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Abstract: Environmental sampling plays an important role in quantitative and qualitative investigation
of plastic pollution. Rivers are a major source, carrying plastic litter into the oceans. Microplastic
sampling in riverine and coastal environments is often a challenging task due to limited access,
time taken, costs, human resources, etc. Our present study evaluated the performance of newly
developed sampling devices (Albatross Mark 5 and 6 (AM-5 and AM-6)) that were suitable to collect
floating and suspended microplastic samples in challenging freshwater and coastal environments
(95 locations). Our observations indicated a similar magnitude of microplastic concentrations
with AM-5 and AM-6 sampling compared to conventional plankton nets. The sampling duration,
originally 10–60 min (by plankton net), was reduced to 3 min (AM-5 and AM-6) for sampling
water volumes of approximately 10 m3. The developed AM-6 device was used to collect samples
from riverine and coastal environments in Japan. The microplastic particle polymer composition
(using Fourier transform infrared spectrophotometry (FT-IR)), size, and shape (microscopic images)
were investigated. The observations showed a statistically significant particle size reduction from
the riverine to coastal areas. The dominant polymer types detected were polyethylene (PE) and
polypropylene (PP). The observations were complied with the coastal microplastic observations that
were reported for previous studies in Japanese water environments.

Keywords: albatross; coastal environments; floating and suspended microplastic; microplastic; rapid
sampling; riverine environments

1. Introduction

Aquatic plastic pollution is considered to be one of the most challenging global environmental
issues. The longevity of plastic is estimated to be hundreds to thousands of years. Hence, the plastics
released into the environment will remain for hundreds of years [1]. The adverse effects of plastic
litter in the environment have been widely discussed in the literature [2,3]. Plastic contaminants in
freshwater are a threat to the ecosystem and a potential health hazard to humans [4–6]. Apart from
that, freshwater resources (i.e., rivers) carry plastic litter into marine environments. Then, local and
regional plastic pollution become a global concern. Besides, rivers are considered to be a primary
contamination pathway of microplastics to reach the oceans. It is estimated that between 1.15 and
2.41 million tons of plastic waste currently enters the ocean every year from rivers [7]. According to
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Schmidt et al. [8], 80–90% of plastic that reaches oceans comes from rivers. Major sources of the marine
plastic litter that is transported through rivers originate from improper waste management practices,
wastewater treatment plant effluent, and inland transportation related activities [9]. Due to the long
half-life of plastic polymers, the plastic concentration in oceans is increasing. It is predicted that, within
the next 50 years, in some oceanic regions, the microplastic concentrations will exceed 1 g/m3 [10].
Thus, further research on plastic litter in riverine environments is important to mitigate the aquatic
(both freshwater and marine) plastic pollution.

Based on size, plastics are categorized into macro- (>25 mm), meso- (25–5 mm), micro-
(5 mm–0.1 µm), and nano-plastics (<0.1 µm) [11]. Microplastics are divided into two categories,
primary and secondary, based on the origin. Primary microplastics enter the environment directly
as microplastics. Secondary microplastics derive from the breakdown of larger plastics in the
environment [12]. The environmental degradation of plastic is governed by a synergic effect of photo-
and thermo-oxidative degradation, abrasion, and biological activities [1,13].

Microplastics in a riverine environment can be sub-categorized into several groups, such as floating
plastic, suspended plastic, plastic on the riverbed, plastic in the sediment, and plastics in biota [14].
This depends on the hydraulics of the waterbody and properties of plastic, such as composition, specific
gravity (SG), and shape [15]. Plastic particles change in size and SG by degradation, aggregation,
or by the growth of biofilms [16], and flow turbulences move these particles through inter- and
intra-river sub-compartments.

Considering the SG range of various plastic polymers, floating and suspended plastics are
dominated by polyethylene (PE) and polypropylene (PP) due to the lower specific gravities. Moreover,
PE and PP are the highest released plastic polymers from land-based sources to the environment [9].
However, as mentioned previously, due to river flow currents and the association with air bubbles,
biofilms, etc., higher SG polymer microplastics could also exist in riverine environments as suspended
or floating particles.

Quantitative information of microplastics in freshwater and coastal water environments is
useful for a number of applications, including plastic litter fate assessments [10] and risk assessment
studies [17]. Environmental sampling plays an important role in assessing the plastic concentration in
aquatic environments. Several studies have been conducted to quantify microplastic contamination in
riverine environments [7,18].

Essentially, there are two types of sampling for marine and freshwater environments, grab samples
of smaller volumes and on-site filtration sampling with comparatively large volumes. Grab sampling
is mostly focused on sediment sampling; however, some studies focused on floating and suspended
microplastics sampling [19,20]. The onsite filtration sampling of floating and suspended microplastics
can be subdivided into several methods based on the kind of devices used. Simple plankton nets
(also referred to as manta nets) with mesh opening sizes about 100 and 300 µm comprised the
basic method used by many researchers [21–23]. Often, plankton net sampling requires supporting
infrastructure, such as a trawl/boat or, in the case of river sampling, a bridge or a solid riverbank.
Sometimes, the water body is not deep enough to be sampled using a boat, and the filtered quantity
cannot be measured accurately [24]. Furthermore, the filtered volume estimation in microplastic
sampling with trawling net method often uses the boat speed and the opening area of the net [21–23].
The lack of accuracy of this sample volume calculation effects the expressed concentration. Additionally,
sampling with nets (suspended from a bridge) using the natural river flow takes long durations [25].
Hence, the lack of standard methods for sampling, concentration calculation, and reporting make
comparison difficult. For example, if coastal and riverine sampling methods are different and affect the
accuracy of observations differently, the comparison of observations is less meaningful. Therefore,
development of a method suitable for multiple environmental conditions is required.

Several studies focused on pumping followed by a filtration method for sampling in rivers.
In this case, water is pumped out of the river, and then the water is filtered through a series of
filters [24]. The complexity of submerged pumps, lower pump flowrates, the difficulties of using
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the bridges, and a large amount of equipment to carry are restrictions for wide applications of this
method. However, Li et al. [26] reported a suction pump coupled with a submerged net acting
as an in-situ filtration tray, which is different in the structure of the previously reported studies.
The sampling methods and the devices are evolving, as riverine and coastal environments are diverse.
There are challenging field situations and various objectives of sampling. As highlighted previously,
riverine environments are more diversified, and applications of simple trawling-based methods
are limited. Whereas, in marine environments, both trawling and pumping based methods are
applicable. However, in coastal environments including ports and bays, there are limitations of
trawling. Additionally, microplastics have various compositions (polymer, color, shape, etc. [27]).
Hence, to obtain representative environmental samples, a larger volume needs to be filtered. However,
the bridge suspended nets with natural environmental flow require longer durations (especially when
the river flow velocities are low), and in the tidal backflow influential zones, the mounted nets are
inapplicable for proper functioning [25]. Hence, considering the applicability in the field and the
uniformity of the observations, we would like to emphasize the studies focusing on the development
of microplastic sampling devices.

Microplastic sampling in many freshwater locations faces challenging conditions, such as access
limitations, restricted budget, a lack of human resources, and time limitations. Riverine and coastal
samplings are subjected to time limitations due to several reasons. For instance, urban waterways
with boat/freight traffic sampling devices suspended from the bridges cannot remain unattained.
There is a need for a reliable, easy, time saving, and affordable sample collection method to expand the
microplastic related information in water environments. With the objectives of developing a pragmatic
rapid sampling process applicable in both freshwater and coastal areas, we compared a developed
sampling device with a conventional sampling plankton net. This developed method was tested under
several conditions to determine the suitability for environmental sampling. Then, the collected samples
were purified and analyzed to determine the particle size distribution and the polymer composition of
the collected microplastics.

2. Materials and Methods

To collect microplastics in challenging riverine and coastal water environments, the microplastic
sampling device “Albatross” was developed. The development of “Albatross” sampling device was
conducted under a project initiated in 2015. A series of testing and device modifications were conducted
in Japanese riverine and coastal water environments. This history and additional information can
be accessed at https://en.plastic.research.pirika.org/. The performances of the two latest versions of
this sampling device (Albatross Mark 5 (AM-5) and Albatross Mark 6 (AM-6)) were compared to
a conventional plankton net (or manta net). Previous studies reported both terms, manta net and
plankton net, which refer to a similar device in terms of microplastic sampling studies. Hereafter, in
this manuscript, the term plankton net is used for uniformity. The initial step of the study focused
on the comparison of these three devices in riverine environments to collect floating and suspended
microplastics (mesh sizes 100 and 300 µm with all three sampling devices). The second step focused on
microplastic sampling in Japanese riverine and coastal water environments with the AM-6 (mesh size
300 µm). In a considerable amount of the sampling locations, it was challenging to collect samples using
conventional sampling methods (i.e., bridge suspended nets and trawling nets). These challenging field
conditions included limited riverbank access due to constructions, height from the bridge to the river
surface over 10 m, tidal flow influenced zones, limited access from boats due to shallowness or security
reasons, etc. (Supplementary Material Figure S1 provides a few examples for sampling locations).

https://en.plastic.research.pirika.org/
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2.1. Sampling Process

2.1.1. Sampling Devices

AM-5 and AM-6 are microplastic sampling devices developed by Pirika Inc (Tokyo, Japan).
Figure 1b,c illustrate the basic components of AM-5 and AM-6. AM-5 consists of a plankton net with
a mouth diameter of 24 cm (length 750 cm). A submersible waterproof power supply unit with a
propeller (RDS200, Yamaha, Japan) pumped water into the net. A flow counter (GO-2030 R6, General
Oceanics, Miami, FL, US) recorded the number of rotations. The filtered volume was calculated
using Equation (1). The plankton net filtered the water and retained the particles larger than the
mesh openings.

Figure 1. Sampling devices used for the sampling activities. (a) Bridge suspended plankton net
(BS -PN); (b) Albatross Mark (AM)-5 and (c) AM-6. The second phase of the sampling (95 locations)
was conducted only by AM-6 coupled with a 300 µm net (AM-6(300)).

In AM-6, the flow counter was moved to the back of the plankton net. An additional tube was
introduced to collect the water passing through the net. This tube governed the water through the flow
counter. The impeller diameter of the flow counter (GO-2030 R6, General Oceanics, Miami, FL, US)
was set up to be the same as the diameter of the end of the tube (18 cm). Hence, the total flow in the
tube was influenced by the counter reading in AM-6, whereas in AM-5, the central flow was mainly
counted at the front end of the net. The filtered volume of the AM-6 was calculated using Equation (1).
The bridge suspended plankton net (BS-PN) components are illustrated in Figure 1a. In the case of
BS-PN, the plankton net was hung on the bridge over the water stream with the intention of fully
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submerging near the surface of the river, as described in detail in Kataoka et al. [25]. The weights hung
in each device were to provide stability during the operation (i.e., to keep the device submerged and to
reduce unintentional movements with high flow currents). Both AM-5 and AM-6 were operated for
approximately 3 min during this study. However, during the initial optimization period, AM-5 and
AM-6 were operated for variable durations from 2 min to 8 min. Yet, considering sample collection
duration, battery life, and mesh clogging factors, the suitable operational duration was selected as
3 min. Thus, a 3 min sampling time was applied during this study. Sampling duration of BS-PN was
kept between 5 and 90 min. First, the river flow rate was measured, and then the sampling duration
was decided to collect an approximate volume of 10 m3.

2.1.2. Sampling Locations

Sampling was conducted in 2018 and 2019 at a total number of 95 (61 riverine and 34 coastal)
sampling locations in Japan (Figure 2). All the samples were single replicates. The sampling locations
fell into two categories: 1. riverine sampling, rivers where there were no tidal effect and inland canals
connecting rivers and lakes; 2. coastal sampling, with river mouths including bay areas with tidal effects
and ports. For the initial comparison study of the three units (AM-6, AM-5, and BS-PN), 11 riverine
sampling locations were selected. The selection of 11 locations was based on the availability of facilities
such as bridges and access to the location from Tokyo during the initial project stage. No coastal
sampling locations were used for comparison, as the BS-PN sampling in coastal zones was unfeasible
due to the lack of river flow. All three units were used with 100 and 300 µm meshes separately during
the comparison. In the second stage of the study, the sampling locations were selected in both riverine
and coastal areas to compare particle size distribution, polymer composition, and morphology of
microplastics. Moreover, the sampling locations were selected in different topographical areas in Japan
with a wide range of land use patterns. Application of single sampling method (AM-6 with 300 µm
net) at different locations including challenging conditions to conventional methods was conducted for
proper comparison of above-mentioned parameters. The second stage observations include the 83
sampling locations conducted after the first stage and the initial 11 locations (total 95 locations).

2.2. Analytical Process

2.2.1. Sample Extraction and Purification

Microplastics collection from the nets was conducted by rinsing the net with prefiltered water.
However, the complete collection of small sized particles from the 100 µm net was not achieved
by rinsing the net (hence, 100–300 µm range was not considered within the scope of the study).
The collected samples were pre-purified in the laboratory using a filtered (0.45 µm, glass fiber filter)
sodium chloride solution (by dissolving 35.9 g NaCl per 100 mL of water: SG = 1.2) to separate the
plastics from the heavier non-polymeric material particles (i.e., suspended sand and clay) collected
due to water turbulences. This process was expected to extract only particles with an SG of less than
1.2. This group includes microplastics (i.e., polyethylene (PE; SG 0.92–0.97), polypropylene (PP; SG
0.90), and polystyrene (PS; SG 1.05)) and non-plastic low SG particles (i.e., humus). Microplastics with
a higher SG (e.g., polyethylene terephthalate (PET; SG 1.40) and polyvinyl chloride PVC; SG 1.40 [26])
are not typically recovered using this process. Yet, environmental plastic samples may present as
composites, air trapped, or in weathered conditions. Hence, the SG of the sampled plastic pieces could
be altered compared to the SG of the virgin polymer. Therefore, during the polymer analysis process,
the attention was not limited to the low SG polymers but included the high SG polymers as well. Then,
the floating microplastic pieces were extracted using a vacuum suction respirator (Supplementary
Document Figure S6 illustrates this separation process). Next, the organic matter in the suspension was
degraded by heating at 60 ◦C for 8 h with a 2 M HCL solution. Thereafter, the samples were washed
with prefiltered water on a 2 µm glass fiber filter to remove any salt precipitations (Supplementary
Document Figure S8 illustrates the setup), which would interfere in the next analytical steps. After that,



Water 2020, 12, 1903 6 of 21

the filtered samples were transferred into glass petri dishes with lids. Then, the samples were dried at
105 ◦C in an oven for 2 h. Finally, the particles were picked up with stainless-steel forceps by visual
observation based on their color and shape [25,28].

Figure 2. Sampling locations. The red color dots were the 11 locations used for the comparison study.
Both red and black dots were the 95 sampling locations of AM-6(300) used in the second stage of
the study.
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2.2.2. Contamination Control

Contamination control procedures were conducted with great care to minimize the probability
of microplastic contamination from outside during sample collection, preparation, and laboratory
analysis. Potential contaminations due to the plastic components of the AM-6 and the AM-5 were
minimized. Reusing the plankton nets was avoided within a single sample collection visit. When more
than one sample was collected within a visit, the net was replaced with a clean net to avoid the
cross-contamination at different sampling locations. Nets were cleaned at the laboratory with the
prefiltered tap water (2 µm glass fiber filter). In AM-6, the pre-exposure to the flow counter impeller
was avoided since the counter was placed behind the plankton net. Furthermore, color, stability,
and surface appearance of the three devices used in the study were closely investigated before and after
the sampling. There were no missing plastic pieces from the devices identified by visual inspection.
Moreover, collected samples were compared with the plastic components of the devices (AM-5, AM-6,
and BS-PN) based on color and polymer. The color and polymer type of plastic components of the
devices are given in Table S1 (Supplementary Material). The polymer types of the parts of the devices
were polyvinyl chloride (PVC), polycarbonate, polyoxymethylene, and nylon. Plastic pieces matching
those colors and polymer types were not observed in the collected samples. There were no blank
control samples taken during the sampling process.

Glass jars (cleaned with dilute HNO3 and rinsed thoroughly with deionized water) were used to
contain the samples collected for further processing in the laboratory. Glassware and stainless-steel
apparatuses were used during the sample processing, and aluminum foil was used to cover the samples
to minimize contamination from airborne particles [29]. In the present study, the considered sizes of
microplastic particles were larger than 300 µm. Hence, the probability of airborne contaminations of
the same scale particles was very low. A laboratory coat and nitrile gloves were always worn while
the work was carried out in an enclosed laboratory. Microscopic examination and Fourier transform
infrared spectrophotometry (FT-IR) analysis were carried out in a laboratory designed with sealed
windows, and passage through the lab was restricted to minimize airborne contamination, as described
by Rose and Webber [29].

2.2.3. Size Measurement and Polymer Confirmation

Each particle was then processed following three steps. First, the size of each particle was
measured by analyzing a picture of the particle taken by a stereoscopic microscope (M165C, Leica
microsystems) installed with a USB camera (Leica DFC290, Wetzlar, Germany) using image processing
software (ImageJ, downloaded from http://imagej.nih.gov) [25]. The Feret’s diameter, the longest
distance between any two points along the selection boundary, also known as maximum caliper and
shortest caliper, was measured for each particle (number of particles (N):1811). Second, the shape
of the particles was recorded (fiber, fragment, pellet, sheet, or sphere). Third, the compositions of
the particles were identified using FT-IR (Nicolet iN10, Thermo Scientific, Waltham, MA, US). The
particles were analyzed in transmission mode at a speed of 5 Hz, within the wavenumber range of
4000–600 cm−1. The resulting spectra were processed in the accompanying “OMNIC” specta software
and were compared with the pristine FT-IR spectra of common polymers (PE, PP, PS, nylon, PVC, PET,
etc.) as specified in Rose and Webber [29]. Finally, the particle thicknesses were measured using a
digital Vernier caliper (SHINWA 19974 digital Vernier caliper with Hold Function; least count 10 µm;
Shinwam Niigata, Japan).

http://imagej.nih.gov
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2.3. Calculations

2.3.1. Calculation of the Flow-Volume through the Devices

The flow-volumes through the devices were calculated using the following equation. Operated
average flow rates were calculated by dividing the sampling volume by sampling duration.

V = ab
D2

4
π (1)

V: volume passed through the net,
D: net mouth or tube diameter (for BS-PN: D = 24 cm, AM-5: D = 22 cm and for AM-6: D = 18 cm),
a: flow counter reading,
b: conversion coefficient (manufacturers value for the corresponding impellers; in this case for the

impellers used for BS-PN, AM-5, and AM-6: b = 5.12),
π = 3.14.

2.3.2. Microplastic Particle Size Distribution

Microplastic particle size (Feret’s diameters) distribution studies were conducted at 95 sampling
locations using AM-6(300). The particle sizes considered for this study were ranged from 0.3 to 5 mm.
Particle sizes were divided into size classes with 100 µm class intervals. Relative frequency of each
size class was calculated according to the Equation (2). The total number of microplastic particles (N)
considered in this study was 1811.

fx =
nx

N
(2)

fx: relative frequency of microplastic particles in size class x
nx: number of microplastic particles in size class x
N: total number of microplastic particles

For the comparison between riverine and coastal particle size distributions, the particles were
divided into two data sets. The riverine data set included 817 particles (Nr = 817), and the coastal data
set included 994 particles (Nc = 994). The calculations of relative frequencies of microplastic particles
in each data set were done with the modified Equation (2) (Supplementary Material Equations (S1)
and (S2)).

2.4. Statistical Analyses

Statistical analyses were performed with SPSS (IBM SPSS Statistics, IBM Corp., Endicott, NY,
US). A one-way ANOVA test was performed to compare the measured concentrations with different
sampling devices. The significant difference between the measured riverine microplastic particle
sizes and coastal microplastic particle sizes was tested using independent samples t-test. The t value
calculation is given in Equation (3).

t =
Mr −Mc√

s2
r

Nr
+

s2
c

Nc

(3)

t: the ratio of the departure of the estimated value of mean particle size from its hypothesized value
to its standard error

Mr: mean particle size of riverine microplastic
Mc: mean particle size of coastal microplastic
sr: standard deviation for riverine microplastics
sc: standard deviation for coastal microplastics
Nr: total number of riverine microplastic particles
Nc: total number of coastal microplastic particles
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3. Results

3.1. Operational Conditions of the Sampling Devices

Table 1 compares the operated flowrate range, sampling duration, human resource requirement,
and filtrate volume measuring accuracy of the three devices. Both AM-5 and AM-6 were operated
for approximately 3 min during the comparison period. Based on the water quality, the net clogging
rate varied. The operated filtration rate found for AM-5 and AM-6 was between 2.5 and 7.0 m3/min.
Operation at this flowrate for 3 min filtered water volumes ranged from 7.5 to 21 m3. However,
during AM-5 and AM-6 development stages, the devices were operated at variable durations to observe
the suitable operating conditions. The operation of shorter to longer durations than 3 min (2 min to
8 min) was possible with both devices. Yet, when the duration became longer, net clogging occurred,
and the effective filtration through the net decreased. In the field conditions, for multiple samplings,
battery power and time were also limiting factors. With battery power discharge, after several
samplings, the pump speed decreased. The operation was limited to five samplings (with 3 min
sampling duration) for one fully charged battery.

Table 1. Comparison of the operational conditions of the three sampling devices during the comparison
stage of the study.

Scenario BS-PN AM-5 AM-6
Parameter 100 µm 300 µm 100 µm 300 µm 100 µm 300 µm

Operated flowrate range
(m3/min) 0.11 to 0.67 a 0.17 to 1.00 a 2.5 to 7.0 b 2.5 to 7.0 b 2.5 to 7.0 b 2.5 to 7.0 b

Sampling duration (min) 15–90 10–60 3 3 3 3
Minimum human
resources required
(# people)

1–2 1–2 1–2 1–2 2–3 2–3

Effect of net clogging on
flow volume
measurement

The difference between river
flowrate and filtration rate

increases.
Partial tilt-up the net. Volume

measurement errors.

Flow counter at the
center moves along with

the forced inflow.
Volume measurement

errors.

Flow counter is located at
the filtrate side. It measures

only the filtered volume.
Minimum volume

measurement errors.
a: Operated flow rates in this wide range were due to the river flow velocity variation from sampling location to
location, and the observed range of river flow velocities was from 0.25 to 1.5 m/s. b: Flowrate through the net was
independent of the river flow velocity (depended on the pump flowrate and flow resistance due to net clogging).
BS-PN: bridge suspended plankton net.

The BS-PN sampling duration depended on the flowrate of the river. With a higher river flow
velocity, shorter durations were required to filter a substantial volume. The river flow velocities of
the 11 sampling locations of the comparative study varied from 0.25 to 1.5 m/s. However, due to the
resistance to water flow through the plankton net, the flow through velocity was typically six times
lower than the river flow velocity for the 300 µm mesh size [25]. Hence, filtering approximately 10 m3

of water through the BS-PN took 10 to 60 min. With a 100 µm mesh size, the time period increased due
to increasing resistance to the flow through the smaller openings of the mesh.

3.2. Microplastic Concentrations Measured with Different Sampling Devices

Microplastic concentrations measured at 11 different sampling locations for comparison of the
three sampling devices are presented in Figure 3. Concentrations of the 100 µm mesh samples
were calculated using only the particle sizes greater than 300 µm for comparison with 300 µm mesh
samples. The mean concentration values for all six methods were in the same range (minimum
1.62 and maximum 1.85 pieces/m3). ANOVA results indicated no significant difference of measured
concentrations with different devices (Supplementary Material Figure S10 provides the ANOVA test
output). Yet, there was a slight reduction of the mean values from 100 µm mesh to 300 µm mesh for
AM-5 and AM-6. Those differences were 0.04 and 0.03 pieces/m3 for AM-6 and AM-5, respectively.
Yet, for BS-PN, the mean value was reduced by 0.03 pieces/m3. From AM-5 to AM-6, the mean
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concentrations increased by 0.07 and 0.06 pieces/m3 for the 100 µm and the 300 µm mesh sizes.
From the BS-PN to AM-6 devices, the mean values increased by 0.23 and 0.16 pieces/m3 for the 100 µm
and the 300 µm mesh openings, respectively (12.8% and 9% increments, respectively).

Figure 3. The microplastic concentrations measured at 11 sampling locations for comparison of the
devices (for the nets with 100 µm mesh, the concentrations presented are particles larger than 300 µm
size). The top edge of the box is the upper quartile. The bottom edge of the box is the lower quartile.
Hence, the box spans the interquartile range. The median is marked by a horizontal line inside the box.
The whiskers represent the highest and the lowest observations. The point marker with the number is
the mean value.

3.3. Microplastic Particle Size Distributions for the Sampling in Japanese Riverine and Coastal Environments
Using AM-6(300)

Sampling was conducted at 95 sampling locations using AM-6(300) for the microplastic particle
size distribution studies. Distribution of relative frequency of microplastic particles in each size class is
illustrated in Figure 4a. Figure 4b compares riverine and coastal microplastic particle size distributions.
Apart from the distribution per size class, the cumulative size variations are illustrated in the same
graphs (secondary axis). The relative frequency of particle size class increased monotonically as the
sizes decreased up to the range of 1–2 mm. Thereafter, a rapid reduction in the frequency of particles
per size class occurred. Generally, larger sized plastic litter gradually degrades and breaks into smaller
pieces in water environments. Therefore, the monotonic increment up to a 1–2 mm range is acceptable.
The particle frequency reduction with a further reduction of size class shall be understood with the
sampling procedure and the particle shape. The sizes measured and expressed in this study were the
longest length (longest Feret’s diameter) of the particle (selected microplastic pieces observed in this
study are given in Figure 5).

The t test revealed a statistically significant difference between the mean diameter of riverine
microplastic particles (Mr = 2.103 mm, sr = 1.133) and the mean diameter of coastal microplastic
particles (Mc = 1.981 mm, sc = 0.999). The observed t = 2.389, p = 0.017, with the significance level (α)
= 0.05 (t-test output is given in Figure S9, Supplementary Material).

Riverine and coastal microplastic particle size distribution (Figure 4b) indicated a statistically
significant reduction of the particle sizes from riverine environments to coastal environments.



Water 2020, 12, 1903 11 of 21

Figure 4. The relative frequency of particle size class distribution (N = 1811) of the microplastics collected
at all survey sites using AM-6(300). (a): The distribution of total sampling locations. (b): The distribution
separately plotted for riverine environments and coastal environments. Comparison of the Japanese
riverine and coastal environments (present study, given in Figure 4a with East Asian seas surrounding
Japan [30] is given in Figure S2, supplementary material).
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Figure 5. Dimensions of selected microplastic pieces. (a): Other plastic; (b,e): polypropylene (PP);
(c): polyethylene (PE); (d): polystyrene (PS); (f): combination of PE and PS (listed under another
polymer). Red lines indicate the Feret’s diameters while the yellow lines indicate a length, which would
be effective for retaining the microplastic particle if the yellow line was oriented parallel direction to
the mesh. The IR spectra of the microplastics are given in Figure S5.

3.4. Plastic Polymer Compositions in River and Coastal Areas of Japan

Figure 6a indicates the polymer composition distribution of the microplastics collected.
The dominant polymer types observed in the floating and the suspended microplastics collected in this
study were PE (48%) and PP (40%). Yet, PS, PET, and other kinds of polymers were also detected in
small amounts. The PE percentage decreased from riverine environments to the coastal environments.
However, the PP percentage increased slightly from riverine environments to coastal environments.
The SG values of PE, PP, PS, and PET were 0.92–0.97, 0.90, 1.05, and 1.40, respectively. The sampling
was carried out near the surface of the water body. The rotation of the propeller pumped the water
into the net from the surroundings. This included the water from the surface (floating) and from
inside (suspended in) the river. Hence, the sampled microplastics were likely to consist more of lower
SG polymers.
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Figure 6. The morphology and composition of microplastic samples from 95 sampling locations by
AM-6(300). (a): Polymer compostion comparison. (b): Fractional particle shape comparison (percentile
values of each component is labled).

The application of HCl and a higher temperature than 60 ◦C could have affected the detectability
of the polymers. The undetectable particle percentage in FT-IR was 4% (Supplementary material
Figure S7). Figure 6b illustrates the shape distribution comparison. Fragments are the dominant shape
of microplastics collected. Fibers, sheets, spheres, and pellets were also presented in the collected
samples (Figure 5 and Figure S4).

4. Discussion

4.1. Operational Conditions of the Sampling Devices

Compared to the conventional BS-PN sampling device, the developed devices used in this
study (AM-5 and AM-6) could collect samples in smaller canals, places without suitable structures
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to fix the nets, locations with lower river flowrates, locations with rapid water level variations, etc.
(Supplementary Material Figure S1 indicates several locations where conventional sampling methods
are hardly applicable. We describe these types of conditions as challenging conditions for conventional
sampling). Both sampling devices, AM-5 and AM-6, were capable of sampling microplastics in
challenging aquatic environments, such as rivers, bays areas, canals, and coastal areas, despite the
flowrate of the water body or the space availability for a boat traveling. During the comparison stage of
the study, sampling at these kinds of challenging locations was not possible due to the inapplicability
of BS-PN. However, with AM-6 during the second stage of the study, sample collection was conducted.
This was one basic advantage of the developed sampling devices.

Sampling of larger volumes (from 7.5 to 21 m3) within a short period of time (3 min) is an
advantage compared to the studies reported with smaller sample volumes [24,31]. According to Table 1,
there were several advantages of sampling with AM-5 and AM-6 in terms of the sampling duration.
Water level variations create errors in sampling due to partially submerged nets. Depending on the
water quality, the net clogging rate varies. Furthermore, there are operational difficulties with BS-PN,
such as the decision regarding the sampling duration. When maintaining a longer time, if the net
becomes clogged, the flowrate measurements could be inaccurate. The effect of net clogging due to
longer sampling durations was reported [25] in riverine environments. Sampling volume calculation
errors due to partially submerged BS-PNs were reported [25]. If the BS-PNs lifts within a short period
of time, the filtered water volume might be not enough to obtain a representative sample. On the
other hand, if the BS-PNs are kept for a longer time in the river, the net might become clogged, and a
back-flow situation may occur. For increased sampling durations such as 5 min, this net clogging,
and back-flow situation occurs with the developed devices (AM-5 and AM-6) as well. Reduction of
mesh opening size from 300 to 100 µm makes this net clogging and back-flow impact higher (numerical
data not given; authors observed this during the sampling). This back-flow creates a situation where
the water passes through the flow counter, which is located at the center or next to the net. Yet, part of
the water passing the flow counter returns without passing through the mesh. Observations during
the study indicated several occasions where the water level of the stream varied within 10–20 min due
to the upstream conditions.

Moreover, with the progressive clogging of the BS-PN, the resistance to the filtration flow
increased. Hence, the upper side of the net frame tended to lift above the river surface. This net
lifting overestimated the filtered water volume because the water flow was not completely across the
mouth of the net. This was not observed with the developed sampling devices. We assume the pump
operation kept the device submerged (pump is continuously sucking the water). Moreover, even with
the BS-PN, by providing enough counterweight, the net lifting can be controlled. This includes the
improvement of the strength of the net mouth to withstand the forces. This may provide an improved
BS-PN with less potential volume measurement errors due to net lifting.

There are special research objectives where the sampling must be done during floods, rainfall
events, etc., where water level variations occur. AM-5 and AM-6 are applicable during these kinds
of situations, as the method is applicable under varying water levels. As the sampling time is 3 min
(or less), the collection of samples at a variable river within a short period is possible, and the evaluation
of such kinds of variations is also possible. With AM-5 and AM-6, the depth of the sample collection
location is adjustable during the sampling process. Hence, making the samples represent a larger
section of the water body can be achieved by changing the sampling location in horizontal and
vertical directions.

Certain methods, such as suction pump-based methods [26], are inoperable where the access from
riverbanks and trawls/boats is challenging. When the overhead bridges are too tall (such as move than
10 m), suction pumps are inapplicable. Among the sample collection locations, the sample location
(Figure S1) located at the bridge over the river had a height of more than 12 m. These places are highly
challenging for methods such as suction pumping due to the limitations of suction pressure.
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Considering the human resources for the sample collection, BS-PN, and AM-5 can be operated even
with only one person. Yet, AM-6 requires a minimum of two people to operate. However, usually during
water sample collection research activities, due to safety issues, more than one person is participating.
Hence, the available human resources for the operation of all three devices are comparable. However,
the sampling equipment handling could be slightly negative from the researchers’ perspectives with
the AM-6 compared to AM-5 and BS-PN. Yet, sample collection duration was reduced with both the
AM-5 and the AM-6 compared to the BS-PN. Compared to the previously established methods such
as trawling a manta net [22,30], which requires both humans and support with boats, the devices
discussed in this study can be handled with fewer human resources and supportive services.

4.2. Microplastic Concentrations Measured with Different Sampling Devices

Smaller sized mesh openings (100 µm) were expected to capture a higher number of microplastics
than the larger (300 µm) mesh. This higher capture was expected in the considered range of particles
from 300 µm to 5 mm. Figure 7 illustrates the higher potential of particle retention with 100 µm
compared to 300 µm mesh within the considered range of particles. Comparison of particle size
distributions of the 100 and the 300 µm meshes (Figure S3, supplementary material) show that there is
a higher frequency of particles in the smaller sized range for 100 µm mesh compared to 300 µm mesh.
This supports the retention mechanism expressed in Figure 7. However, the observations did not
indicate such a tendency. The microplastic concentrations measured at 11 locations did not indicate an
advantage of using a 100 µm mesh sized net (Figure 3). A possible reason for this could be associated
with progressive net clogging and back-flow. This clogging is faster in smaller mesh openings since
smaller meshes retain a larger range of suspended matter in water. This situation creates a faster
back-flow situation. With back-flow, some of the microplastics could escape from the net. Moreover,
the retention probability could reduce (Supplementary Material Figure S11 illustrates the back-flow).
However, the present study did not confirm the reason. Further studies are to be done to confirm
this phenomenon.

Figure 7. Effect of particle orientation on the retention by 100 and 300 µm meshes.

Table 2 summarizes several selected microplastic sampling studies conducted with 300 µm and
100 µm net-like sampling devices. Clogging in the riverine environments with 100 µm nets was
reported in previous studies [25,32]. Kapp and Yeatman [33] reported that, with a 100 µm mesh,
river sampling durations over 2 min tended to clog the nets. The average volume filtered without
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clogging in one study [31] was 3.04 m3. Hence, even the filtration duration was as low as 3 min,
and—depending on the river water quality—net clogging could occur. In the case of net clogging,
as described previously, the volumes could be overestimated, and part of the microplastics could be
flushed out from the mouth of the net.

Table 2. Previous studies on sampling floating and suspended microplastic in freshwater and coastal
environments (focusing on the sampling mesh opening sizes larger than 100 µm).

Device and Method Facts Sampling
Environment

Concentration
(Particles/m3) Reference

Trawling a 300 µm net.
(Sampling volume = 100 m3).

Estuary,
Brazil 0.1 [21]

Trawling 333 µm net. River, China 0.1–5.6 [22]

Trawling a 333 µm net. Channel, UK 0–1.5 [23]

Jet pump and external power supply unit (sampling
volume ≈ 1.5 m3). Complex system due to the
requirement of the crew to carry equipment, boat
travel, pumping out, and filtration through the sieves.

Riverine,
Hungary 3.52–32.05 [24]

Bridge suspended net (300 µm); 5 to 30 min sampling
durations. Capable only with rivers with high flow
velocity and overhead bridges.

Riverine,
Japan 1.6 ± 2.3 [25]

Vertically immersed filter with suction pump form the
bottom 300 µm; 8 to 13 min taken for volume 0.1 m3

sampling.

Estuary,
China 67.5 [26]

Trawling a 300 µm net. Riverine,
Nigeria 0–0.2 [32]

100 µm net kept across the river flow (1–2 min
duration). (V = 3.2 m3). Longer sampling led to issues
of clogging with organic matter. Capable only with
rivers with high flow velocity.

Riverine,
Wayni, USA 0–13.7 [31]

Trawling a 300 µm net
Sampling volume = 10 m3.

Estuary,
South Africa 1–7 [33]

Trawling a 330 µm net. Bay, USA 4.5 ± 2.3 [34]

A study conducted with BS-PN [25] reported volume measurement errors of 5%–10% due to the
partial submerged net frame during the sampling. Partial submergence occurs with the increased
force from river flow due to net clogging. Hence, the filtered water volume in the present study may
also have been overestimated due to the same reason. This could be a reason for the lower estimation
of microplastic concentrations with the BS-PN sampling. Therefore, the reported lower microplastic
concentrations with the 100 µm net could be due to net clogging. There were practical difficulties of
100% recovery of samples from the 100 µm net due to the attachment of the plastic particles to the
net. However, the optimum size of the mesh depends on the objectives of the research. For example,
there is capable analytical equipment for smaller microplastics, and risk assessment related studies
require smaller sized particle sampling. Hence, there are limitations of applications of the devices
developed in this study for the range of 1–100 µm sampling. In such cases, the common practice is to
use grab sampling methods and laboratory sifting with a series of sieves.

Microplastic concentrations in marine environments vary by three orders of magnitude, whereas in
freshwater resources, including riverine environments, the variation is five orders of magnitude [35].
The review study of Koelmans et al. [17] reported a variation of microplastic concentrations in riverine
environments over a large range. These orders of magnitude differences in two environments might
be due to better mixing and/or representativeness of the sampling in the marine environment with
less mixing and a larger variability of litter sources and flow conditions for freshwater environments.
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Besseling et al. [35] described the positive impact of sampling with a trawling net over several hundreds
of meters in open water over the pointwise grab sampling with a bucket or flask. This is an advantage
of trawling net sampling due to the improved representativeness over pointwise grab sampling.
This advantage is applicable where the trawling is possible. However, the accuracy of the sample
volume and other practical situations need to be considered.

The concentration values reported in this study are within the values reported in the previous
studies. However, the comparison of concentrations in different environments requires a comprehensive
analysis of various aspects. Hence, correlating the observed concentrations in different environments
to the sampling devices’ efficiency is inappropriate. There was only one study found in the literature
for Japanese riverine environments [25]. This study indicated 1.6 ± 2.3 pieces/m3, which is within the
same range of the values observed in this study.

4.3. Relative Particle Size Distribution of Microplastic Pieces Sampled Using AM-6 in Japanese Riverine and
Coastal Environments

The particle distribution (Figure 4a) indicated a similar variation pattern with the reported
microplastic particle size distributions in freshwater [25] and oceanic environments [30,36,37].

The frequency of size class was getting smaller from the river to the ocean (Figure 4b). This is
the first reporting of the comparison of the size distribution of microplastics in both riverine and
coastal environments. Plastic litter degradation occurs in riverine environments as well. Hence,
the plastics could break into smaller particles from river to bay areas. Even though rivers are not the
only microplastic source to the oceans, a potential reason for the significant particle size reduction
reported in this study could be due to degradation during the river flow and the additional degradation
in the coastal areas. Comparison of the size distribution values of the East Asian seas surrounding
Japan [30] with the values reported in this study (Supplementary material Figure S2) indicated a
progressive size reduction from rivers to the ocean. This could be considered as supportive evidence
of the size reduction (fragmentation) of microplastics in water environments (from rivers to oceans).

4.4. Plastic Compositions in River and Coastal Areas of Japan

The study of Isobe et al. [38] reported that the dominant polymer types of microplastics reported in
floating in East Asian seas (seas around Japan) were PE, PP, and PS. Kataoka et al. [25] also reported PE,
PP, and PS as the dominant microplastic polymer types identified in Japanese riverine environments.
The above two studies and the present study were focused on floating and suspended microplastic
samples. Considering the SGs of the plastic polymers, it is understandable that the plastics with
lower SG than water were abundant in water suspensions. However, the litter sources were also a
governing factor to decide the polymer composition. The highest percentage of PE and PP are used
in the packaging industry (over 60% and 49%, respectively), while PS is commonly used both in
packaging and building construction (30% and 29%, respectively [9]). Materials used in items that
last several decades, such as in buildings and construction with alternative disposal methods, unlike
PE and PP, have a lower probability of entering water environments. That could be the reason for
detecting less PS compared to PE and PP in this study.

The PE fraction decreased from riverine to coastal environments, while the PP percentages
increased slightly (Figure 6a; numerical percentage decreased from 50.8 to 43.8%). This could have been
due to several reasons, such as degradation rate variation or litter input variations in riverine and coastal
environments. A weight-based concentration (mg/m3) analysis would provide a better understanding
of the litter input characteristics rather than a particle number-based concretion (particles/m3) analysis.

Even though the SG of PET is about 1.4 (higher than the SG of freshwater), some samples included
PET particles. In moving water, microplastics are subject to turbulent transport, settling, aggregation,
biofouling, resuspension, and burial [39]. This results in particle movement within and between the
water for different compartments of riverine environments [39]. This explains the potential reason for
a PET presence in suspension, as the river flow turbulences could bring the higher SG particles into the
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suspension. In a water environment, the particles are associated with air bubbles and biofilms. Hence,
the SGs could be altered from the SG of pure polymers. Hence, the presence of PET floating and in
suspension could be understood.

Considering the structure of the sampling device (net with a 300 µm mesh opening), fragments and
spheres had the least possibility of escape. However, the shapes including fibers and sheets could escape
from a square shaped opening even if the maximum dimension exceeded the 300 µm. The morphology
of microplastics is important in the recognition of the pollutant source [27]. The microplastic shape
distribution in freshwater in Italy showed the dominating occurrence of fragments (73.7%; [40,41]),
which agrees with the present study. As previously mentioned, shape influences on the retained
particles within the net. Fiber-like microplastics and sheet-like microplastics tend to escape more
compared to pellets, spheres, and fragments. Considering the morphology, the study of Dris, et al. [42]
discussed that targeting water environmental sampling of fibers required a smaller mesh opening than
for other shapes. The use of an 80 µm mesh had a 250-times higher probability of sampling fibers
compared to a 330 µm mesh. Hence, the detected fiber composition could be less than the actual
relative presence in the water in this study.

5. Conclusions

Both the AM-5 and the AM-6 enhanced the floating and the suspended microplastics sample
collection ability of researchers in challenging riverine and coastal environments. They allowed sample
gathering in places where surface traveling was limited. The sample collection time was reduced
to durations of three minutes or less. This gives an advantage to a researcher to be able to cover a
larger number of sampling locations within a short period of time. The microplastic concentrations
and compositions found were in line with the conventional samples where comparison was possible.
The observations supported a significant particle size reduction from rivers to coastal areas. PE and PP
were the dominant microplastic polymer types floating and in suspension in riverine and coastal water
environments of Japan. The observations complied with the coastal microplastic observations reported
by previous researchers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/7/1903/s1,
Figure S1: Several sampling locations, and “Albatross” sampling device, Figure S2: Comparison between this study
and Isobe et al., 2015 [30] (East Asian Seas around Japan). The concentration values reported by Isobe et al. [30]
were converted to relative size class frequencies for the comparison with the present study, Figure S3: 300 vs.
100 µm mesh (particles larger than 300 µm only), Figure S4: Microscopic images of selected microplastic pieces
analyzed during the study, Figure S5: IR spectrum of selected microplastic pieces given in Figure 6, Figure S6:
Vacuum suction of microplastics/microplastic like particles in the NaCl solution, Figure S7: The breakdown
of plastic detectability by FR-IR in the present study, Figure S8: Deposited slat removal by washing on 2 µm
glass fiber filter, Figure S9: t-test for Riverine and Coastal particle size data sets, Figure S10: ANOVA test for
the comparison of different sampling devices (1 to 6 is same order presented in Figure 3: AM-6:300, AM-6:100,
AM-5:300, AM-5:100, BS-PN:300 and BS-PN:100), Figure S11: Clogging of nets and the back-flow. Potential escape
of microplastics from the net with back-flow. Table S1: Color and polymer type of plastic components of the
devices used in the study.
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