
water

Article

Automatic Extraction of Open Water Using Imagery of
Landsat Series

Dandan Xu 1,2 , Dong Zhang 1, Dan Shi 3 and Zhaoqing Luan 1,2,*
1 Department of Ecology, College of Biology and the Environment, Nanjing Forestry University,

Nanjing 210037, China; dandan.xu@njfu.edu.cn (D.X.); zhangdong@njfu.edu.cn (D.Z.)
2 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University,

Nanjing 210037, China
3 College of Forest Science, Nanjing Forestry University, Nanjing 210037, China; stan@njfu.edu.cn
* Correspondence: luanzhaoqing@njfu.edu.cn

Received: 1 June 2020; Accepted: 1 July 2020; Published: 6 July 2020
����������
�������

Abstract: Open surface freshwater is an important resource for terrestrial ecosystems. However,
climate change, seasonal precipitation cycling, and anthropogenic activities add high variability
to its availability. Thus, timely and accurate mapping of open surface water is necessary. In this
study, a methodology based on the concept of spatial autocorrelation was developed for automatic
water extraction from Landsat series images using Taihu Lake in south-eastern China as an example.
The results show that this method has great potential to extract continuous open surface water
automatically, even when the water surface is covered by floating vegetation or algal blooms.
The results also indicate that the second shortwave-infrared band (SWIR2) band performs best for
water extraction when water is turbid or covered by surficial vegetation. Near-infrared band (NIR),
first shortwave-infrared band (SWIR1), and SWIR2 have consistent extraction success when the water
surface is not covered by vegetation. Low filter image processing greatly overestimated extracted
water bodies, and cloud and image salt and pepper issues have a large impact on water extraction
using the methods developed in this study.
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1. Introduction

Open surface freshwater bodies, including lakes, reservoirs, rivers, streams, and ponds, are a
significant sink and source of CO2 for aquatic and terrestrial ecosystems, important resources for
agricultural, aquacultural, industrial, and residential use, and are integral to social economics,
infrastructure stability, and emergency preparedness [1–3]. Global climate change, seasonal precipitation
and anthropogenic activities lead to various changes (including predictable seasonal cycles or episodic
variability) in open surface water that can substantially influence environmental security, ecological
processes, and related ecosystem services [1,4,5]. Therefore, timely, frequent, and precise information
on the spatial distribution and temporal change of open water is the foundation of sustainable water
resource management, emergency response (flood or drought events), water-related disease control
(e.g., malaria), economic development, and environment protection [4–8].

Remote sensing images, recording long-term spatial information of the earth’s surface, have proven
their potential for tracking land cover change and ecological processes [9]. Maps extracted from
remotely sensed images, documenting spatial distribution, temporal dynamics, and long-term trends
of surface water bodies, are useful to derive their spatial and temporal patterns [2,8]. Among all the
remote sensing platforms, Light Detection and Ranging (LiDAR) provides the most accurate open
water maps at regional scales [3], but are limited in their ability to map surface water bodies at global
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scales. As an alternative to LiDAR, Synthetic Aperture Radar (SAR) data have been widely used to
extract open surface water at global scales [10,11]. A simple or automatic thresholding algorithm is
applied to extract open surface water from SAR imagery [1,12,13]. As SAR imagery (e.g., Radarsat
and Sentinel 1) have become widely available, it has been used for inland water mapping [14],
detecting flood-prone regions [15], discriminating ice and open water [16–19], separating vegetated
water bodies and open water [7], and global water extraction [20]. Nevertheless, long-term SAR data
are of limited availability. This suggests that to map long-term variation in open surface water will
require input from multispectral satellite imagery [4] with its proven potential for detailed water
mapping and long data history [21–23]. The Landsat mission has operated since 1972, providing fine
spatial resolution images widely used to quantify and summarize the spatial distribution and temporal
variation of open water [9]. They have been applied at various mapping scales, including detecting
small water bodies (artificial reservoirs including small dams) at regional scales [24] and temporal
analysis of surface water bodies at global scales (with three million of Landsat images) [25].

Because spectral reflectance is lower for liquid water than other land cover types, thresholding
approaches (e.g., image segmentation algorithms) are often applied to extract open surface water from a
single spectral band or water-related spectral indices are calculated from two or more spectral bands [6].
Other remote sensing approaches include density slicing methods using a single spectral band,
linear transformations, principal component analysis, land cover classification algorithms, decision tree
classification, support vector machine classification, and artificial neural network classification have
been effective in land cover mapping including surface water [5,6]. Various global land cover products
have been generated with these tools, however, lack of both agreement and consistency exists among
different land cover products [1].

Due to the need for rapid and reproducible open water mapping at large scales, most researchers
prefer water-specific indices (e.g., normalized difference water index (NDWI)) with thresholding
algorithms [4] and have attempted to establish a global thresholding method [26]. However, selecting an
appropriate threshold that yields the highest possible accuracy is a time consuming and challenging
task because threshold values vary with location and image quality [27,28]. Therefore, great effort has
been made to select optimal water-related indices with imagery from various sensors, thresholding
rules (including sensitivity), and modifying or developing spectral indices to remove noise [4–6,27–29].
Even though open water has distinctive spectral characteristics compared to other land cover types, it is
similar to shadow and built-up areas [27,30], creating challenges for accurate mapping of open surface
water from optical multispectral images. Using either thresholding methods or image processing
approaches, the results of open water mapping has been plagued nonsensical results because of noise
from other land cover types with similar spectral characteristics [31]. This has lowered the accuracy of
remote sensing data extracted to measure spatial and temporal variation of open surface water.

As a result, relatively few studies have developed unique, automated water extraction indices to
improve the accuracy of water mapping and reduce shadow (noise) with a stable threshold value [28].
Indeed, the spectral signal of inland water bodies (e.g., lakes) are relatively complex due to suspended
matter, aquatic vegetation, algae, and dissolved organic matter [5]. Moreover, the large amount of
variation in water storage [32] requires high temporal consistency of water mapping from remote
sensing platforms. Studies have used pixel clustering on homogenous segments prior to classification
to remove outliers and improve temporal consistency [33].

The Local Indicator of Spatial Autocorrelation (LISA), another method that captures spatial
clusters, performs well as a classifier for ecological research (e.g., burn severity [34] and vegetation
fragmentation in urban areas [35]), and thus could show promise for extracting surface open water.
However, LISA, as a geostatistical technique, is still rarely used as a classifier of remotely sensed imagery
even though it has been shown to be more accurate than conventional classification approaches [33].
These few studies have also shown that introducing spatial weights (i.e., a major parameter from LISA)
would improve the temporal consistency of land cover classification from remote sensing images [36].
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LISA may have great potential for inland water mapping with high spatial autocorrelation within
water bodies in contrast to heterogeneous land cover types.

Therefore, this study aims to explore the potential to use LISA for inland water mapping under
various environmental conditions, spectral domains, and image qualities. The specific objectives are:
(1) to develop a new method based on the theory of LISA for inland water mapping from Landsat
imagery, (2) to evaluate the potential of the new method for water extraction in various environmental
conditions, (3) to compare the variation in water extraction from different Landsat bands, and (4) to
test the influences of low filter image processing on surface water extraction.

2. Study Area

Taihu Lake, the third largest freshwater lake in China (area ~2428 km2 including islands or
2338 km2 without islands), is a typical shallow inland lake with average depth of 1.9 m (maximum
depth is about 2.6 m) [37–40]. It is located in the downstream of Yangtze River (Figure 1), on the
southern Yangtze River Delta [41,42]. Taihu Lake falls in the East Asia Monsoon climate region with
annual mean temperature of 14.0–16.2 ◦C and mean annual precipitation of 1000–1400 mm [43–45].
Taihu Lake has a very complicated river and channel network with 13 in-flowing rivers (mean annual
runoff into the river is 4100 m3) and one outflowing river [44,46]. The drainage basin of Taihu Lake
covers some of the most developed regions of China, including Jiangsu, Zhejiang, and Anhui provinces
and Shanghai municipality, which contributes about 10% of Gross Domestic Product (GDP) with only
0.4% of China’s territory [47].
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Figure 1. The Taihu Lake study area. The background image is a Landsat TM (Thematic Mapper) scene
acquired on 1999-02-03 with standard false color composition (near-infrared band in red, red band in
green, and green band in blue).
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Rapid urbanization and industrialization since the 1980s, as well as liberal fertilizer use have
resulted in an enormous amount of waste water and sewage discharge into Taihu Lake [48]. As a
result, Taihu Lake has experienced serious eutrophication and a resultant algal blooms since the
1990s [41,49,50]. Water in Taihu Lake is consistently turbid all year around with average and maximum
concentration of suspended sediment over 50 and 300 mg L−1, respectively [43,50,51]. Therefore,
the optical properties of Taihu Lake are very complex, varying substantially by season and location;
even within 24 h at the same location variation can be high due to sediment resuspensions and algal
blooms [52]. This makes it a suitable area to test our new developed method for open water extraction.

Taihu Lake is often divided into six sections (Figure 1) based on shoreline geometry, human activity,
and environmental factors [53,54]. Section 1, including Meiliang Bay and Zhushan Bay, is a
cyanobacteria-dominated region due to high concentrations of nitrogen and phosphorus. Section 2
(Gongshan Bay) is home to a large number of tributaries of Yangtze River flowing into the lake
since 2001. Section 3, including Zhenhu Bay, Guangfu Bay, Xukou Bay, and Dongshan Bay, is a
macrophytes-dominated region where most aquatic vegetation is found. Section 4 (East Bay) is a
submerged vegetation region with good water quality and rich fishery production. Section 5 is a
floating-leaf vegetation distributed region. Finally, Section 6 is cyanobacteria dominated region [54,55].

3. Materials and Methods

3.1. Datasets

3.1.1. Landsat Images

Seventy-six Landsat TM (Thematic Mapper) images from 1984 to 2011 (i.e., 152 TM scenes
form the study area mosaic), 24 ETM+ (Enhanced Thematic Mapper) images from 1999 to 2003 and
35 OLI (Operational Land Imager) images from 2013 to 2019 were used in this study to extract
open water regions. This collection included 81 cloud free images and 54 images with less than
10% cloud cover within the study area. All images were already geometrically and atmospherically
corrected (Landsat level 2) when downloaded from the United States Geological Survey (USGS) website
(https://earthexplorer.usgs.gov/). The spatial resolution of all images was 30 × 30 m and projected at
UTM (Universal Transverse Mercator) Zone 51N, WGS1984.

3.1.2. Precipitation, Water Level, and Pondage Data for Taihu Lake

The monthly survey data of water level (2003 to 2019), pondage (2007 to 2009), and monthly
accumulated precipitation (1984 to 2018) were acquired for this study from the Nanjing Institute of
Geography and Limnology, Chinese Academy of Science, China.

3.2. Methodology

Processes for this study included pre-processing of Landsat single bands, analysis of spatial
autocorrelation, and selecting significant low-value clusters. This final process meant identifying
low–low clusters for the near-infrared band (NIR), first shortwave-infrared band (SWIR1), and second
shortwave-infrared band (SWIR2), but high value clusters (high–high clusters) for coastal and three
visible bands. Images were post-processed for low–low clusters on open surface water (Figure 2).
Each single Landsat band, including the coastal band (i.e., for Landsat OLI image only), blue, green,
red, NIR, SWIR1, and SWIR2 bands were tested separately for water extraction using the methods
developed in this study. The specific steps are described here (see supplement materials for python
script of all steps).

https://earthexplorer.usgs.gov/
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3.2.1. Pre-Processing of Landsat Single Bands

Pre-processing included clipping the imagery to the study area, converting rasters to a NumPy
array, and standardizing the NumPy array (Equation (1)).

X =

∑
(R−R)

2

std(R)
(1)

where R is reflectance of each pixel for one Landsat single band, R is the mean, and std(R) is the
standard deviation of all pixels for one Landsat single band.
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Near-infrared band; SWIR1 = first shortwave infrared band; SWIR2 = second shortwave infrared
band; Spatial clusters = low–low clusters (i.e., low value pixels significantly cluster together spatially)
or high–high clusters (i.e., high value pixels significantly cluster together spatially).
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3.2.2. Spatial Autocorrelation for the Standardized NumPy Array

The surrounding eight pixels (Xj) were selected as spatial neighbors for the pixel Xi (Figure 2) to
calculate spatial autocorrelation index Ii (Equation (2) with equal spatial weight (Wi j) assigned to each
of the eight neighbors = 1/8 = 0.125 (Figure 2). Equation (2) is based on the concept of Moran’s Index.

Ii =
(n− 1)Xi

∑
j Wi jX j∑

j X2
j + X2

i

(2)

where Ii is the spatial autocorrelation index that refers to the association (including statistical strength
and direction of the association) between a given pixel and its spatial neighbors, Xi is the standardized
reflectance for one pixel of Landsat single band, X j is the spatial neighbor for Xi, Wi j is the spatial
weight, and n is the total number of spatial neighbors (eight in this case).

The test statistic Z for significant test (standard normal distribution) for spatial autocorrelation Ii
is calculated by Equation (3) based on the concept of Moran’s Index.

Z =
Ii − EI√

A− B− E2
I

(3)

where Z is the test statistic from standard normal distribution, Ii is the spatial autocorrelation index
from Equation (2). EI, A, and B are calculated from Equations (4), (5), and (6), respectively.

EI = −
1

N − 1
(4)

where N is the total number of pixels for the single Landsat band.

A =
8×Wi j × (N − b)

N − 1
(5)

where Wi j is the spatial weight for each neighbor, N is the total number of pixels for the single Landsat
band, and b is calculated using Equation (7).

B =
27×W2

i j × (2b−N)

(N − 1) × (N − 2)
(6)

where Wi j refers to the spatial weight for each neighbor, N is the total number of pixels for the single
Landsat band, and b is calculated using Equation (7).

b =

∑(
X −X

)4(∑(
X −X

)2
)2 (7)

where X is the standardized reflectance of each pixel for one Landsat single band, and X refers to the
average value of the standardized array calculated by Equation (1).

The associated p-value from the test statistic Z in the significance test for spatial autocorrelation
was calculated based on the python package: “scipy.stats”.

Low–low clusters (i.e., the first “low” means the value of Ii is relatively low of the NumPy array,
the second “low” means the value of its spatial neighbor is relatively low, and all low values are
significantly, spatially clustered) for NIR, SWIR1, and SWIR2 bands, high–high clusters for coastal
bands and three visible bands that refer to open surface water were selected from the standardized
NumPy array based on three criteria: (1) Ii > 0 (i.e., either high values or low values clustered together;
(2) the value in the standardized array is less than zero (i.e., low values clusters are separate from
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high value clusters) for NIR, SWIR1, and SWIR2. For visible bands and the coastal band from Landsat
OLI imagery, this criterion is slightly different (the standardized array larger than zero) because the
reflectance of water in those bands is higher than other land cover types; and (3) p-value ≤ 0.05 (i.e.,
spatial autocorrelation index is statistically significant).

3.2.3. Post-Processing for Open Surface Water Extraction

The post-processing steps included converting the reassigned NumPy array to raster, defining the
coordinate system for the converted raster, converting raster to polygon, eliminating small polygons
(area less than 40,000 m2) that merge small polygons into the surrounding features (i.e., the minimum
polygon area threshold were selected as 40,000 m2 to reduce some effects of fish, crab, and shrimp
farms which is near Taihu Lake for water extraction because the area of those farms are less than
40,000 m2 in the study area), selecting polygons of open surface water, and smoothing polygons.

3.2.4. The Effects of Low Filter Image Process on Water Extraction

To mitigate noise from image quality, many studies introduce low filters to process images
thereby improving feature accuracy and reducing illogical classification results from open water
extraction [9,30]. The texture of open water is smoother than other land cover types from Landsat
imagery, and the low filter process smooths open water features even more, which is effective to
reduce the influence of image noise (i.e., salt and pepper effects from imagery). However, the low
filter process might change the morphology and area of extracted open water from remotely sensed
images. Therefore, a comparison was made of extracted open water area between low filtered and
original images.

3.2.5. Time Series Analysis and Segmented Linear Regression for Climate and Survey Data

To capture an accurate annual precipitation trend, water level, and pondage data, seasonal effects
were reduced using time series analysis (TSA) in Package “xts” (Extensible Time Series)) of R software
(This software is from Bell Laboratories (Lucent Technologies) by John Chambers and colleagues,
New Jersey, USA; It is initially written by Robert Gentleman and Ross Ihaka, Statistics Department of
The University of Auckland, New Zealand). TSA separates regular seasonal variation and inter-annual
trend from original temporal data (i.e., monthly data with 12 frequency per year). Then the results of
annual trends were analyzed using the segmented linear relationship of Package “Segmented” in R
software. The segmented linear relationship, which is also called broken-line relationship, is widely
used in ecological research [56]. In this study, the segmented linear relationship was used to analyze
thresholds for the inter-annual dynamics of precipitation, water level, and pondage data, as well as
temporal change of the extracted Taihu area.

4. Results and Discussion

4.1. Open Water Extraction from Different Landsat Bands

Among seven bands in the Landsat series, open water extraction from SWIR2 and SWIR1 is
more stable than NIR, visible bands, and the coastal band from OLI imagery (Figure 3). NIR, SWIR1,
and SWIR2 bands perform better for open surface water extraction (Figure 4, more example extractions
in Supplementary A in the supplement materials), especially when the water was shallow and turbid.
In 1984, when the water in Taihu Lake was clearer than previous years, most of the lake area was
extracted from blue, green, and red bands, excluding the shallow area in eastern Taihu Lake and
surrounding wetlands (Figure 4a–c). Since Taihu Lake became highly turbid after this, the visible
Landsat bands were not suitable for open water extraction (Figure 4g–i). The extracted area from
visible and coastal bands in Landsat OLI varied greatly under different water conditions (Figure 3).
This is consistent with previous findings that NIR, SWIR1, and SWIR2 (i.e., TM band 4, 5, and 7) were
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typically used for open water extraction because water absorbed more completely in those bands than
other land cover types [6].
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Figure 3. The area of extracted Taihu Lake across Landsat bands. TM = Thematic Mapper;
ETM+ = Enhanced Thematic Mapper; OLI = Operational Land Imager.

The reflectance of clear water decreased with increasing wavelength in the optical domain
(450–2500 nm) [5]. Therefore, reflectance of water in optical bands with long wavelength (NIR, SWIR1,
and SWIR2) had lower values than other land cover types, which means water bodies were low value
clusters in optical bands with long wavelengths. The methodology developed based on the concept of
spatial autocorrelation is very suitable to detect low value clusters (i.e., low–low clusters or cold spots
in spatial autocorrelation results). This method has greater potential to eliminate illogical results than
other pixel-based classification methods because it emphasizes the autocorrelation of each pixel with
its neighbors.
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Figure 4. Sample water extraction results of Landsat TM imagery (the yellow line is the extracted
water boundary, and the background image is with standard false color composition). Water extraction
results from blue (a), green (b), red (c), near infrared (d), first shortwave infrared (e), and second
shortwave infrared bands (f) of Landsat TM acquired in 1984-08-04. Water extraction results from blue
(g), green (h), red (i), near infrared (j), first shortwave infrared (k), and second shortwave infrared
(l) bands of Landsat TM acquired in 1997-05-04.
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Gong’s (2017) results also show that spatial weights (i.e., an important parameter for local spatial
autocorrelation models) would improve the temporal consistency of remote sensing classification [36].
However, water extraction using the methods from this study were influenced by other land cover
types with low reflectance values (e.g., mountain and building shadows). Frazier and Page found TM
band 5 (SWIR1) performed best for open water extraction, while TM bands 4 (NIR) and 7 (SWIR2)
were less accurate [57]. Our results indicate that NIR was less accurate than SWIR1 and SWIR2 for
open water extraction because it was influenced by “built-up noise” (Figure 4j). Therefore, extraction
results from NIR overestimate actual open water area in some situations (Figure 3). The reason could
be that “water-leaving radiance” contributed by NIR was significantly higher in the consistently turbid
waters of Taihu Lake than that in clear water [58]. As with NIR, all three visible bands were affected by
built-up noise during open water extraction (Figure 4g–i). Previous research indicates that normalized
differences between green and SWIR1 that are equivalent to TM band 5, OLI band 6, or MODIS
(Moderate Resolution Imaging Spectroradiometer) band 6 are best for open water extraction in various
inundation extremes based on threshold algorithms [5,6], but are greatly influenced by dark surface
noise in urban areas [27,28]. According to the results in this study, the noise of shadows in built-up
areas comes from the green band instead of SWIR1 for open water extraction by the normalized
difference between green and SWIR1.

Water extraction from both SWIR1 and SWIR2 was slightly influenced by mountain shadows,
and shadow effects on SWIR2 were stronger than SWIR1 (Figure 4k,l). Thus, our results indicate
that SWIR1 is superior to SWIR2 and NIR for water extraction, which is consistent with Frazier
and Page’s findings [57]. This is especially true when water is turbid and mountain shadows have
similar spectral signals in Landsat imagery. However, SWIR2 has greater potential than SWIR1
and NIR to extract eutrophic open water with algal blooms (Figure 5). Even though the extraction
area of Taihu Lake from SWIR2 was similar to that from SWIR1 (Figure 3), greater fluctuation of
water extraction from SWIR1 than that from SWIR2 was due to the severe algal bloom in Taihu Lake
(Figures 3 and 5e). Part of the open water the algal bloom was excluded for open water extraction
from SWIR1 (Figure 5b,e), while severe algal blooms and eutrophic water did not affect the water
extraction process using SWIR2 based on the methodology in this study (Figure 5c,f). Using the NIR
band, only open water uncovered by algal blooms was extracted, while water covered by algal blooms
was excluded (Figure 5a,d). Therefore, NIR shows much less potential for open water extraction in
Taihu Lake because the extracted water area from NIR varies among situations due to eutrophication
and turbidity (Figure 3). Taking highly turbid water and severe algal blooms in Taihu Lake under
consideration, SWIR2 is preferred for open water extraction. In this study, shadow effects for open
water extraction from SIWR2 were controlled by a simple threshold using SWIR2 and the red band
(i.e., (SWIR2−Red)/(SWIR2 + Red) < −0.2: after exploring the spectral characteristics between water
bodies and mountain shadows in the Landsat series, this threshold sufficiently reduced noise from
mountain shadows).

The accuracy assessment was conducted based on the reference of Sentinel-2A images acquired
in 2017-05-29, 2017-12-25, and 2019-11-15, paired with water extraction from Landsat OLI image
acquired in 2017-05-27, 2017-12-21, and 2019-11-09 respectively. One hundred points were selected
randomly in each image within the study area for accuracy assessment. The overall accuracy was 98%
(more information about the accuracy assessment, error matrix, and the comparison between water
extraction from Landsat OLI images and Sentinel-2A images are presented in Supplementary B of the
supplement materials).
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Figure 5. Sample water extraction results for water bloom effected water bodies (the yellow line is
the extracted water boundary, and the background image is with standard false color composition).
Water extraction results from near infrared (a), first shortwave infrared (b), and second shortwave
infrared bands (c) of Landsat TM (Thematic Mapper) acquired in 2005-10-17. Extraction results from
near infrared (d), first shortwave infrared (e) and second shortwave infrared bands (f) of Landsat OLI
(Operational Land Imager) acquired in 2017-05-11.

4.2. The Effects of Low Filter Image Processing on Water Extraction

The area of extracted open water from low filtered SWIR2 imagery is overestimated compared to
the original SWIR2 band from Landsat TM, ETM+, and OLI imagery (Figure 6a). The extraction results
from low filtered and original SWIR2 are significantly different for either TM, ETM+, or OLI imagery
(Figure 6b). Interestingly, the results from the low- and non-filtered OLI images were more similar to
each other than the results of the Landsat TM and ETM+ (Figure 6). Olmanson’s research indicates
that estimation result from Landsat OLI imagery is more homogeneous with less noise than that from
Landsat 7 imagery [59]. This is because Landsat OLI (Landsat 8) imagery has a narrower multispectral
band pattern than Landsat TM and ETM+. There are four TM images with extremely-high water areas
identified in low filtered SWIR2 imagery not identified in the original imagery because those four
images (acquisition dates: 1988-11-03, 1992-12-16, 1993-12-19, 1998-12-17) show visual salt and pepper
noise (Figure 6a).
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Figure 6. Comparison of extracted area by low and non-filtered imagery among three
sensors. (a): comparison between the area of water extraction from low-filtered SWIR2 (second
shortwave-infrared band) and original SWIR2. (b): error bar graph for extracted water area of low-filtered
and original SWIR2 among three different sensors (TM = Thematic Mapper; ETM+ = Enhanced Thematic
Mapper; OLI = Operational Land Imager).

4.3. Temporal Trend of Extracted Area of Taihu Lake

Finally, water extraction results based on the shadow-controlled SWIR2 band from 77 cloud free
images with no image quality issues (i.e., salt and pepper) were selected to analyze the temporal
trend of the dynamics in Taihu Lake (Figure 7; more extraction results are in Supplementary C of
supplement materials). The area of Taihu Lake is relatively stable compared to other lakes with
surrounding wetlands because Taihu Lake has cofferdams along most of its boundary. The temporal
variation of the Taihu area was mainly caused by human activities including fish, crab and shrimp
farms, wetland recovery, restoration from cultivation, and highway tunnel construction (Figure 8).
Most dynamics were observed in Section 4, the south-east part of the lake (Figure 1), because of
intensive anthropogenic disturbance (Figure 7). Since 1979, the surrounding wetlands in Section 4 that
were once covered by reeds were gradually reclaimed as farms for fish, crab, or shrimp (Figure 7a–f).
This increased the water area (Figure 8). Due to seasonal changes in water-covered farmlands that
connect to the main lake, the extracted Taihu area had extremely high values in 1991 and 1992
(from images acquired in 1991-10-27, 1991-11-12, 1992-04-20, 1992-05-22, and 1992-06-07; Figures 7
and 8). Since 1998, farmlands in the surrounding area of Section 4 were forbidden, so the abandoned
farmlands were reclaimed by wetland grasses (Figure 7g) which led to a water area decrease from 1997
to 1998. However, the area of fish, crab, or shrimp farmlands gradually increased after 1998 at a slower
rate compared to the period during 1979 to 1997 (Figure 8). Until 2008, policies forbidding farmland
expansion were implemented again and the area of Taihu Lake dropped somewhat from 2008 to 2010
(Figures 7j and 8). After 2010, a policy of lake restoration from cultivation was implemented and the
area of Taihu Lake gradually increased (Figure 8). In addition, wetland recovery in the south-east part
of Section 2 caused some variation in the lake area during 2004 to 2006 (Figure 7i), and the construction
of highway tunnel also decreased the lake area slightly after 2018 (Figure 7l).

4.4. Inter-Annual Dynamics of Precipitation, Water Level and Pondage

The temporal trend of pondage and water level was very consistent with the variation of
inter-annual precipitation between 2007 and 2019 (Figure 9). However, temporal dynamics of Taihu
Lake do not correspond to precipitation, water level, or pondage (Figures 8 and 9). The area of Taihu
Lake greatly increased from 1984 until 1997 (Figure 8), while precipitation was quite stable between
1984 to 1991 and decreased from 1991 to 2004 (Figure 9). Normally, the area of the shallow water
region of the lake increases along with higher precipitation. Therefore, the increasing area of Taihu
Lake between 1984 to 1997 was not caused by precipitation. The surrounding wetlands covered by
reed in Section 4 of Taihu Lake (Figure 1) were gradually converted to parts of Taihu Lake (Figure 7).
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Those areas, unlike the original wetlands, were covered by water all year around, which were extracted
as parts of Taihu Lake in the process of water extraction in this study.
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Figure 7. Water extraction for Taihu Lake during 1984–2019 using Landsat series images (the yellow line
is the extracted water boundary, and the background image uses standard false color composition). Water
extraction results from second shortwave-infrared band (SWIR2) of Landsat TM (Thematic Mapper)
acquired in 1985-01-11 (a), 1989-10-21 (b), 1991-11-12 (c), 1992-07-25(d), 1994-06-29 (e), 1995-02-24 (f),
1998-08-11 (g), 2000-12-06 (h), 2005-04-08 (i), 2010-05-24 (j), and of Landsat OLI (Operational Land
Imager) acquired in 2015-10-13 (k) and 2019-11-09 (l).
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Figure 9. Inter-annual dynamics of precipitation, water level and pondage. (a): inter-annual changes of
pondage from 2017 to 2019. (b): inter-annual changes of water level from 2003 to 2019. (c): inter-annual
changes of precipitation from 1984 to 2018.

4.5. Water Extraction in Different Sections of Taihu Lake

According to the extraction results from different Taihu Lake Sections based on all Landsat bands
(Figure 10), NIR, SWIR1, and SWIR2 show significantly higher potential for water extraction than
visible bands and the coastal band (from Landsat OLI only). For Sections 2, 3, and 4, the extraction area
and its variation were consistent from NIR, SWIR1, and SWIR2 bands (Figure 10b–d). The extraction
results from SWIR2 were clearly better than from SWIR1 as well as from NIR for Sections 1, 5, and 6
(Figure 10a,e,f). Sections 2, 3, and 4 are usually macrophyte-dominated regions with limited water
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surface covered by vegetation. Thus, submerged vegetation does not have much effect on water
extraction from NIR or the SWIR1 band. However, Sections 1 and 6 are cyanobacteria-dominated,
and Section 5 is largely dominated by floating-leaved vegetation, which challenges water extraction
from the NIR band due to the vegetation covered water surface.
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Figure 10. Water extraction among Taihu sections using Landsat bands. Water extraction results of
section 1 (a), section 2 (b), section 3 (c), section 4 (d), section 5 (e) and section 6 (f) in Taihu Lake
based on different Landsat bands from three sensors from Landsat series (TM = Thematic Mapper;
ETM+ = Enhanced Thematic Mapper; OLI = Operational Land Imager; NIR = near-infrared band;
SWIR1 = first shortwave-infrared band; SWIR2 = second shortwave-infrared band).

4.6. Error Sources of Automatic Open Water Extraction from Landsat Series

Some error sources, including cloud cover, image quality, polygon smoothing, and small polygon
elimination, might lower the accuracy of automatic open water extraction from the Landsat series.
Cloud shadows and thick clouds that cover water regions have a large impact on automatic open water
extraction that use spatial autocorrelation (Supplementary D), while thin clouds, as well as thick clouds
that are not above open water, do not influence on water extraction using NIR, SWIR1, or SWIR2
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bands (Supplementary C: images acquired on 2004-10-14 and 2016-1-1). However, clouds have a
strong influence on water extraction that use three visible bands because water has higher reflectance
than other land cover types. This means that water bodies (as with cloud features) are high value
clusters (i.e., hot spots in spatial autocorrelation analyses). The two post-processing steps for automatic
water extraction, including polygon smoothing and small polygon elimination, were applied after
the extracted raster was converted to a polygon. However, polygon smoothing might cause some
variation (about 30 m shifts, similar to the spatial resolution of the Landsat series) for final extracted
water boundaries and small polygon elimination (i.e., the area set for small polygons in the python
script is 40,000 m2) might cause the loss of some small water bodies or wetlands. The advantage of the
two steps is to reduce image quality effects on the classification results from traditional remote sensing
classification methods, and to smooth the water bodies to bring them closer to the natural boundaries
rather than the serrated boundaries caused by Landsat image spatial resolution.

5. Conclusions

The main purpose of this study was to develop a method based on the LISA concept to improve
inland water extraction accuracy and temporal consistency in highly turbid and eutrophic water bodies
with frequent anthropogenic disturbance. Using Landsat TM, ETM+, and OLI imagery, water extraction
from the SWIR2 band using the developed methodology has great potential to extract inland water
bodies automatically, even when the water is turbid and water surface is covered by algal blooms or
floating vegetation. Our method with SWIR2 band greatly reduced the effects of vegetation surface
cover compared to that of NIR, SWIR1, and visible bands. When the water surface was not covered
by vegetation, NIR, SWIR1, and SWIR2 have consistent water extraction results; better than visible
bands and the coastal band. Based on the methodology developed in this study, both SIWR1 and
SWIR2 bands strongly eliminate noise from dark surfaces in urban areas compared to NIR and three
visible bands.

Clouds and image quality (e.g., salt and pepper) have large impacts on automatic open water
extraction based on the LISA concept. Low filter image processing is often applied to smooth the
image for reducing salt and pepper effects in remotely sensed imagery, especially for water extraction
due to the smooth texture of water bodies. However, comparing results between low filtered SWIR2
bands and original SWIR2 band, it appears that the low filter process overestimates extracted water
areas. Our findings might enable global water extraction from multispectral imagery under various
environmental conditions and image qualities.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/7/1928/s1.
Supplementary A: Sample extractions by different Landsat bands; Supplementary B: Accuracy assessment with the
reference of Sentinel 2; Supplementary C: All the extraction results from second shortwave-infrared band (SWIR2)
during 1984–2019; Supplementary D: Cloud effects on water extraction in this study; Python scripts; Arctoolbox.
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