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Abstract: Rain gauges continue to be sources of rainfall data despite progress made in precipitation
measurements using radar and satellite technology. There has been some work done on assessing the
optimum rain gauge network density required for hydrological modelling, but without consensus.
This paper contributes to the identification of the optimum rain gauge network density, using scaling
laws and bias-corrected 1 km × 1 km grid radar rainfall records, covering an area of 28,371 km2

that hosts 315 rain gauges in south-east Queensland, Australia. Varying numbers of radar pixels
(rain gauges) were repeatedly sampled using a unique stratified sampling technique. For each set of
rainfall sampled data, a two-dimensional correlogram was developed from the normal scores obtained
through quantile-quantile transformation for ordinary kriging which is a stochastic interpolation.
Leave-one-out cross validation was carried out, and the simulated quantiles were evaluated using
the performance statistics of root-mean-square-error and mean-absolute-bias, as well as their rates
of change. A break in the scaling of the plots of these performance statistics against the number of
rain gauges was used to infer the optimum rain gauge network density. The optimum rain gauge
network density varied from 14 km2/gauge to 38 km2/gauge, with an average of 25 km2/gauge.
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1. Introduction

Rainfall is a key forcing input for hydrological modelling, such as that used in studies on extreme
events and climate impact analysis. However, the high spatial variability of rainfall is recognised,
and thus data regarding the rainfall distribution in space and time is paramount for meaningful use
of the outputs of hydrological models. Ground-based rain gauges have been the source of rainfall
measurement for quite a long time, and are generally seen as the “ground truth”. However, the poor
gauge network density, as a result of limited resources, accessibility and maintenance [1], is a challenge.
This is coupled with the fact that gauges provide information for a small area (e.g., 203 mm in
diameter), and extrapolating to the spatial scale of several km2 introduces high uncertainty (e.g., [2]).
In recent years, gridded radar and satellite products data have been processed to obviate the limitations
of the gauges, but these approaches have their challenges, including the spatial scale, which ranges
from 1 km2 to about 50 km2. The systematic bias issues that these products suffer range from sensor
limitations to sampling errors and the algorithms for retrieval [3]). Although weather radar captures
very well the spatial variability, the intensities suffer uncertainties stemming from factors such as beam
blocking, ground clutter and signal attenuation [4]. As such, there is always the need to bias-correct
these data sources with reference to the gauged measurements, and thus point rain gauge records
and interpolation methods will continue to play a key role in hydrological modelling. This obviously
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means that the combination of rain gauge records with either radar and/or satellite products will
continue to be widely used, except for in regions without radar or satellite data [5].

Gridded rainfall products (satellite, radar, general circulation models (GCMs), regional climate
models (RCMs) are normally calibrated and validated using rain gauge data, but the poor network
density introduces a high degree of uncertainty [6]. It is not just the density of the rain gauge networks,
but their non-uniform (irregular) distribution over the catchments, due to issues of accessibility and
topography, among other factors, also contribute to the uncertainty [7], bearing in mind the high
temporal and spatial variability [8]. Studies on the effects of rain gauge distribution and density on
input rainfall and hydrological modelling have highlighted that the key factor in runoff errors is the
errors in the input rainfall [9,10].

There have been numerous studies to identify the optimum rain gauge density, but without a
consensus being reached. As summarised in [11], there is great variation in the studied catchment
sizes and the rain gauge densities used in the various studies. For example, [12] used 10 gauges in
a < 0.05-km2 (0.005 km2/gauge) catchment, whereas [10] used 60 gauges in a 6400-km2 study area.
Most of the studies focused on the effect of changing the number of rain gauges on runoff response,
and not necessarily on identifying the optimum rain gauge network density [13]. By reducing the
number of rain gauges from seven to 1 in a 0.5◦ × 0.5◦ grid box, Mishra [14] observed that the absolute
error in daily rainfall measurement was reduced by 49%.

Approaches in the literature that improve the quality of satellite and radar rainfall products include
the simple scaling method (e.g., [15]). This method corrects the mean values of the gridded data based on
bias factors of the gridded and observed data, calculated at the monthly or daily timescale. This method
was slightly modified to improve the variance as well, by introducing a power law correction [16].
A major disadvantage of these methods is their failure to leverage the spatial and temporal patterns in
the observed data. Quantile mapping (QM) (e.g., [17]) is another popular method that only corrects
the marginal distribution, without regard for the spatial connectivity (spatial structure), or the wet-
and dry-spell lengths and the transition probability that describe the temporal sequences. Essentially,
it transforms the gridded data in order to preserve the marginal distribution of the observed data [18].
Yang et al. [3] presented a framework that uses a Gaussian weighting (GW) interpolation QM approach,
in order to bias-correct the PERSIANN-CCS satellite precipitation product over Chile. Bias-correction
methods have been applied to GCMs/RCMs outputs [19,20] as well. These methods are based on the
assumption that the observed data provide the population distribution, while it is in actuality only a
sample of the population, as demonstrated in this paper.

A framework for generating daily rainfields, based on interpolation of point data [21–24], is adopted
for the analysis in this paper. The daily radar rainfall data is bias-corrected using the observed data,
before using a stratified sampling approach to sample a given number of rain gauge locations. A major
contribution of the paper is the recognition that the marginal distribution of the observed daily data is
just a sample, and the population distribution needs to be identified through a bias-correction procedure.
In addition, the spatial structure of the radar rainfield was considered as the best representation,
but its marginal distribution for the day was bias-corrected. In essence, it is assumed that radar
provides the best spatial structure, and the point rain gauges the true intensities. Given a set of point
locations in a catchment, a two-dimensional (2D) correlogram is developed and used in an ordinary
kriging stochastic interpolation. Leave-one-out cross validation (LOOCV) is used to estimate the
performance statistics for a given set of rain gauge numbers. A break in scaling, identified by plots of
the performance statistics and the number of rain gauges, was used to infer the optimum rain gauge
network density, which is the main aim of this paper.

2. Study Area and Data

The study area is part of a 128-km radius circular range of the Mt. Stapylton weather radar station,
which has a landfall area of 28,371 km2 (Figure 1).
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Figure 1. The study area: pluses are the location of the rain gauges, solid circle is the location of the
Staplyton radar, and the numbers are the 25 km × 25 km grid blocks.

It is located in south-east Queensland, and the radar is centred at a latitude of 27.718◦ S
and a longitude of 153.240◦ E. The radar data has been processed by the Australian Bureau of
Meteorology (BOM) (http://www.bom.gov.au/australia/radar/about/calculating_rainfall_accumulations.
shtml, accessed on 12 August 2015), and supplied with a 6 min temporal resolution and a spatial unit
of 1 km2, and from January 1, 2009 to June 30, 2015. However, the radar data were aggregated from
9 a.m. to 9 a.m. in order to conform to the observed daily rainfall sampling timescale. Within the study
area, there are 324 rainfall gauges (Figure 1) that are managed by the BOM. Missing records within
the daily rainfall data have been infilled by the Queensland Department of Environment and Science
(https://www.longpaddock.qld.gov.au/silo/, accessed on 4 April 2020), and the complete records were
used. Each rain gauge station is assigned to a 1-km2 radar grid centre, and the values of grid centres
with more than one rain gauge were averaged, reducing the daily rain gauge stations to 315. The rainfall
data from the radar at the 315-gauge locations were extracted to constitute the collocated datasets.
This means that for the day of interest, we have the radar (RAD), gauged (GAU) and collocated (COL)
datasets for analysis. While the radar data has a minimum wet value of 0.01 mm, the minimum was set
to 0.1 mm, to conform with the observed daily rainfall records. It needs to be underlined that partial
radar coverage data have been previously used [22–24], and this is the first time that the complete
landfall area coverage is being used.

http://www.bom.gov.au/australia/radar/about/calculating_rainfall_accumulations.shtml
http://www.bom.gov.au/australia/radar/about/calculating_rainfall_accumulations.shtml
https://www.longpaddock.qld.gov.au/silo/
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A temperate climate, without a dry season and a hot summer, characterises the climate of
the study area, in accordance with the classification of [25]. It is a subtropical region, with an
average temperature of 26.5 ◦C, and with summer temperatures sometimes exceeding 29 ◦C.
The region experiences an average annual rainfall of 990 mm, the majority of which occurs during the
summer months, from December to March. The winter months from June to August are generally dry,
whereas the hot summer months from December to February could experience elevated numbers
of thunderstorms.

3. Methodology

3.1. Marginal Distribution Fitting

A standard two-parameter right-skewed distribution is fitted to the daily rainfall amounts greater
than zero from the 3 datasets (RAD, GAU and COL) separately. One standard distribution is chosen
from the set of Generalized Pareto, Gamma, Gumbel, Log-Logistic, Log-Normal, Kappa and Weibull
(R packages fitdistrplus, [26]; FAdist, [27]), using the Anderson-Darling statistic. These right-skewed
distributions are considered appropriate for daily rainfall amounts as treated here, and they are
commonly used in the literature [28–32]. The fitted distribution is used to transform the daily amounts
to probabilities, and then to the standard Gaussian (N [0,1]) quantiles (Q-Q transformation) used in the
ordinary kriging interpolation. However, there is a need to account for the dry gauges (zeros) that
abound in daily rainfall records. Daily rainfall amounts r at a dry station k with spatial coordinates Sk
are assigned as:

r[sk] = 0.1 exp
(
−

d[sk]

d

)
(1)

where d[sk] is the minimum distance of the dry gauge located at Sk from a wet gauge, d is the average
of d, and 0.1 is the minimum wet gauge value. Assuming po represents the proportion of the gauges
that are dry, the fitted two-parameter distribution FR is zero inflated and used to transform the rainfall
amounts r[sk] into standard Gaussian quantiles (normal score) w[sk], as:

w[sk] =
Φ−1[FR(r[sk])(1− p0) + p0] , r[sk] ≥ 0.1

Φ−1
[
p0. exp

(
−

d[sk]

d

)]
, r[sk] < 0.1

(2)

In Equation (2), the cumulative normal distribution N [0,1] is represented as Φ, and Φ−1 is
the inverse. Given a normal score, the inverse of Equation (2), written as

r[sk] =
F−1

R [
{
Φ(w[sk]) − p0

}
/(1− p0)] , Φ(w[sk]) ≥ p0

0 , Φ(w[sk]) < p0
(3)

gives the rainfall amount.

3.2. Bias Correction

There could be significant differences between the marginal distributions of GAU, RAD and
COL datasets for the same day. Hence a bias correction method was implemented. The traditional
Quantile-Quantile (Q-Q) bias-correction method assumes that the observed gauge data provide the
right distribution, and that the gridded datasets from radar, satellite or GCMs/RCMs therefore need to
be adjusted to reflect the observed distribution. This idea is expressed mathematically as (e.g., [18])

RRAD−BC = F−1
GAU[FRAD(RRAD)] (4)

and is used to correct the gridded radar rainfall amounts (RRAD) to bias-corrected (RRAD−BC) amounts,
using the rain gauge data distribution (FGAU) and radar data distribution (FRAD) for the day, F−1 being
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the inverse function. However, the observed daily records as used in this paper are seen as a sample,
and therefore require adjustment as well. As presented later, the number of rain gauges is not high
enough to reproduce the spatial structure for a wet day.

For a given probability p, the fitted distributions (FGAU, FRAD, FCOL) are used to estimate the
rainfall amount for GAU, RAD and COL. Then, the difference between the RAD and COL amounts
is added to the GAU in order to obtain amounts that follow the “true” distribution (FTRUE) of daily
rainfall (R) for the day. This is expressed mathematically as:

R(p) = F−1
TRUE

(p) = F−1
GAU(p) + F−1

RAD(p) − F−1
COL(p) (5)

Given the GAU rainfall amounts (RGAU), the true distribution is then used to estimate the
bias-corrected probabilities (pGAU−BC), whereas, for the RAD, the probabilities [FRAD(RRAD)] are used
to adjust the rainfall amounts, as:

pGAU−BC = FTRUE(RGAU)

RRAD−BC = F−1
TRUE[FRAD(RRAD)]

(6)

Therefore, the observed rainfall amounts are preserved, but their probabilities are reassigned,
whereas the reverse is the case for the radar rainfall. Figure 2 illustrates the bias-correction scheme.
Hereafter, the bias-corrected radar daily rainfall amounts are used.

Figure 2. Bias correction scheme: black arrows show the errors in the collocated rainfall amount that is
added to the gauged amount to obtain the “true” distribution (red curve); blue arrows indicate the
correction of the probability of the gauge rainfall amount; brown arrows show the correction applied to
the radar rainfall amounts.

3.3. Spatial Structure Modelling

The spatial structure required by the ordinary kriging interpolation is developed using the
standard Gaussian quantiles, due to the normality assumption of kriging. It is based on the framework
presented by [33], which uses the ‘round-trip’ fast Fourier transform approach on the empirical
correlogram R̃[i, j], obtained as:

R̃(x, y) =
1

Nh

Nh∑
k=1

w[sk]w[sk + h] −m0m+h , ∀(sk, sk + h) : h ∈ (x± 1, y± 1) (7)

In Equation (7), x and y are the separation distances, in km, in the eastern and northern directions,
respectively, from the origin (0,0) of the empirical correlogram. Pair gauge locations at separation
distance h within the bounded region of (x± 1, y± 1) are included in the calculation of the correlogram



Water 2020, 12, 1906 6 of 19

value at the grid point (x, y), with Nh representing the number of pair gauges. The means of the pair of
tail w[sk] and head w[sk + h] values are denoted as mo and m+h, respectively.

Following [21,22], a 2D exponential distribution expressed as

RΘ(x, y) = RΘ(u, v) = exp

−
[( u

Lu

)2
+

( v
Lv

)2
]1/2

 ,
u = y sin(θ) + x cos(θ)
v = y cos(θ) − x sin(θ)

(8)

was fitted to the empirical correlogram data. Along an elliptical contour, u and v are the separation
distances in the direction of the major and minor axes, respectively. The 3 parameters defining the
2D exponential distribution are the angle between the major axis and the horizontal direction (θ),
the major axis length (Lu), and the minor axis length (Lv), the anisotropy ratio (η) being defined
as Lv/Lu. These parameters are estimated using the global optimisation technique of [34] by matching
the empirical and the analytical elliptical correlogram contours [21].

3.4. Stratified Sampling of Rain Gauge Locations

In order to investigate the effects of the number of rain gauges (radar pixels used interchangeably)
on the spatial structure, a set number of rain gauges were sampled from the grid centres of the
radar data. It is a known fact that rain gauges are by no means uniformly distributed over a
study region, as exemplified in Figure 1 for the study region. Therefore, a stratified sampling approach
was adopted to mimic the spatial distribution of the current rain gauges. These are the steps for the
stratified sampling approach:

• Firstly, the study region was overlaid with a 25 km× 25 km grid, and the resulting 63 blocks within,
or intersecting, the study region are labelled in Figure 1;

• Secondly, rain gauges within each grid were counted, and those blocks devoid of gauges were
assigned a value of 0.5 times the fraction of the grid within the radar coverage, to allow for
possible selection of gauges within the fractional grids, particularly for higher sampling numbers.
The rain gauge network density of the grids varies from 1.7 to 48.6 gauges per 1000 km2, grid 45
recording the highest density;

• Thirdly, the observed rain gauge counts within the grids were used to develop the weights for the
stratified sampling;

• Fourth, the number of rain gauges required were sampled with replacement from integers 1 to 63,
representing the grids, in accordance with their weights;

• Finally, the numbers of samples from each grid from the previous step were sampled randomly,
without replacement from the subset of the grid, noting that the subset of each grid is the number
of 1-km2 radar grid centres it contains, which varies from 6 (grid 61) to 625 (the inner grids).

The set of the number of rain gauges sampled from the radar grid centres is {20, 50, 100, 200, 315
(number of observed gauges), 500, 750, 1000, 1250, 1500, 1750, 2000, 3000, 5000, 7500, 10,000, 15,000,
20,000, 28,371 (full radar)}. Because the variability in the spatial structure and the mean distance
between gauges is highest for the lowest number of rain gauges, the number of repetitions was varied
as {50, 45, 40, 35, 30, 25, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 10, 10, 1} for the set of the number of rain
gauges, respectively. Figure 3 shows the spatial distribution of 3 sets having a number of rain gauges
of 50, which mimics very well the spatial distribution of the observed rain gauges.
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Figure 3. Distribution of 3 sets of 50 rain gauge locations selected by the stratified sampling approach.

3.5. Performance Statistics

Ordinary kriging does not require a description here, as it has been well documented in the
literature (e.g., [35,36]). However, it suffices to say that it estimates a variable at a target location
using known values at several locations in space, and it is based on linear weighted least squares.
For each set of a number of rain gauges sampled, one of the distributions discussed in Section 3.1 was
fitted and used to convert the rainfall amounts to standard normal quantiles by means of Equation (2).
Then, a 2D correlogram was fitted as explained in Section 3.3. Next, leave-one-out cross validation
(LOOCV) was performed using the R package gstat [37]. LOOCV leaves one data point out at a time,
and its prediction is made using the remaining data points. The predictions in the normal score were
converted to rainfall amounts using Equation (3). The predicted values were evaluated using the
root-mean-square-error (RMSE) and the mean-absolute-bias (MAB) performance statistics, defined as:

RMSE =

√√√
1
N

N∑
i=1

[VO(i) −VP(i)]
2 (9)

MAB =
1
N

N∑
i=1

∣∣∣VO(i) −VP(i)
∣∣∣ (10)

where the observed and predicted values for the ith gauge are, respectively, VO(i) and VP(i), and N is
the number of sampled rain gauges. The variation of the performance statistics with the number of
rain gauges is used to identify the optimum rain gauge network density.
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4. Results and Discussion

A total of 24 wet days, with varying statistical properties, were selected for the analysis (Table 1).

Table 1. Statistics of the selected radar wet days after bias correction.

Date
MN SD WP MAX LX LY AR AA

(mm) (mm) (-) (mm) (km) (km) (-) (degrees)

20090102 12.2 11.5 0.995 163.8 40.1 23.4 0.583 143.8

20090402 16.8 11.9 0.381 76.2 86.7 50.3 0.581 74.7

20090405 16.0 15.5 0.875 107.4 38.4 23.0 0.600 136.5

20090413 7.3 8.7 0.445 70.1 63.9 28.2 0.442 78.3

20101011 63.1 40.8 0.962 353.7 103.0 59.6 0.579 6.1

20101211 5.8 5.1 0.147 35.7 44.4 17.5 0.395 118.5

20101216 4.6 2.9 0.872 46.8 67.0 47.1 0.703 37.0

20110105 3.9 1.7 0.551 5.9 78.3 68.2 0.870 77.5

20110523 4.9 4.5 0.454 56.5 50.2 42.7 0.851 71.0

20110830 6.4 8.9 0.258 99.9 44.1 22.3 0.505 163.1

20111223 4.1 2.7 0.094 18.3 56.8 45.6 0.804 122.0

20120125 102.2 64.6 1.000 450.1 91.9 59.0 0.642 98.9

20121218 5.6 5.1 0.590 68.4 72.6 64.2 0.885 108.0

20130530 4.0 5.2 0.509 45.6 66.5 64.0 0.962 82.3

20130630 4.0 2.6 0.365 11.0 90.9 55.8 0.614 74.9

20140122 7.4 4.7 0.373 15.0 52.4 49.4 0.943 126.1

20140123 3.1 1.4 1.000 5.1 59.0 31.4 0.533 169.3

20140328 119.7 43.7 1.000 353.2 70.2 60.8 0.866 16.2

20141119 5.3 4.4 0.278 28.7 23.1 17.1 0.739 17.0

20141205 11.2 11.6 0.826 65.2 49.3 35.6 0.722 120.3

20141218 3.6 5.6 0.987 59.5 53.3 27.6 0.517 33.4

20150102 4.2 3.6 0.605 45.4 35.3 23.8 0.674 113.6

20150126 10.6 10.2 0.338 67.0 46.1 30.2 0.656 93.8

20150127 8.8 13.9 0.487 204.6 31.7 22.3 0.703 152.5

Minimum 3.1 1.4 0.094 5.1 23.1 17.1 0.395 6.1

Average 18.1 12.1 0.600 102.2 59.0 40.4 0.682 93.1

Maximum 119.7 64.6 1.000 450.1 103.0 68.2 0.962 169.3

MN—mean rainfall (pixels ≥ 1mm); SD—standard deviation of rainfall (pixels ≥ 1mm); WP—proportion of pixels
with rainfall ≥ 1mm; MAX—maximum rainfall; LX—major axis length; LY—minor axis length; AR—anisotropy
ratio; AA—anisotropy angle.

As seen in Table 1, the mean of pixels that registered rainfall amounts ≥ 1 mm varies between
3.1 mm and 119.7 mm, while the proportion of wet pixels ranges from 0.094 to 1. For the maximum
pixel rainfall, the range is from 5.1 mm to 450 mm.

4.1. Marginal Distribution

Figure 4 shows the results of the bias-correction scheme applied to the marginal distributions
of four selected wet days, and their bias-corrected rainfields are depicted in Figure 5. In many cases,
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radar overestimates (demonstrated by 20290402, 20101216) or underestimates (demonstrated by
20101011, 20120125) the observed rainfall [38,39], explaining why bias-correction is necessary (e.g., [40]).

Figure 4. Bias correction applied to the rain gauge probabilities and the radar rainfall amounts to
obtain the “true” bias corrected marginal distribution.

Some of the errors stem from the methods used for converting radar reflectivity to rainfall intensity
and ground clutter. For day 20120125, the collocated distribution was in sync with that of the full radar,
but different from the distribution of the rain gauge data. A such, the agreement between the full radar
and the collocated marginal distributions depends on the spatial distribution of rainfall, which varies
significantly across the wet days.

Rainfall amounts were sampled from the bias-corrected radar images corresponding to a given
number of rain gauges. This was repeated a number of times, as explained in Section 3.4. An empirical
distribution is fitted to each sampled dataset. For a given probability, rainfall amounts from the
repeated samples were used to define the median and the 95% prediction limits for that probability.
Figure 6 compares the median empirical distribution with the one derived from the full radar. While the
median distribution is quite close to the full radar for all numbers of gauges, the widths of the prediction
limits decrease with increasing numbers of gauges. Again, the spatial distribution of rainfall for the
day will determine how the median distribution of the smaller number of gauges matches the full
radar case. As shown in the two examples, the higher the coefficient of variation for the rainfall data,
the higher the variability around the median distribution.



Water 2020, 12, 1906 10 of 19

Figure 5. Radar daily rainfall images after bias correction of some wet days exhibiting different
statistical properties.
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Figure 6. Variation of the median marginal distribution of the sampled data for a given number of
rain gauges; the 95% prediction limits are shown in dotted blue lines; top four plots are for 20090402
(wet proportion < 0.5) and the bottom four plots are for 20120125 (wet proportion = 1).
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4.2. Spatial Structure Parameters

For each set of sampled rainfall data for a fixed number of gauges, Equations (1) and (2) were
used to convert rainfall data into normal scores. The Section 3.3 methodology was applied to derive
the 2D correlogram parameters of the major and minor axis lengths, as well as the anisotropy direction
and ratio. Figure 7 shows the variation of the correlogram parameters with the number of gauges for two
wet days. Both the major and minor axis lengths increase similarly as the number of gauges increases,
at a rate of over 40% for an additional gauge at 50 gauges, and drops sharply to less than 1% between
1000 and 1500 gauges, using the median values. While there is considerable variation in the anisotropy
direction up to about 2000 gauges, the median stabilises quite well after 100 gauges. These observations
point to the fact that daily rainfall varies considerably from wet day to wet day, and reflecting the true
spatial structure entirely depends on the number and location of the gauges. It needs to be pointed out
that the patterns displayed in Figure 7 were also observed by [21] using radar rainfall records from the
Bethlehem station in South Africa, but no analyses, as done in this paper, were made.

Figure 7. Variation of the correlogram parameters with the number of rainfall gauges; the crosses are
values for the repeated stratified sampling and the solid circles are the medians.



Water 2020, 12, 1906 13 of 19

4.3. The Optimum Rain Gauge Network Density

In this section, each set of sampled rainfall data for a fixed number of gauges is used to develop
the marginal distribution and the 2D spatial structure required by the ordinary kriging interpolation.
The LOOCV technique was used to simulate rainfall amounts, which were evaluated using RMSE
and MAB, as presented in Section 3.5, thus incorporating uncertainties into the marginal distribution
and the 2D spatial structure, because of the inadequate number of gauges sampled.

Figure 8 shows plots of the performance statistics (RMSE and MAB) against the number of gauges
for the different sampled datasets. The median values of the repeated samples for a fixed number of
gauges are shown as solid circles. It is not surprising that the variability of the performance statistics,
with regards to the median values, is higher for the smaller number of gauges.

As the rain gauge network density increases, the inter-gauge distances are decreased,
thus increasing the correlation between the gauges that results in the observed decreasing
performance statistics. After 2000 gauges, there is virtually no variability in the median. Of note is the
perfect power law scaling beyond 2000 gauges for all performance statistics, as empirically observed
for all wet days. Therefore, a power law of the form

PS = A.NB (11)

was fitted to the median values after the number of gauges passed 2000. In Equation (11), PS indicates
a performance statistic which is either RMSE or MAB, N is the number of gauges, and A and B are the
power law coefficient (normalising factor) and scaling exponent, respectively. Gyasi-Agyei et al. [41]
used such a power law to relate the channel network average link slope to contributing catchments.
They used the break in the scaling exponent (B) to delineate hillslope from the main channel network
of a catchment. In the presentation here, the fitted power law line is extended to the lowest number of
gauges, in order to determine at which number of gauges there is a break in the scaling, i.e., departure
from the scaling law. This breaking point is identified as the optimum number of gauges, and thus
there is no appreciable increase in information gained when the number of gauges is increased beyond
this point.

In Table 2, the values of the scaling coefficient and exponent of the fitted power law for the
different wet days are shown. It is observed that the scaling exponent of RMSE and MAB are not
significantly different for the same day at the 5% level (paired T test p-value = 0.49; F test p-value = 0.2),
but the breaking point identified could be significantly different; about 460 on average. With respect
to RMSE, the breaking point varies from 750 gauges (38 km2/gauge) to 2000 gauges (14 km2/gauge),
while for the MAB it could be as high as 56 km2/gauge for a few wet days. Dwelling on the averages,
RMSE yielded 18 km2/gauge and MAB 26 km2/gauge, and their combination yielded 22 km2/gauge.
These average values translate to grid sizes of 4 km for RMSE, 5 km for MAB, and 4.7 km for the
combination. There is no apparent correlation between the scaling exponents and the listed rainfall
properties in Table 1, with the exception of the wet proportion, which exhibits correlation coefficients
of −0.6 with RMSE and −0.7 with MAB. This means that as the wet proportion increases, the power
law scaling slope becomes steeper.
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Figure 8. Variation of root-mean-square-error (RMSE) and mean-absolute-bias (MAB) with the number
of gauges; the solid circles are the median for a given number of gauges and the straight lines are
power law curves fitted to the higher number of gauges; A is the scaling constant; B is the scaling
exponent; the vertical dashed lines are the breaking point of the power law scaling; R2 is the coefficient
of determination of the fit; y axis also on log10 scale.
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Table 2. Root-mean-square-error (RMSE) and mean absolute bias (MAB) scaling parameters.

Date RMSE MAB Average

A B Break A B Break Break

20090102 122.1 −0.456 2000 57.4 −0.494 1500 1750

20090402 38.9 −0.346 1250 19.7 −0.377 1250 1250

20090405 121.2 −0.437 1000 58.8 −0.422 500 750

20090413 54.2 −0.496 2000 16.4 −0.476 1250 1625

20101011 251.9 −0.534 1750 144.0 −0.543 1500 1625

20101211 17.6 −0.380 2000 7.8 −0.420 2000 2000

20101216 42.5 −0.478 1500 18.2 −0.509 1250 1375

20110105 18.6 −0.463 1500 9.1 −0.456 750 1125

20110523 23.3 −0.387 1750 12.0 −0.429 1000 1375

20110830 34.6 −0.390 2000 17.4 −0.456 750 1375

20111223 6.6 −0.327 1500 3.6 −0.378 1250 1375

20120125 354.2 −0.496 1750 191.0 −0.498 1250 1500

20121218 49.9 −0.467 1000 13.7 −0.438 750 875

20130530 20.2 −0.383 750 10.8 −0.416 750 750

20130630 12.8 −0.491 1750 4.6 −0.453 750 1250

20140122 37.2 −0.508 1000 11.3 −0.466 1250 1125

20140123 13.2 −0.495 2000 7.0 −0.496 1250 1625

20140328 325.7 −0.511 2000 153.9 −0.505 1000 1500

20141119 30.5 −0.405 1000 10.2 −0.388 500 750

20141205 135.9 −0.503 2000 43.9 −0.473 750 1375

20141218 48.2 −0.443 1500 20.4 −0.465 1000 1250

20150102 34.9 −0.446 2000 11.9 −0.408 1000 1500

20150126 95.1 −0.479 1000 24.5 −0.436 1750 1375

20150127 70.2 −0.354 750 27.5 −0.388 750 750

Minimum 6.6 −0.534 750 3.6 −0.543 500 750

Average 81.6 −0.445 1531 37.3 −0.450 1073 1302

Maximum 354.2 −0.327 2000 191.0 −0.377 2000 2000

A—scaling constant; B—scaling exponent; break—break in scaling.

Another way to estimate the representative threshold values was to use rate of change (ROC),
estimated as

ROCi =
PSi+1 − PSi

PSi(Ni+1 −Ni)
100 (12)

where i and i+1 are the successive number of gauges indexed when arranged in increasing order,
(Ni+1 − Ni) is the difference in the number of gauges, and (PSi+1 − PSi) represents the difference in
performance statistics at the successive intervals. In comparison to RMSE and MAB, the ROC is rainfall
magnitude-independent, meaning values for the different wet days could be compared. Rates of
change (ROC) is commonly used in finance to measure the change in the price of a security over a fixed
time interval, so the denominator (Ni+1 − Ni) is not required, or set to 1, in that sense (https://www.
ambroker.com/en/analysis/blog/what-rate-change-roc-indicator-and-how-use-trading/, accessed on
2 June 2020). The ROC was calculated progressively for all increasing numbers of gauges for each wet
day. For a fixed number of gauges, the medians of the 24 values were selected and plotted in Figure 9.

https://www.ambroker.com/en/analysis/blog/what-rate-change-roc-indicator-and-how-use-trading/
https://www.ambroker.com/en/analysis/blog/what-rate-change-roc-indicator-and-how-use-trading/
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Figure 9. Rates of change: the median of the 24 wet days are in solid circles and the red line is the fitted
power law; the ROCs are negative, so absolute values were used to allow fitting of the power law;
the dashed vertical lines are the breaking points; y axis also on log10 scale.

As was done for the individual days of RMSE, demonstrated in Figure 8, the power law curve
(Equation (11)) was fitted to the number of gauges beyond 2000, and extrapolated to the lower number
of gauges to identify the scaling breaking point. Because both the RMSE and MAB show decreasing
trends with increasing numbers of gauges, resulting in negative ROC values, absolute values of ROC
(or −ROC) were used to allow the fitting of the power law. Clearly, the breaking point is 1000 for
the ROC of the RMSE, and 1250 gauges for that of MAB, the average of both performance statistics
being 1125 gauges. These breaking points are slightly lower than the average of the breaking points of
individual wet days, as presented in Table 2. A breaking point of 1125 gauges translates to an optimum
rain gauge density of 25 km2/gauge, and a grid size of 5 km. Since the current rain gauge density of the
case study site is 90 km2/gauge (28,371/315), the implication of our finding is that this density needs to
be improved by at least a factor of three, to mimic the full-scale level. Due to economic constraints,
this may not be the way to go, and it may be necessary to rely on blending radar and satellite records
with whatever gauge network density is affordable, while remaining aware of the need to be wary
of the consequences. Hence ground based rain gauges will continue to be widely used and play a
significant role in hydrological analysis and modelling.

Girons Lopez et al. [10] used an inverse-distance weighting method to interpolate a varying
number of rain gauges over a 6400-km2 study area in north-eastern Switzerland. Using a Pearson
correlation coefficient and the normalised RMSE (NRMSE), they concluded that increasing the rain
gauge network density beyond 24 per 1000 km2 (42 km2 per gauge, grid size of 6.4 km) did not improve
the performance statistics. Their threshold value for the optimum rain gauge density is not significantly
different from what has been observed in our case study, our average optimum being a grid size of
5 km. However, a grid size of 4 km (2000 gauges) is ideal for all wet days. Villarini et al. [7] witnessed
the power law type decrease in the NRMSE of catchment-wide average rainfall when the numbers of
rain gauges were increased, although they did not fit a power-curve to investigate whether there is a
breaking point in the scaling behaviour, as this was not their objective. However, they recommended
a minimum of four gauges to evaluate satellite pixels of about 200 km2 for daily rainfall, and they
established a scaling behaviour (power law) between the NRMSE of rainfall accumulation and the
sampling interval.

This study has provided one insight into the evaluation of the daily satellite precipitation products
that come with different grid sizes. The grid size of 4 km for PERSIANN_CCS [42] and TASAT [43]
satellite products may be ideal. Certainly, precipitation satellite products with grid sizes of 10 km or
greater may require spatial downscaling to a finer grid size, for better hydrological modelling.
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5. Conclusions

The rain gauge continues to be a valuable source of rainfall records, despite its primary limitation
of having a small coverage area, of about 203 mm in diameter, and an inadequate network density,
rendering it unable to capture the high spatial variability of rainfall. For these reasons, radar and
satellite rainfall data sources are becoming popular, but can be cost-prohibitive for some areas. With the
aid of bias-corrected radar daily rainfall records, this study has provided a framework for determining
the optimum rain gauge density. The probabilities of the radar records are assumed to be correct,
but the rainfall amounts were bias-corrected using observed daily rain gauge records within the
study area. While there are many studies in the literature on the optimum rain gauge network density,
there is no consensus on this. A simple practical approach is implemented to ascertain the optimum
rain gauge network density.

The starting point is a unique stratified sampling technique, used to mimic the distribution of
the current rain gauge locations that are employed to sample a fixed number of rain gauge locations
from the bias-corrected radar data of the wet day, with the days considered independently. This was
repeated a number of times for a fixed number of gauges. For each set of sampled locations, the daily
rainfall amounts were transformed into normal scores that were used to develop the 2D correlogram
(spatial structure) required by ordinary kriging interpolation. Then, LOOCV was carried out, and the
simulated quantiles were evaluated using the performance statistics of RMSE and MAB. Plotting these
performance statistics against the number of rain gauges revealed a break in scaling for all the 24 wet
days analysed. Rates of change (ROC) per additional gauge of the performance statistics revealed the
same break in scaling as that depicted by RMSE and MAB. It is the breaking point in the power law
scaling that is used to infer the optimum rain gauge network density.

Generally speaking, the uncertainty concerning the median of the performance statistics decreases
with the increasing number of gauges. This is due to the fact that the higher the number of gauges,
the better the reproduction of the spatial structure of the full-scale region. The break in scaling varied
between 750 and 2000 gauges, which translates to 38 km2/gauge (grid size ~6 km) to 14 km2/gauge
(grid size ~4 km), respectively. However, no apparent reasons were established for the variations in the
daily rainfall statistics. In the end, ROC gave an average optimum network density of 25 km2/gauge,
corresponding to a grid size of 5 km. Thus, the case study site’s rain gauge network density of
90 km2/gauge needs to be improved by at least a factor of three in order to mimic the full-scale level.

One implication is that there may not be a real advantage in downscaling daily satellite precipitation
products with grid sizes finer than 5 km. However, this methodology needs to be duplicated in different
regions in order to ascertain the effects of local conditions, such as orography and the spatiotemporal
variability of rainfall, on the optimum rain gauge network density. While the breaking point of the
number of gauges varied from day to day, there were no clear linkages between this and the storm
properties, and this needs to be further investigated.
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