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Abstract: Rainwater-harvesting (RWH) agriculture has been accepted as an effective approach to
easing the overexploitation of groundwater and the associated socioeconomic impacts in arid and
semiarid areas. However, the stability and reliability of the traditional methods for selecting optimal
sites for RWH agriculture need to be further enhanced. Based on a case study in Tehran Province, Iran,
this study proposed a new decision support system (DSS) that incorporates the Best-Worst Method
(BWM) and Fuzzy logic into a geographic information system (GIS) environment. The probabilistic
analysis of the rainfall pattern using Monte Carlo simulation was conducted and adopted in the DSS.
The results have been demonstrated using suitability maps based on three types of RWH systems,
i.e., pans and ponds, percolation tanks, and check dams. Compared with traditional methods,
the sensitivity analysis has verified that the proposed DSS is more stable and reliable than the
traditional methods. Based on the results, a phase-wise strategy that shifts the current unsustainable
agriculture to a new paradigm based on RWH agriculture has been discussed. Therefore, this DSS
has enhanced the information value and thus can be accepted as a useful tool to ease the dilemma
resulting from unsustainable agriculture in arid and semiarid areas.

Keywords: RWH agriculture; decision support system; BWM

1. Introduction

The worsening overexploitation of groundwater in the agricultural sector of arid and semiarid areas
worldwide has resulted in severe negative impacts, e.g., declining aquifer heads, groundwater quality
deterioration, lower crop yields, land subsidence, seawater intrusion, increased energy consumption,
and even degenerated ecosystems [1–3]. Moreover, the social and economic consequences associated
with such unsustainable agricultural practices may further challenge human development in these
areas [4,5].

In Iran, the overexploitation of groundwater is largely due to the misplacement of agricultural
areas and the lack of an alternative water supply [6,7]. The agricultural sector with traditional irrigation
methods that largely depend on deep wells, consumes 92% of the country’s water [8]. The conventional
strategy, e.g., constructing more large dams and exploiting more groundwater, to increase the water
supply against increased demand over the last three decades was not a solution but a problem in Iran [9].
Land suitability analysis indicates that most of Iran’s current farmland is located in unsuitable and
very poorly suitable lands, which leads to overexploitation of groundwater and impaired agriculture
with low productivity [6]. This situation is particularly noticeable in Tehran Province (capital of
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Iran). The collapse of agriculture has caused migration from rural to urban areas in some parts of
the country [10]. These problems are urgent and important. Therefore, a comprehensive strategy
for reallocating agricultural development with the support of alternative water sources is critically
important to ease the overexploitation of groundwater and associated socioeconomic dilemmas in this
country [11].

Rainwater-harvesting (RWH) systems have been identified as an effective alternative water
source and a useful approach for the agricultural sector to overcome water scarcity, thereby reducing
the dependency on groundwater irrigation in arid and semiarid regions around the world [12,13].
Research on RWH agricultural irrigation has been conducted in many parts of the world, such as India,
China, the United States (USA), South Africa, and the Netherlands, over the last two decades [14].
Successful examples of the various agricultural RWH techniques being practiced in sub-Saharan Africa
(SSA) [15], Iran [16,17], and China [18] show that RWH systems are effective in improving soil moisture,
erosion and flood control, and groundwater recharge, increasing agricultural production, and in turn
reducing the risks of spatial and temporal water scarcity [19–27].

Some field studies in Iran (Fars Province) show that microcatchment water-harvesting systems in
grape cultivation using 9 m2 microcatchments for each individual plant can achieve a 40% increase
in yield [17]. Another case experiment in the arid and semiarid region of Iran (Khorasan Province)
indicated that RWH can be used as a supplementary water resource, and the grain yield is almost
double that of conventional rainfed cultivation [16]. Despite these single-site reports of effective
RWH settings, Iran is in desperate need of a comprehensive strategy for transforming the existing
unsustainable agriculture into RWH agriculture on a large scale. For this purpose, identifying the
optimal sites for rainwater-harvesting agriculture using various types of RWH systems as alternative
water sources should be the first and crucial approach.

Acknowledging the importance of spatial information in large-scale applications, researchers often
incorporate hydraulic models into geographic information system (GIS) to obtain the optimal sites for
RWH agriculture [28,29]. However, in such a large-scale implementation, the socioeconomic complexity
involved in the study areas should not be neglected. To overcome such limitations, multiple criteria
decision making (MCDM) has been adopted by researchers, and traditionally the analytic hierarchy
process (AHP) has been most commonly adopted and incorporated within GIS to address multi-criteria
scenarios, especially in arid and semiarid regions [30–36]. AHP was developed by Thomas Saaty in the
1980s and then widely applied for organizing complex decisions based on professional knowledge [37].
The AHP method is implemented based on the subjective evaluation of the decision makers or experts
by the pairwise comparison matrices. However, these comparisons with the number of n(n − 1)/2 are
not consistent, which can lead to uncertain results [38]. To address such shortcomings, a newer method,
namely, the Best-Worst Method (BWM), proposed by J. Rezaei (2015), has been proven to give more
accurate and reliable results than that of AHP [39]. The BWM is a vector-based comparison method
with fewer pairwise comparisons 2n − 3 which, therefore, reduces the calculations and enhances the
consistency and reliability of the results. In addition, the BWM has the capability for combination with
other MCDM methods and easier access, as it uses only integers on a scale between 1 and 9 [39–42].

Despite the value of the BWM, the subjectivity level in the assessment of the BWM, which is
also a subjective expert evaluation, needs to be reduced when incorporated in an MCDM process.
Moreover, the important drawback in such comparison-based assessments for both the AHP and
the BWM is the associated ambiguity and intangibility, while decision makers use the qualitative
assessment of a scale-based comparison in a real-life problem [43]. In the case of site selection for RWH
systems, such drawbacks occurred as researchers often used an MCDM method solely to obtain the
weights of the criteria. To overcome such shortcomings, Fuzzy logic has been proposed, as it has a
precise compatibility with the subjective evaluation of decision makers and has been identified as more
reliable [38]. Therefore, incorporating the BWM with Fuzzy logic in GIS environment can support
sounder decision making by providing more realistic and reliable prioritization.
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In addition, rainfall data, as the significant impact on the efficiency of RWH systems, should
be carefully investigated. However, most of the previous studies tend to use a fixed amount, e.g.,
average annual rainfall, to indicate the rainfall supply while neglecting the importance of rainfall
patterns and the associated probabilistic distributions [30]. Therefore, rainfall patterns should be
examined, and the socioeconomic complex should be taken into account in the MCDM using a
more advanced approach. Only when policy and decision makers have received comprehensive and
integrated information to identify the areas for RWH agriculture will they be able to make sound
decisions when promoting RWH agriculture to ease the overexploitation of groundwater and the
associated socioeconomic dilemmas.

This study proposes a new GIS-based Decision Support System (DSS) that incorporates BWM and
Fuzzy logic to identify the optimal sites for RWH agriculture. This DSS case study is based on the
arid and semiarid areas of Tehran Province, Iran. The rainfall pattern will be analyzed using Monte
Carlo simulation and three types of RWH, i.e., pans and ponds, percolation tanks, and check dams
will be tested to obtain suitability maps. Accordingly, the strategy for promoting RWH agriculture
will thereby be discussed. Therefore, the purpose of this study is threefold: first, to develop the
proposed GIS-based DSS that achieves suitable maps for three types of RWH agriculture; second,
to perform a sensitivity analysis that validates the performance of the proposed method by comparing
it with traditional methods; and third, to discuss the phase-wise strategy of transiting the current
unsustainable agriculture to a new paradigm of RWH agriculture based on the results of DSS.

2. Methodology and Materials

2.1. Overview of the Study Area

Figure 1 shows the location and spatial distribution of the average annual rainfall in Tehran
Province, which is located between 34◦51′ N and 36◦08′ N latitude and 50◦21′ E and 53◦09′ E longitude
with an area of 12,981 km2. Being the political and economic center of the country, Tehran Province is
composed of 16 counties, 34 districts, 46 cities, 71 rural districts and 1043 villages [44,45]. Most parts of
the province are arid and semiarid. The topography of the provincial lands is categorized into three
main areas: the Alborz Mountain range in the north; the central and southern foothills of the Alborz
Mountains; and plains [46,47]. The major limitations and issues for the development and sustainability
of Tehran Province include critical water conditions, uneconomical agricultural activities, insufficient
watershed management, salinity and soil degradation, and excessive exploitation of groundwater
resources. According to the latest statistics, the total annual discharge from the groundwater resources
of the province through 15,982 deep wells, 27,375 semi-deep wells, 536 qanat systems and 2503
fountains is approximately 2722 million cubic meters [45]. Due to recent droughts, the exploitation of
groundwater for water supply has increased by 55% in the last five years. Such a trend of increasingly
exploiting groundwater resources has resulted in a deficit in the volume of water reserves of almost all
aquifers and caused irreparable damage to aquifers, severe desertification, and land subsidence in
Tehran Province [48,49]. Therefore, as the existing uneconomic agricultural practice has consumed the
maximum part of groundwater, a paradigm shift that transforms conventional agricultural practice
into more RWH agriculture is crucial for future development in Tehran Province.

2.2. System Description

Figure 2 demonstrates the conceptual framework of the proposed DSS, which is composed of
five major parts: dataset, data process, GIS platform, MCDM models, and user interface. To explore
the optimal sites for RWH agriculture using the selected types of RWH systems, the rainfall data in
the dataset were first analyzed using a Monte Carlo simulation to obtain the exceedance probability
distribution and then geostatistically interpolated. Two sets of criteria for MCDM were selected based
on the suggestion of the Food and Agriculture Organization (FAO) (2003) containing both biophysical
and socioeconomic factors [31]. The weights of the criteria were first calculated using the linear-BWM
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separate from GIS. The spatial data were fuzzified in GIS and finally combined with the results of
the BWM to achieve the weighted and fuzzified layers. The weighted and reclassified criteria can
be combined using raster calculator and overlay tools in ArcGIS. The Boolean technique will also be
used in this DSS to eliminate the constraint areas in the suitability maps [37,50,51]. A comparative
analysis will be conducted by comparing the results of the DSS and those of the traditional AHP using
sensitivity analysis. The suitability map will then be compared with the existing farming map to
achieve the developing strategy for RWH agriculture to ease the overexploitation of groundwater.Water 2020, 12, x FOR PEER REVIEW 4 of 27 
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2.3. Process of the Best-Worst Method (BWM) and Fuzzy Logic in Geographic Information System (GIS)

Figure 3 shows the detailed procedure of the proposed model. The criteria were selected based on a
literature review. Among them, rainfall and slope required preprocessing. ArcGIS 10.5 (Esri, Redlands,
CA, USA) provided a spatial and geographical analysis platform, which was used for rasterization,
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spatial interpolation, reclassification of rasterized layers, and all multi-criteria evaluation processes,
e.g., overlay process; Fuzzy membership, Fuzzy overlay and weighted overlay, for suitability modeling.
In addition, a raster calculator was used to integrate, separate and combine layers based on the Boolean
technique, where the suitable areas were denoted by a value of 1 and technically impractical areas by
zero. This study explores the new integration of the BWM and Fuzzy logic, and compares it with the
results of widely used traditional methods, i.e., the AHP and WOP (weighted overlay process) using
sensitivity analysis.

Water 2020, 12, x FOR PEER REVIEW 6 of 27 

 

Data collection (preparation 
and preprocessing)

Probabilistic analysis 
of rainfall data

Geoprossessing 
(DEM to Slope) Determining Criteria

Input to GIS

Rasterizing the vector 
layers Spatial Interpolation

MCDM

Reclassification BWM

Fuzzification Raster calculation

Weighting the 
fuzzified layers

Nonlinear 
combination

Boolean model

General suitability 
model

Unsuitable (restricted) 
areas map Sensitivity analysis

Robustness of model
Specific conditions 

for each type of RWH

Suitable sites for 
Particular RWH 

technique  
Figure 3. Flowchart of geographic information system (GIS) integrated with multiple criteria 

decision making (MCDM). 

We minimize the maximum among the set of  −  ,  −  . Then, the problem 
is formulated as follows: min max  − ,  −   (3) 

such that: ∑  =  1 ;   ≥  0, for all j (4) 

Equation (4) is equivalent to the following linear programming model: min  such that:  −   ≤  , for all j  −    ≤  , for all j ∑  =  1;  ≥  0, for all j 

(5) 

By solving the linear Equation (5), the optimal weights ∗, ∗, … , ∗) and consistency ratio 
( ∗) are obtained. The linear equation has a unique solution. 

Figure 3. Flowchart of geographic information system (GIS) integrated with multiple criteria decision
making (MCDM).

According to the BWM, the best (e.g., most desirable, most important) and the worst (e.g.,
least desirable, least important) criteria are identified first by the decision makers. Pairwise comparison
vectors are then conducted between each of these two criteria (best and worst) and the other criteria.
An optimization problem is then formulated and solved to determine the weights of the different
criteria. Two models of the BWM were often adopted, namely, non-linear BWM and linear BWM [39,52].
This research adopts the linear BWM to derive the weights of the criteria.
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The steps for the linear BWM are listed as follows:
Step 1. Determine a set of criteria as {C1, C2, . . . , Cn}; for RWH site selection, we selected {rainfall,

slope, soil type, land use/cover, drainage density, socioeconomics}.
Step 2. Specify the best and the worst criteria identified by the decision maker. The best criteria

mean most desirable or most important; the worst means least desirable or least important.
Step 3. Determine the preference of the best criterion over all the other criteria, using a number

between 1 and 9. The resulting best-to-others (BO) vector would be:

AB = (aB1, aB2, . . . , aBn), (1)

where a Bj indicates the preference of the best criterion B over criterion j. It is clear that aBB = 1.
Step 4. Determine the preference of all the criteria over the worst criterion, using a number

between 1 and 9. The resulting others-to-worst (OW) vector would be:

AW = (a1W , a2W , . . . , anW)T, (2)

where a jW = 1 indicates the preference of the criterion j over the worst criterion W. It is clear that
aWW = 1.

Step 5. Find the optimal weights
(
w∗1, w∗2, . . . , w∗n

)
.

We minimize the maximum among the set of
{∣∣∣wB − aBjw j

∣∣∣, ∣∣∣w j − a jWwW
∣∣∣}. Then, the problem is

formulated as follows:
minmax

j

{∣∣∣wB − aBjw j
∣∣∣, ∣∣∣w j − a jWwW

∣∣∣} (3)

such that: ∑
j

w j = 1 ; w j ≥ 0, for all j (4)

Equation (4) is equivalent to the following linear programming model:
minξL such that: ∣∣∣wB − aBjw j

∣∣∣ ≤ ξL, for all j∣∣∣w j − a jWwW
∣∣∣ ≤ ξL, for all j∑

j w j = 1; w j ≥ 0, for all j
(5)

By solving the linear Equation (5), the optimal weights
(
w∗1, w∗2, . . . , w∗n

)
and consistency ratio (ξL∗)

are obtained. The linear equation has a unique solution.
To establish the preference of all the criteria over the worst criterion, using a number between 1

and 9, we use the fundamental comparison scale that is commonly used in AHP. It stems from the
qualitative judgments by experts corresponding to numerical judgments from 1 to 9. Table 1 shows
this fundamental scale of comparison [53].

Table 1. Fundamental comparison scale.

Intensity of Importance Definition

1 Equal importance
3 Moderate importance of one over another
5 Essential or strong importance
7 Very strong importance
9 Extreme importance

2, 4, 6, 8 Intermediate values between the two adjacent judgments

In GIS, the Fuzzy overlay and Fuzzy membership tools employ Fuzzy logic as a mechanism to
address inherent inaccuracies in attributes and in the geometry of spatial datasets. Fuzzy membership
transforms the input raster into a 0 to 1 scale, indicating the strength of a membership in a set based
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on a specified fuzzification algorithm. Furthermore, the Fuzzy overlay combines Fuzzy membership
raster data together based on the selected overlay type.

2.4. Dataset and Data Processing

2.4.1. Rainfall Data

Typically, researchers often use daily rainfall data in the rooftop RWH behavior models to predict
the relationship between the tank volume and the performance of a RWH system [54]. However,
in the case of the optimal site selection, Adham et al. [30] have suggested using monthly rainfall data
to evaluate the performance of existing RWH techniques and site selection in (semi-) arid regions.
Moreover, some researchers reported that 10 years rainfall time series can be used to obtain results,
which is equivalent to those obtained with long-term rainfall time series [55]. Therefore, this study
adopted monthly rainfall data from 12 rain gauge stations (from 2005 to 2014) collected from the
Iran Meteorological Organization (IRIMO) [56]. Figure 1 also shows the location of rainfall stations
distributed in the study area. Figure 4 shows the annual maximum, minimum, average and standard
deviation of precipitation for each station. The average annual rainfall of these rain stations amounts
to 305.7 (mm/year), while the highest is 551 (mm/year) and the lowest is 118 (mm/year). Aridity varies
from humid and subhumid in the north to arid and semiarid and hyperarid in the south.Water 2020, 12, x FOR PEER REVIEW 8 of 27 
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Previous studies often adopt rainfall surplus maps from satellite imagery, using only average
annual rainfall to indicate the rainwater supply in the site selection of RWH systems [29,32,35,51].
However, the drawback of such practice is that the effect of rainfall patterns has been neglected, and
decision makers cannot adjust the level of water demand according to the crop types. In other words,
the parameter of water demand for different crops needs to be adjustable, and the associated probability
should be informed. Therefore, this study modeled the exceedance probability of 10 years of rainfall
data using Monte Carlo simulation. The system is simulated one thousand times and allows users to
choose the exceedance probability according to the level of the water demand of crops. This study uses
70% exceedance probability as a test in the DSS. The chosen and processed rainfall data will be further
spatially interpolated for MCDM.
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2.4.2. Spatial Geographic Information

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital
elevation model (DEM) was supplied by The United States Geological Survey (USGS) earth explorer.
The shapefiles and other thematic layers, including land use/cover, soil type and other geodatabases,
were georeferenced to the XY coordinate system GCS_WGS_1984. Most of the data have been provided
by remote sensing. The field surveys and data collection were performed under the supervision of the
“Organization of Agriculture-Jahad-Tehran”, “National Cartographic Center of Iran”, Geological Survey
and Mineral Exploration of Iran”, and “Housing Foundation of Islamic Revolution”. Other statistical
data are collected from the “Statistical Center of Iran”. Table 2 lists the databases used in this study.
These databases together with spatially interpolated rainfall data will be further processed as the
criteria in the MCDM process.

Table 2. Database used in this study.

No. Layer Type Source

1 Digital elevation model DEM (30 m) Raster (the max elevation of the study area 4325.8 m
and min elevation 758.28 m)

The United States Geological Survey
(USGS) earth explorer 1

2 Stations Vector, the shapefile created in ArcGIS based on the
Excel File) IRIMO

3 Annual rainfall map with 70%
Probability of Exceedance

Rainfall data (Excel File) analyzed probabilistic and
then assigned to station points coordinate and finally
spatially interpolated to raster format

As a result of Monte Carlo simulation
derived by authors

4 Slope Raster Was generated based on ASTER DEM

5 Land use/cover Vector Geographic data center 2

6 Soil texture

Raster, Soil tissue map at a depth of 60 cm in Tehran
province, which has been prepared using soil profile
data of FAO databases. It consists of three layers
(percentage of silt, clay and sand) obtained using the
soil texture triangle based on the USDA classification.

Engineering and computer research data
center 3

7 Drainage network Vector Geographic data center 2

8 Basin/sub basin Vector Geographic data center2

9 River Vector Geographic data center 2

10 Road and railway Vector Geographic data center 2

11 Fault Vector Geographic data center 2

12 City Vector Geographic data center 2

1 https://www.earthexplorer.usgs.gov. 2 https://www.datageography.com. 3 http://mysell.sellfile.ir.

2.5. Setting Criteria for Multiple Criteria Decision Making (MCDM)

The identification of suitable areas for RWH techniques depends on two groups of criteria:
biophysical and socioeconomic factors. According to the FAO (2003), the factors used for identifying
suitable sites for RWH systems in GIS environment include climate (rainfall), hydrology (runoff),
topography (slope), agronomy (land use/cover), soils (texture and depth) and socioeconomics (cost,
distance to cities, roads, streams, etc.) [29,31–33,51,57,58]. In this study, rainfall, slope, soil type,
land use/cover, and drainage density were used as biophysical criteria, while distance to roads, rivers,
cities and faults were used as socioeconomic factors. The vector layers were further converted to
raster format.

Rainfall impacts are a major component in all RWH systems. The annual distribution and
intensity of rain, soil type and slope are the basic criteria that determine the technical suitability of a
location [31,50,51]. To design an RWH system, daily or monthly corrected data must be used [59]. It is
noteworthy that, for lands with slopes greater than 5%, RWH is not recommended due to the cost of
preparation for construction [50]. The soil type represents the percentage of sand, silt and clay content.
The layer was reclassified into five suitability rankings considering soil properties in moisture retention
and potential for water holding [60]. In this study, the drainage density was considered a hydrological
factor [37]. The selected criteria will be used in the DSS to first generate a general suitability map and
then generate specific suitability maps for the three types of RWH technique.

https://www.earthexplorer.usgs.gov
https://www.datageography.com
http://mysell.sellfile.ir
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2.6. Types of Rainwater-Harvesting (RWH) Techniques

The types of RWH techniques and the associated biophysical and socioeconomic factor techniques
were selected based on previous studies of RWH system site selection, especially in arid and semiarid
areas [29,30,34–37,50,51]. Among the RWH techniques that have been well developed and accepted in
arid areas [31], three techniques, i.e., ponds and pans, check dams and percolation tanks, were selected
to be tested in the DSS and are discussed below.

2.6.1. Ponds and Pans

Ponds and pans are water storage facilities, either naturally occurring or manually excavated,
that collect runoff from macrocatchments. The difference between them is that pans receive water
wholly from surface runoff, while ponds are constructed where there is some groundwater contribution
or contribution from high water table. The collected water can be used for livestock watering or
supplementing irrigation for crops. This type of RWH structure is cost effective and can be conducted
by indigenous people. Previous literature has indicated that farm ponds are the most suitable
water-harvesting structures for arid and semiarid areas [37,61].

2.6.2. Check Dams

A check dam is a small dam constructed across a channel to reduce the flow velocity. Many studies
have investigated these multifunctional structures in different countries, including China, Italy, Japan,
France, Spain, the United States, Iran, India, Austria, Switzerland, Thailand and Ethiopia [62].
Reduced runoff velocity may reduce erosion and gullying in the channel and allow sediment to
settle out. Check dams have been reported to be useful for soil and water conservation, flood
mitigation, groundwater recharge and land development [63]. These structures significantly affect
hydro environmental processes in watersheds and provide sustainable ecological functions. A check
dam may be built from stone, sandbags filled with pea gravel, or logs. The site selected should have
sufficient thickness of a permeable bed or weathered formation to facilitate the recharge of stored water
within a short span of time.

2.6.3. Percolation Tanks

Percolation tanks are artificial reservoirs that are commonly constructed on second- to third-order
streams to collect surface water and percolate trapped runoff within permeable land. Percolation tanks
are located on highly fractured and weathered bedrock, which has lateral continuity downstream.
Therefore, the size of the percolation tank depends on the percolation capacity of the strata in the bedrock.
The groundwater recharge is supported by a number of wells and cultivable land. The percolation
tank utilizes a large reservoir and is commonly used in India [37,64].

The optimal sites for these three types of RWH methods will be indicted in the suitability maps
using the proposed DSS. The promoting strategy for the RWH agricultural scheme will be further
discussed based on these optimal site selections.

3. Results and Discussion

3.1. Results of Rainfall Analysis

The occurrence of rainfall is associated with uncertainty, wherein probability distributions describe
the pattern of uncertainty explicitly and quantitatively. Figure 5 shows the results of the Monte Carlo
simulation using the complementary cumulative distribution function (CCDF) to denote the probability
of exceedance for selected stations. Herein, several points of intersection among these CCDFs can be
observed in Figure 5, revealing that the spatial distribution of rainfall may shift when users choose
different levels of probability of exceedance. As the uncertainty in output depends heavily on the
uncertainty in input, such information with probability can be valuable for the DSS with more reliability
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and less uncertainty than that of the traditional methods using only one fixed amount or the average
annual rainfall for site selection of RWH agriculture.
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As mentioned above, this study selects rainfall data with a 70% probability of exceedance to fit
the crops with a higher level of water demand in the MCDM, which was further spatially interpolated
in the suitability ranking.

3.2. Suitability Ranking for the Criteria

These spatial data used for MCDM will be further reclassified for suitability ranking based on the
setting supported by a literature review [31,32,35,50,51]. For integrating and processing the various
criteria, the suitability ranking was applied to set all criteria into a common measurement scale, namely,
5 (excellent), 4 (very suitable), 3 (moderate), 2 (poor), and 1 (not suitable). Table 3 lists the 5 class ranks
adopted in this study.

As for the interpolation methods, Pellicone et al. [65] compared different interpolation methods
using cross-validation and visual analysis on the precipitation maps, and reported that the geostatistical
interpolation techniques, e.g., Ordinary Kriging (OK), Kriging with External Drift (KED), Ordinary
Cokriging (COK), Exponential Ordinary Kriging (EOK) and Empirical Bayesian Kriging (EBK),
outperform the deterministic methods such as the Inverse Distance Weighting (IDW). Gupta et al. [66]
has evaluated the efficiency of various types of geostatistical interpolation techniques in arid and
semi-arid regions of north-west India, indicating that both EOK and EBK revealed better performance
over other kriging techniques. However, less root-mean-square error values occurred in EBK, suggesting
it as the best-fit technique. Consequently, this study adopted EBK for developing spatially distributed
rainfall raster.

Figure 6 demonstrates the spatial data for biophysical criteria, where Figure 6a is the spatial
distribution of annual rainfall with a 70% probability of being exceeded; Figure 6b is the slope map;
Figure 6c shows land use; Figure 6d shows land cover; Figure 6e is soil texture; and Figure 6f shows
drainage density. These figures are based on the suitability ranking in Table 3.

Figure 7 shows the socioeconomic criteria and associated suitability ranking. The Euclidean
distance tool was used to generate the following figures: Figure 7a, distance to road; Figure 7b, distance
to rivers; Figure 7c, distance to faults; and Figure 7d, distance to urban centers. These spatial data will
be used in the BWM and Fuzzy logic to obtain the general suitability map for RWH agriculture.
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Table 3. Scaling the criteria in scores 1 to 5. Feature classes were classified based on the suitability for
rainwater-harvesting (RWH) systems.

Parameter 1 2 3 4 5

Rainfall 0–100 100–200 200–300 300–400 400–600

Slope (%) >20 10–20 5–10 3–5 0–3

Land use/cover Water
body—urban—desert

Rock,
Miscellaneous-medium

Poor range-bare
land-wood land,

Midrange—mix,
agriculture

Afforest-garden-agriculture—High
quality range

Soil type Sandy loam loam Silt loam Sandy clay loam Clay loam, silty clay loam

Drainage density
(km/km2) 0–0.17 0.18–0.21 0.22–0.26 0.27–0.29 0.3–0.33

Distance to roads,
rivers and cities (m) ≥2000 ≥1500, <2000 ≥1000, <1500 ≥500, <1000 ≤500

Distance to faults (m) >1000, <2000 ≥2000, <3000 ≥3000, <4000 ≥4000, <5000 >5000

3.3. BWM Results and General Suitability Maps

The BWM was conducted to achieve the weightings of six criteria and then applied in GIS using
Fuzzy logic to obtain the suitability maps for various types of RWH systems. In this process, a constraint
map will also be generated and further applied to exclude the unsuitable areas to enhance the value of
the output of the DSS.

Using the five steps of the BWM, Figure 8 shows the results of weighting the criteria with a
consistency ratio equal to 0.07, which means the reliability of the results. Among them, the weighting of
rainfall is highest (38%), while the density of drainage is lowest (4%). These weightings will be further
transformed to a Fuzzy scale using Fuzzy logic in the GIS environment. The Fuzzy membership tool in
ArcGIS Spatial Analyst extension was adopted to reclassify the values to the 0 to 1 possibility scale.
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Figure 9 shows the general suitability maps resulting from the process of the BWM and Fuzzy
logic. However, such a general map needs to be further processed by excluding the unsuitable areas,
e.g., the buffers of roads, rivers, city centers and faults, that cannot be selected to implement RWH
structures due to technical, financial and environmental limitations [50].
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3.4. Constraint Map

This study adopted the Boolean technique to specify the areas that are restricted in action and
impossible to implement RWH. Four layers were selected as constraints and reclassified into binary
maps. A value of 0 was assigned to restricted areas, and a value of 1 was assigned to suitable areas [51].
The advantage of the Boolean method is the ease and simplicity of the calculations and its quick
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implementation. Table 4 lists the criteria for the Boolean technique suggested by Al-Adamat et al. [50].
Figure 10 shows the results of the constraint map.

Table 4. Constraint factors and the associated justification.

Factor Limitation Value

Distance to road >250 1
≤250 0

Distance to river >100 1
≤100 0

Distance to city >250 1
≤250 0

Distance to fault >1000 1
≤1000 0
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3.5. Identifying Suitable Areas for Different RWH Systems and Scenarios

Table 5 lists the criteria for three types of conventional techniques widely used in arid and semiarid
areas, which have been adopted from previous studies [31,37].

Table 5. The common RWH techniques and criteria used to generate suitability maps.

RWH Technique Rainfall Slope (%) Soil Type Land Use/Cover

Pond and pans >200 <5 Sandy clay loam, silty loam Ranges, farmlands, pastures, bare lands, woodlands, plain vegetation
Check dams <1000 <15 Sandy clay loam Rivers, ranges, farmlands, pastures, bare lands, rock protrusions

Percolation tank <1000 <10 Silt loam, clay loam Ranges, farmlands, pastures, bare lands, rock protrusions

Figure 11 shows the areas with suitability of 5 (excellent) and 4 (very suitable) areas for the three
types of RWH technique. These maps allow decision makers to choose the appropriate RWH technique
for the chosen areas and therefore is useful for promoting the RWH agriculture scheme.
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(c) percolation tank.

The total area of the excellent and very suitable areas of all three types of RWH structures will be
further used as the output of the DSS in the sensitivity analysis.
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3.6. Sensitivity Analysis Using the OAT Method

To explore the stability and reliability of the proposed method, i.e., BWM + Fuzzy, the sensitivity
analysis named OAT (one at a time) was conducted by comparing the proposed method with the most
commonly used traditional method, AHP + WOP. The OAT explores the changes in output induced by
changes in the modeling input parameters, enabling researchers to understand the behavior of the
modeled system [67]. In this study, OAT revealed the model stability and criteria sensitivity [68,69].
In this context, for example, when considering the input parameter w1 = 1.15 W1 where

∑
wi = 1

(W1 is the weight of the first criterion obtained by the BWM), the other input parameter will be
w2 = w3 = w4 = w5 = w6 = (1−w1)/5. The change in the weights input to GIS will result in a change
in output, i.e., the total suitability, of the sensitivity analysis. This procedure was performed for each
criterion and for 15%, 25%, 45% and 65% of each criterion for both BWM + Fuzzy and AHP + WOP.

Figure 12 shows the results of the sensitivity analysis. The variation in output area in BWM +

Fuzzy is mostly limited within 20%, while that of AHP + WOP is mostly above 20% and even to
100%, showing that BWM + Fuzzy is more stable and thus reliable. Previous studies on MCDM have
indicated that the BWM can provide more accurate and stable results with less uncertainty than that
of AHP. In the case of site-selecting methods in the GIS environment, the results of the sensitivity
analysis of BWM + Fuzzy are also better. This is partially because Fuzzy logic may greatly reduce
the effects of subjective evaluation. Therefore, the sensitivity analysis has not only reinforced the
previous study that the newer BWM is better than AHP but also showed that Fuzzy logic can work
well with the BWM in the GIS environment. Consequently, the proposed method has been verified to
enhance the information value and can, thereby, be accepted to discuss the strategy for transiting to the
new RWH agricultural paradigm and thus reducing the overexploitation of groundwater in arid and
semiarid areas.
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3.7. Strategy for the Development of RWH Agriculture

Based on the results of this DSS, a phase-wise strategic plan for the RWH agricultural scheme in
the study area can be further established. The factors that determine this strategic plan include the
capital required for investment, the benefit to local farmers, the local food demand, and the commercial
crops for exporting. Figure 13 shows areas of the existing farmland. By comparing with the existing
farmland, the phase-wise strategic plan for RWH agriculture was discussed as follows.
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3.7.1. Phase One: Install RWH Systems in the Existing Farming Areas

The existing agricultural lands that are included in suitable areas for RWH should be encouraged
to adopt RWH systems in the first phase, where local farmers will immediately benefit from minimum
investment or subsidies from the government. As soil erosion may be reduced by implementing
RWH systems, productivity can be potentially increased, thereby allowing farmers to pay back the
installation investment. In case of overlap taking place among three types of RWH systems, the priority
of implementation will be: first, pan and pond, second check dam, and last percolation tank. Figure 14
shows the suitability map for the three types of RWH agriculture in the first phase.

3.7.2. Phase Two: Increase the Local Supply by Creating New Farmland

As the population rapidly grows in developing countries, especially in Iran, domestic food
demand thereby increases and requires a new agriculture plan to meet the local demand. In the case
study, the suitable areas for RWH that are not within the existing farming areas but close to existing
villages should be developed into farmland as the second phase plan. Based on the local knowledge
gained from the first phase implementation, more experienced and trained engineers or farmers will
be available to support the development of the second phase plan. Figure 15 demonstrates the location
of areas for the Phase Two Plan.
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3.7.3. Phase Three: Develop Farmland for Commercial Exporting

Agricultural exports are very important for Iran, as they lead the country’s economy to reduce its
dependence on oil and move toward more sustainable development. Among these economic crops,
pistachios are one of the most important non-oil export goods in Iran. The production and associated
profit can be enhanced by increasing the cultivation areas, improving the water supply and introducing
more mechanized methods [70]. Due to excessive climate changes, drought and the need to diversify
agricultural production, the government has initiated several large schemes to promote the production
of crops with less water demand. Herein, using sustainable and decentralized alternatives such as
RWH systems to increase the production of crop exports is crucial because it creates less stress on
the existing water systems. The suitable areas for RWH that are outside existing farmlands but near
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main highways or ports can be assigned to be the areas for commercial crops for international trade.
The development of the third phase requires more capital for investment but has more potential to
improve the local economy. Figure 16 shows the areas for commercial export crops. The benefit of
such a strategy is that the development of crops exports will not hamper the domestic food supply nor
increase water stress in the country.Water 2020, 12, x FOR PEER REVIEW 22 of 27 
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Consequently, areas for the phase-wise strategic plan in the RWH agricultural scheme to
reduce the overexploitation of groundwater have been identified based on the proposed DSS.
However, more on-site investigations and agricultural economic tools should be involved in further
implementation. For further refinement of the DSS, quantitative assessment of the effect of the reduction
in groundwater exploitation by adopting RWH systems requires further investigation. The associated
economic evaluation of RWH agriculture for each type of crop should also be explored. The advantage
of this proposed DSS is that it provides a more accurate, reliable and visualized understanding for
decision makers than that of previous studies, and allows future expansion by adding hydraulic and
economic modules.

4. Conclusions

The increasing overexploitation of groundwater resulting from unsustainable agricultural practices
is leading to severe negative impacts on environmental, social and economic aspects and challenging
human development in arid and semiarid areas, especially in Iran. The transition of the current
unsustainable agricultural practice to a new paradigm based on RWH agriculture is urgent. In this
context, identifying the optimal sites for RWH agriculture on a large scale is the primary task for such
a new paradigm shift. For this, a new DSS that incorporates the BWM and Fuzzy logic into GIS has
been proposed in this study. Moreover, a probabilistic analysis of the rainfall pattern using Monte
Carlo simulation was also conducted, which not only enhances the understanding of rainfall scenarios
but also allows users to adjust the input according to the level of water demand. This study has
demonstrated the utility of the proposed DSS in the RWH agricultural scheme in Tehran Province, Iran.
Herein, three types of RWH systems, i.e., pans and ponds, percolation tanks, and check dams were
tested to obtain suitability maps. By comparing with the existing agricultural areas, the phase-wise
strategy for transitioning to RWH-based agriculture has been explored. Compared to the traditional
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methods that mostly adopt AHP and WOP in GIS for site selection, the sensitivity analysis has identified
that the proposed new DSS is more stable and reliable. Such a DSS also provides a straightforward and
simple approach to understanding the RWH agricultural scheme and, therefore, offers the potential for
public participation. For further research, the hydraulic model for these types of RWH systems and the
associated economic analysis can be further investigated and incorporated. The web-based interface of
this DSS can be further refined to be more user friendly before opening it to the public. Hence, this DSS
has been verified to enhance the information value and help for a large-scale RWH agricultural scheme
to ease the worsening overexploitation of groundwater and associated socioeconomic dilemmas in
arid and semiarid areas.
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