation index (NDVI),
land-use, and distance from road (DFR) (Figure 6). The NDVI (Figure 6a) was extracted from Landsat
satellite images for June 2018. The NDVI values range from −1 to 1 [45]. A watershed with a higher
NDVI provides higher resistance against soil erosion [9,46]. The land uses of the study area included
rangeland, residential, forest, agriculture, and rock (Figure 6b). The land-use map was received from
the Iranian Water Resources Management Company (IWRMC). Roads are one of the man-made features
that increase the availability of materials for transformation and increase the sediment yield in the
watershed. Moreover, roads increase the runoff speed through collecting and concentrating the surface
runoff in the given areas (such as near bridges); therefore, faster flows increase the erosion. The DFR
layer (Figure 6c) was calculated using the line density tool within the ArcGIS environment.
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2.2.3. Feature Selection

To select the most important factors in the water erosion of soil based on parsimonious objectives
from the large number of factors considered, the simulated annealing feature selection (SAFS) model
was used. The SAFS method is based on the minimum energy configuration theory, whereby a solid is
gradually cooled such that its structure is frozen [47]. Many studies have used this method for feature
selection in environmental fields, such as flash-flood hazard assessment [48], dust and air quality
evaluation [49], and earth fissure hazard prediction [50]; see Bertsimas and Tsitsiklis [47] for more
details of the SAFS method.

In the current research, the SAFS was conducted using the k-fold (k = 10) cross-validation
methodology and it was implemented in the Caret package [51] of the R software (4.0.2, R Core Team,
Vienna, Austria).

2.2.4. Weighted Subspace Random Forest (WSRF)

Xu et al. [52] suggested a new random forest, namely, the WSRF model, which involves weighting
the input variables and afterward opting for the variables that ensure each subspace always includes
informative attributes. The WSRF model is implemented as multi-thread processes. This algorithm
categorizes very high-dimensional data and sparse data with random forests made using small
subspaces. A new variable weighting manner is applied for the variable subspace choice rather than
the traditional random variable sampling in the random forest model [53]. More details of the WSRF
model are presented in Xu et al. [52] and Zhao et al. [53]. The WSRF model was implemented using
the “wsrf” package [53] in the R software using the k-fold (k = 10) cross-validation procedure.



Water 2020, 12, 1995 9 of 17

2.2.5. Naive Bayes (NB)

The NB classifiers are a set of assortment algorithms that use Bayes’ Theorem. This is a family of
algorithms, where every pair of features being categorized is independent of each other; on the other
hand, all of them share a common principle. The dataset is categorized into two sections:

• A response vector, which includes the value of the class variable.
• The feature matrix, which includes all the rows of the dataset and each row contains all the

dependent features.

According to the primary naive Bayes hypothesis, each element must be independent and
equal [54,55]; see Webb et al. [56] for more details of the NB model. The NB model was done using the
k-fold (k = 10) cross-validation method in the “klar” package [57,58] within the R software.

2.2.6. The Gaussian Process with a Radial Basis Function Kernel (Gaussprradial)

Gaussian process regression is a vigorous, non-parametric Bayesian method used for solving
regression problems and modeling unknown functions [59,60]. It can capture the different relationships
between inputs and output variables by applying a hypothetically infinite number of parameters and
allowing the dataset to determine the level of complexity via Bayesian inference [61]. The Gaussian
process is parametrized using a kernel. One of the benefits of Gaussian process regression is the
flexibility in choosing the kernel; furthermore, the different kernels can be combined to perform the
regression [59]. In this study, the radial basis function network (RBF) was used to perform the Gaussian
process. The Gaussprradial was performed in the R software using the “kernlab” package [62] using
the k-fold (k = 10) cross-validation approach.

2.2.7. Model Calibration and Validation

The database, including the predictand and predictors, was randomly divided into the training
(70%) and testing (30%) sets. A k-fold (k = 10) cross-validation methodology was used to calibrate the
models. The models were assessed using testing datasets after the calibration using the features selected
by the SAFS. Here, for the assessment of the models’ performances, three classification evaluation
metrics were used: accuracy, kappa, and the probability of detection (POD). The models’ performances
were represented as accuracy percentages. Kappa indicates the probability of agreement by chance
using the likelihood of the model classification [63]. The metrics are computed as follows:

Accuracy =
H + CN

H + FA + M + CN
, (2)

where H (the number of hits), FA (the number of false alarms), M (the number of misses), and CN (the
number of correct negatives) were computed from a contingency table.

Kappa =
Accuracy− Pe

1− Pe
, (3)

where Pe is the expected probability of chance agreement [64] that is computed using Equation (4):

Pe =
(H + FA)(H + M) + (M + CN)(FA + CN)

(H + FA + M + CN)2 (4)

The POD is a metric used to quantify the possibility of finding a specific detect. The POD is
significantly linked to the subject of risk evaluation and probabilistic analyses of the components’
integrity. The POD is the ratio of the correct predicted data to the total number observed occurrences.
It ranges from 0 to 1, where 1 indicates a perfect score [49,50]. The metric is calculated using Equation (5):

POD =
H

H + M
. (5)
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3. Results and Discussion

3.1. Feature Selection Results

A relatively large number of factors, such as elevation, slope, aspect, SL, curvature, DD, DFS,
TWI, SPI, FA, PCP, R, HSG, FD, lithology, soil texture, NDVI, land use, and DFR, were used in the
current study to predict water erosion. The results of the feature selection using the SAFS algorithm
are shown in Table 2. As can be seen, the minimum and maximum selected features were 8 and
14 variables, respectively, in the folds number of 8 (accuracy = 0.84, Kappa = 0.67) and 3 (accuracy = 0.92,
Kappa = 0.83). The fold number 6 provided the worst performance (accuracy = 0.74, Kappa = 0.48),
whereas the fold number 10 provided the best performance (accuracy = 0.93, Kappa = 0.87).

Table 2. Selected factors in each fold using the simulated annealing feature selection (SAFS) method.

Fold Number of
Selected Features Selected Features Accuracy Kappa

1 10 Aspect, elevation, DFR, FA, lithology, HSG,
NDVI, R, SL, soil texture 0.85 0.69

2 9 Aspect, DF, DFS, FA, lithology, NDVI, PCP,
slope, TWI 0.75 0.49

3 14 DD, DF, DFR, DFS, FA, lithology, HSG, NDVI,
R, PCP, slope, TWI, soil texture, SL 0.92 0.83

4 10 aspect, curvature, DD, DF, DFS, lithology,
NDVI, SL, SPI, soil texture 0.91 0.82

5 9 Curvature, elevation, DF, lithology, HSG,
NDVI, R, SL, SPI 0.86 0.72

6 9 Curvature, aspect, DD, DFR, FA, HSG, land
use, NDVI, R, SL, slope, soil texture 0.74 0.48

7 9 DFR, DFS, FA, lithology, HSG, land use, NDVI,
R, soil texture 0.90 0.81

8 8 DF, DFS, FA, NDVI, R, PCP, SL, TWI 0.84 0.67

9 13 aspect, curvature, DD, DF, DFS, lithology, land
use, NDVI, R, SL, slope, soil texture, TWI 0.89 0.78

10 11 Aspect, DD, DF, FA, lithology, land use, NDVI,
R, SL, SPI, soil texture 0.93 0.87

Average 10.2 - 0.86 0.72

According to the 10-fold results, the selected factors should be between the minimum and
maximum selected features and should be mostly equal to the mean selected factors across all folds.
However, the percentage of selected factors in all folds can be a good criterion for selecting the final
variables [48–50]. Figure 7 shows the percentage of selected factors in all folds. Twelve variables
had a frequency of at least 50% across all folds. As can be seen, the NDVI with a 100% frequency (F)
was selected in all folds. However, the important role of the vegetation and NDVI is obvious and
shown in previous studies [8,9,46]. Followed the NDVI (F = 100%), the variables of lithology (F = 80%),
R (F = 80%), SL (F = 80%), FD (F = 70%), FA (F = 70%), soil texture (F = 60%), DFS (F = 60%), aspect
(F = 50%), curvature (F = 50%), HSG (F = 50%), and DD (F = 50%) were selected.

Although the feature selection has largely not been done in studies on the water erosion of
soil, the importance of these selected variables in the water erosion of soil is demonstrated by
previous studies, such as those of De Baets et al. [46], Md. Rejaur et al. [9], Sajedi-Hosseini et al. [8],
Di Stefano et al. [42], Arabameri et al. [43], Lin et al. [37], Choubin et al. [41], Auzet et al. [44], and
Nekhay et al. [35].
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3.2. Results of Water Erosion Modeling

The calibration of models was conducted using the “tunelength” function in the Caret R
package [51]. The performance results of the three models (WSRF, Gaussprradial, and NB) were
evaluated using the three statistics of accuracy, kappa, and the probability of detection (POD), which are
presented in Table 3.

Table 3. The performances of the models using the testing dataset.

Statistic WSRF Gaussprradial NB

Accuracy 0.91 0.88 0.85
Kappa 0.82 0.76 0.71
POD 0.94 0.94 0.94

WSRF: Weighted Subspace Random Forest, NB: Naive Bayes.

As can be seen from Table 3, the evaluation of the models’ performance indicated that the WSRF
model had a higher accuracy (accuracy = 0.91), followed by the Gaussprradial (accuracy = 0.88) and
NB (accuracy = 0.85) models. According to Monserud and Leemans [65], the kappa values indicated
that all three models were in the “very good” degree of agreement (i.e., 0.70 < Kappa < 0.85) (Table 3).
However, like the accuracy, the kappa statistic for the WSRF model (Kappa = 0.82) was more than
the Gaussprradial (Kappa = 0.76) and NB (Kappa = 0.71) models. Regarding the POD, the WSRF,
Gaussprradial, and NB models showed an equal performance (POD = 0.94) (Table 3).

Generally, the evaluation of the applied machine learning (ML) models in this study indicated an
acceptable performance for all the ML models. However, regarding the accuracy and kappa values,
the models’ performances were ranked as follows: WSRF > Gaussprradial > NB. A direct comparison
between the results of this study and previous ones is not possible because the application of the WSRF
and Gaussprradial models was undertaken for the water erosion of soil for the first time. However,
two novel ML models (WSRF and Gaussprradial) applied in this study indicated a better performance
than the NB model that has previously been used in this field. Previous studies have indicated the
accurate performance of the NB model in the assessment of soil erosion, such as Weihua et al. [66] and
Nhu et al. [67].
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3.3. Spatial Prediction of Water Erosion Susceptibility

After the calibration and validation of the models, the maps of the soil erosion probability were
predicted using the values of the pixels throughout the study area. Then, the probability maps were
classified into five susceptibility classes of very low, low, medium, high, and very high based on the
classification method of natural breaks through the ArcGIS software (Figure 8).Water 2020, 12, x FOR PEER REVIEW 13 of 17 
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The area of the susceptibility classes found using each model is presented in Table 4. As can
be seen, the Gaussprradial model predicted most of the area in the moderate class (about 450 km2,
34.69% of the study area). The sum of the areas for low and very low classes was less than 7% (about
85 km2) (Figure 8A). According to the NB model, more than 65% of the study area (about 850 km2) was
located in very high susceptibility zones (Figure 8B). Results of the WSRF model indicated that the
classes of the very low, low, moderate, high, and very high susceptibilities covered 11.91% (154.52 km2),
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9.76% (126.6 km2), 20.25% (262.64 km2), 28.66% (371.87 km2), and 29.42% (381.7 km2) of the study area,
respectively (Figure 8C).

Table 4. Area of the susceptibility classes found using each model.

Susceptibility
Class

Gaussprradial NB WSRF

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Very low 0.08 0.01 115.73 8.92 154.52 11.91
Low 84.87 6.54 75.49 5.82 126.60 9.76

Moderate 450.02 34.69 93.00 7.17 262.64 20.25
High 386.76 29.81 163.39 12.59 371.87 28.66

Very high 375.60 28.95 849.72 65.50 381.70 29.42

Although the predicted models indicated different areas for each class, there was something in
common for all predicted maps. By comparing the predicated maps (Figure 8) with the NDVI map
(Figure 5a), it was clear that the susceptibility maps were approximately matched with the NDVI and
lithology maps. For example, the green areas in the east of the region on the NDVI map (Figure 6a)
had higher values of NDVI, which correspond to lower values on the water erosion susceptibility
maps (Figure 7). Furthermore, the higher susceptibly values (Figure 8) corresponded to the TRJ
lithology (Figure 5b). TRJs include dark grey shale, claystone, siltstone, and sandstone of the Shemshak
formation. In this formation, various kinds of water erosion, such as rill, riverbank, gully, and badland
erosions can be seen. This agrees with the SAFS results, which indicated that the NDVI and lithology
were the most important variables during the feature selection.

4. Conclusions

This study focused on the probability of water erosion occurring in the Nur-Rood watershed.
Using the SAFS model, the most important factors were selected among nineteen parameters, namely,
NDVI, lithology, R, SL, FD, FA, soil texture, DFS, aspect, curvature, HSG, and DD. Based on the
performance analysis of the machine learning (ML) models, the two novel applied ML models of
WSRF (accuracy = 0.91, Kappa = 0.82) and Gaussprradial (accuracy = 0.88, Kappa = 0.76) displayed
better performances than the NB (accuracy = 0.85, Kappa= 0.71) model that has previously been used
in this field. The predicted maps created using the ML models indicated the different areas for each
susceptibility class but it was obvious that the susceptibility maps were approximately matched with
the NDVI and lithology maps (which were identified as the most important variables). One of the
main limitations in this study that also occurs in other spatial modeling studies is that different scales
are used for the input variables all over the world. Although all of the input variables were resampled
into the same spatial resolution, the data collection and sampling of them were not on the same scale;
this is an inevitable limitation for the time being. It may be the case that the data availability of the
NDVI (30 m resolution) helped this variable to be the most important variable during the soil erosion
modeling compared with the other variables (such as the soil dataset and lithology with scales of
1:100,000 or more). Despite these limitations, producing the water erosion susceptibility maps in
developing countries can be a useful tool for sustainable management, the conservation of watersheds,
the reduction of soil degradation, and alleviating water quality decline.
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