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Abstract: Water resources planning and management depend on the quality of climatic data, particularly
rainfall data, for reliable hydrological modeling. This can be very problematic in transboundary rivers with
limited disclosing of data among the riparian countries. Satellite precipitation products are recognized
as a promising source to substitute the ground-based observations in these conditions. This research
aims to assess the feasibility of using a satellite-based precipitation product for better hydrological
modeling in an ungauged and riparian river in Pakistan, i.e., the Chenab River. A semidistributed
hydrological model of The soil and water assessment tool (SWAT) was set up and two renowned
satellite precipitation products, i.e., global precipitation mission (GPM) IMERG-F v6 and tropical rainfall
measuring mission (TRMM) 3B42 v7, were selected to assess the runoff pattern in Chenab River.
The calibration was done from 2001–2006 with two years of a warmup period. The validation (2007–2010)
results exhibit higher correlation between observed and simulated discharges at monthly timescale
simulations, IMERG-F (R2 = 0.89, NSE = 0.82), 3B42 (R2 = 0.85, NSE = 0.72), rather than daily timescale
simulations, IMERG-F (R2 = 0.66, NSE = 0.61), 3B42 (R2 = 0.64, NSE = 0.54). Moreover, the comparison
between IMERG-F and 3B42, shows that IMERG-F is superior to 3B42 by indicating higher R2, NSE and
lower percent bias (PBIAS) at both monthly and daily timescale. The results are strengthened by Taylor
diagram statistics, which represent a higher correlation (R) and less RMS error between observed and
simulated values for IMERG-F. IMERG-F has great potential utility in the Chenab River catchment as it
outperformed the 3B42 precipitation in this study. However, its poor skill of capturing peaks at daily
timescale remains, leaving a room for IMERG-F to improve its algorithm in the upcoming release.

Keywords: TRMM 3B42 v7; GPM IMERG-F v6; Chenab River; satellite precipitation; ungauged
catchment; transboundary river

1. Introduction

Satellite Precipitation has gone through two renowned satellite products, named as, tropical rainfall
measuring mission (TRMM) [1] and global precipitation measurement (GPM) [2]. These products were
estimated using TRMM multi-satellite precipitation analysis (TMPA) [1] and integrated multi-satellite
retrievals for GPM (IMERG) [2], respectively. IMERG is available in finer spatial (0.1◦ × 0.1◦) resolution
than TMPA spatial (0.25◦ × 0.25◦) resolution. This study emphasizes the use of these two satellite
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products on an ungauged catchment of the Chenab River in Pakistan. There are a large number of
studies [3–10] have been done in sparsely or ungauged catchments using satellite-based products to
estimate the river or stream discharges. This study focuses on the catchment of the Chenab River that
is completely ungauged. Five major rivers flow through Pakistan: Indus, Jhelum, Chenab, Ravi and
Sutlej. These rivers come from transboundary Indian catchments [11,12]. Indus is the biggest river,
which is fed by the Chenab River as a major tributary (Figure 1). River Chenab is a transboundary and
ungauged river whose flood and gauge precipitation information is not easy to collect from the Indian
side. Owing to the active Monsoon belt of Pir Punjal [13], the Chenab River catchment suffers from
severe floods almost every year since the last decade [14], causing massive damage to local society.
The recent advances in satellite-based precipitation retrieving missions have overcome the problems
of water managers to attain alternative precipitation information for flood simulations in ungauged
basins. In comparison to the GPM era, TRMM precipitation was used widely in hydrological modeling
in most parts of the world [15–22]. TMPA is a reliable and most extensively used satellite product in
the TRMM era [23,24]. Several studies show that TMPA has satisfactory or acceptable results in many
parts of the world [15–22].
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The GPM mission, the successor to the TRMM era, was officially launched by The National
Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) in
February 2014 and hence, TRMM mission ended in April 2015. NASA released IMERG, its first GPM era
precipitation product, in March 2014. IMERG provides more expansive quasi-global (60◦ N–60◦ S) and
spatiotemporal (0.1◦ × 0.1◦ and 30 min interval) coverage than TMPA [25]. It includes three products:
the near real-time “Early” run (IMERG-E), “Late” run (IMERG-L) and “Final” run (IMERG-F) [25].
Many previous researchers concluded that GPM-IMERG has batter accuracy than TRMM-TMPA [26–30].

Anjum et al. [31] compared the TMPA products, i.e., 3B42 v7 and 3B42RT with IMERG and
indicated that IMERG precipitation is more reliable than TMPA estimates. Moreover, IMERG estimates
capture the spatial distribution of precipitation more realistically than TMPA estimates over the
highlands of northern areas of Pakistan. Rozante et al. [32] highlighted that IMERG products are a
batter replacement of TMPA products in several regions containing different precipitation patterns
in Brazil. Prakash et al. [26] studied the utility of IMERG and TMPA products in India during the
Monsoon season (June 2014–September 2014). Their study showed that IMERG estimates represent a
more realistic variability than gauge adjusted TMPA estimates. Tan et al. [33] demonstrated that IMERG
near-real-time products, consisting of finer spatial and temporal resolution than TMPA products,
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can be regarded as reliable satellite precipitation products to study the 2014–2015 flood event in
Malaysia. Prakash et al. [34] investigated heavy rainfall over India in which TMPA overestimated
the heavy rainfall events (above 75th percent of observed data), whereas IMERG shows remarkable
improvements for Southwest Monsoon season. In Tehran and Kermanshah, with orographic and
stratiform precipitation pattern, IMERG yields sound results for precipitation detection on the basis
of probability of detection, critical success index and false alarm ratio [35]. Owing to enhanced
precipitation techniques, several studies [36–38] indicated that IMERG estimates show better results
than TRMM estimates.

This study focuses on the application of a GIS-based tool, The soil and water assessment tool
(SWAT) [39,40]. It is a physical-based semidistributed hydrological model, which has been widely
applied for river catchment discharge estimation around the world [41–44]. The selection of the best
hydrologic model for discharge estimation is based on study objectives, characteristics of catchment,
availability of data, required accuracy and ease in calibration [45]. SWAT model has several capabilities
such as hydrologic process, soil erosion, pollutant transport, assessment of climate change effects,
water management practices and land use change behavior [46–49]. Another computer program,
SWAT calibration and uncertainty procedures (CUP), is used to calibrate the SWAT model [50].
The calibration process involves accessing the accuracy of hydrologic model simulation through
sensitivity and uncertainty analysis [51]. Various techniques of uncertainties are explained by
Yang et al. [52] for a better calibration process in Chaohe basin China. Yang et al. [52] compared the
four algorithms: sequential uncertainty fitting (SUFI-2) [53,54], generalized likelihood uncertainty
estimation (GLUE) [55], Parameter solutions (ParaSol) [56] and Markov chain Monte Carlo (MCMC) [57].
SWAT-CUP links these algorithms to the SWAT model and enables us to perform uncertainty analysis of
model parameters. Rostamian et al. [58] performed uncertainty analysis using the SUFI2 algorithm for
model runoff calibration in two mountainous basins in Iran. Setegn et al. [59] used GLUE, SUFI-2 and
ParaSol in Lake Tana Basin to access the performance of the SWAT model. Yang et al. [52] applied the
SUFI-2 algorithm in their study and concluded that SUFI-2 needs a less number of model simulations
to attain good quality uncertainty analysis. The selection of the SWAT model, for this study, was also
based on its ease and good quality calibration with SWAT-CUP by using the SUFI-2 algorithm.

From the viewpoint of the transboundary river, this study is useful as 97% of the catchment of the
Chenab River, at Marala Barrage, i.e., the first rim station of the river entering Pakistan, lies in India
and only 3% lies in Pakistan as shown in Figure 1. Due to present conflicts between India and Pakistan,
in situ hydrometeorological data sharing is very limited between these two countries [60]. The overall
goal of this study is hence to better understand the hydrological phenomenon of the riparian river,
like the Chenab River in Pakistan, by using the open-source satellite-based hydrometeorological
products, such as GPM IMERG-F and TRMM 3B42.

2. Study Area

River Chenab is fed by two main streams, i.e., the Bhaga and the Chandra in Himachal Pradesh
in India and flows through Indian-controlled Jammu and Kashmir to enter Pakistan [61]. It has the
first gauging site at Marala Barrage (74.46◦ E, 32.67◦ N) near Sialkot, Pakistan (Figure 2). The extent of
the Chenab River catchment lies in 73◦–78◦ E and 32◦–35◦ N. The catchment of Chenab River covers
an area of about 26,000 km2 up to Marala Barrage (Figure 2). The elevation range of the catchment
varies from 235 m near Marala Barrage to 7103 m in the upper snowy area [60]. Chenab River slope
varies from 25 m/km in the uppermost part of the river to 0.4 m/km in the plains [62]. Singh et al. [63]
divided the Chenab River catchment based on altitude and studied the spatial and seasonal variation
in precipitation. They described that about 75% of rainfall occurs in the Greater Himalaya ranges
during monsoon and pre-monsoon season, while 15% of rainfall occurs in the form of snowfall during
winter. About 65% of rainfall occurs in Middle Himalaya ranges during monsoon and pre-monsoon
season and about 26% of rainfall during the winter season. In Outer Himalaya ranges, about 36% of
rainfall occurs during winter season in the form of seasonal rain instead of snow due to lower altitudes.
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The major contribution of river flow in the mid or late summer season is from snowmelt, which is later
enhanced by seasonal Monsoon rainfall. Due to this combined flow from snowmelt and precipitation,
most of the peak flows occur in June–September [64]. Thus, there is a need to closely examine the
hydrological pattern of discharges in Chenab River.
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Figure 2. Visualization of the study area.

3. Data Description and Processing

3.1. Digital Elevation Data

The topography of the catchment is represented by a digital elevation model (DEM), which is
used to delineate the catchment [65] and to analyze the flow path/drainage pattern of the land surfaces.
Analysis of DEM helps to obtain the sub-catchments and stream or river parameters. In the present
study, shuttle radar topography mission (SRTM) DEM with a 30 m spatial resolution was extracted
from the weblink of Jet Propulsion Laboratory of National Aeronautics and Space Administration
(NASA) https://www2.jpl.nasa.gov/srtm/.

3.2. Hydro-Climatic Data

NASA precipitation measuring missions, GPM and TRMM datasets, were downloaded from
NASA earth data platform, i.e., GES DISC website: https://disc.gsfc.nasa.gov/. In this study, GPM-based
IMERG final precipitation (version 6) (NASA Goddard Space Flight Center, Greenbelt, MD, USA) and
TRMM-based TMPA-3B42 (version 7) (NASA Goddard Space Flight Center, Greenbelt, MD, USA) were
downloaded from 2001–2010. Daily timescale datasets were downloaded and extracted for the Chenab
River catchment for both IMERG-F and 3B42 precipitation products. Downloaded NetCDF (NC4) files
were processed in ArcMap to get the average cumulative precipitation values for each sub-catchment
at every timestep. A routine in ArcMap was developed, and the process automated to receive the
precipitation values for each sub-catchment, as shown in Figure 3.

https://www2.jpl.nasa.gov/srtm/
https://disc.gsfc.nasa.gov/
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This procedure began with the “iterate files” tool by selecting repeated NC4 files according to the
file names. Then, NC4 files were converted into raster layers, which were eventually processed in the
“extract values to points” tool to extract the precipitation values according to a given rain gauge station
shapefile. Rain gauge station shapefile was the centroid of each sub-catchment.

Maximum and minimum temperatures, relative humidity, sunshine duration and wind speed data
were obtained from the climate forecast system reanalysis (CFSR) dataset. The CFSR dataset is developed
by the National Centers for Environmental Prediction (NCEP) of The National Oceanic and Atmospheric
Administration (NOAA) and can be retrieved from the weblink: https://www.ncdc.noaa.gov/. The CFSR
is a fully coupled land-ocean–atmosphere model that uses numeric weather prediction techniques to
assimilate atmospheric states [66]. Additionally, CFSR product has more horizontal resolution than
any other reanalysis product [67].

Daily and monthly observed discharge at the Marala Barrage gauging site was required to compare
the modeled and observed values. These data were obtained from the flood forecasting division of
Pakistan Meteorological Department (PMD) and utilized for daily and monthly model calibration.

3.3. Land Use and Soil Type Data

Land use dataset are used to recognize the hydrological processes and their governing
systems [68]. Digital identification of the study area (Figure 4) was done by dataset acquired
from https://swat.tamu.edu/data/. Seventeen different types of land use classes are present in the
study area catchment, which are shown in Table 1. The major part of land use was grassland (20.55%)
followed by shrubland (15.71%), irrigated croplands and pasture (15.24%) and snow or ice (12.18%),
as displayed in Figure 4.

Another important aspect of recognizing the hydrologic responses is soil type and texture [69].
Soil type data (Figure 5) was downloaded from the United Nations Food and Agriculture Organization
(FAO) harmonized world soil database (HWSD), http://www.fao.org/home/en/. The HWSD consists of
30 resolution with more than 15,000 different soil-mapping units. The soil type classification of the
study area is presented in Table 2, describing eight different types of soils. Chenab catchment consists of
40.87% of lithic soils followed by orthic luvisol (20.03%), glaciers (18.3%) and haplic phaeozem (12.51%).
lithic soils are present in the middle range of the catchment, while glaciers and haplic phaeozem cover
the upper range of the catchment Figure 5.

https://www.ncdc.noaa.gov/
https://swat.tamu.edu/data/
http://www.fao.org/home/en/
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Table 2. Soil classification in the study area.

Soil Class Soil Texture Associated Soil Area (km2) % Area

I-B-U-3712 Loam Lithic 10,718.13 40.87
Be72-3c-3672 Clay Orthic luvisol 5253.41 20.03

GLACIER-6998 UWB glacier 4799.72 18.3
Be78-2c-3679 Loam Haplic phaeozem 3279.61 12.51
Lo44-1b-3799 Sandy Loam Chromic luvisol 1188.51 4.53
Jc42-2/3a-3736 Clay Loam Eutric fluvisols 461.04 1.76
Be71-2-3a-3668 Clay Loam Gleyic cambisol 418.43 1.6
Be79-2a-3680 Loam Eutric gleysol 105.8 0.4

4. Methods

In this study, the methodology was devised based on open-source datasets in an ungauged Chenab
River catchment. Thus, the hydrological model developed is based on different open-source datasets
for topography, soil, land use and precipitation, as described in the previous section.

4.1. Hydrologic Simulation Using SWAT Model

Flow modeling in ungauged and large catchments is a very challenging task for water
managers in developing countries [70]. The soil and water assessment tool (SWAT) was designed
by the US Department of Agriculture—agricultural research services (USDA-ARS) to manage the
water resources from large river basins [40]. SWAT model has also been widely used in the
hydrological modeling of ungauged basins [5,6,71]. It is a physical-based, time-continuous and
semidistributed hydrologic model [72]. In the SWAT model, the whole catchment is divided
into sub-catchments, which are then further subdivided into hydrological response units (HRUs).
The HRUs are the basic elements of hydrological estimations, which integrate land use, soil type and
topography. The hydrological processes within SWAT consist of infiltration, lateral flow, plant uptake,
evaporation and snowmelt [73]. These processes are simulated in SWAT-based on the water balance
equation. The soil conservation services (SCS) curve number method was used to calculate the
surface discharge. The channel flow rate and velocity are obtained by using Manning’s equation,
whereas lateral flow is estimated by the kinematic storage model. The Hargreaves method was
employed for the estimation of evapotranspiration. Further details can be from the SWAT user
manual [73].

SWAT requires spatial data, such as DEM, land use, soil type and slope classification. All of
these datasets were projected to a similar coordinate system in ArcMap. The Arc-SWAT 2012 was
used to simulate the hydrologic process in the Chenab River catchment using open source data spatial
and climatic data. The DEM was used to delineate the catchment into 23 sub-catchments (Figure 6),
while spatial datasets, e.g., land use, soil type and slope were used to generate 1792 lumped areas or HRUs.

To consider the snowmelt effect in SWAT, five elevation bands were introduced in sub-catchments.
Two open-source climatic datasets, i.e., IMERG-F v6 and 3B42 v7, were used in the model to simulate
the flow in the catchment at daily and monthly timescale. SWAT model was calibrated from 2003–2006
and validated from 2007–2010. A two-year (2001–2002) warmup period was applied to stabilize
the model.

4.2. Sensitivity/Uncertainty Analysis

SWAT-CUP was developed by Abbaspour [50] to ease the uncertainty/sensitivity analysis,
calibration and validation processes. In this study, the SUFI-2 algorithm was used to perform
sensitivity and uncertainty analysis in simulated flows of the SWAT model. A widely used
autocalibration algorithm, SUFI-2, provides comparable results for sensitivity analysis, calibration,
validation [52]. Yang et al. [52] described the procedure to calculate the parameter sensitivities by
using a multiple regression system with Latin hypercube sampling utilizing objective function values.
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Several objective functions have been used so far to estimate the model performance, for example,
the R2, the Nash–Sutcliffe efficiency (NSE), the chi-squared and root mean square error. In this study,
NSE was chosen as an objective function and global sensitivity analysis (GSA) was performed to check
the sensitivity of an individual parameter.
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Global Sensitivity Analysis (GSA)

A global sensitivity analysis (GSA) was performed for the control point, i.e., the Marala
Barrage gauging site of the study area, to find the most responsive model parameters. For GSA,
seventeen parameters were selected and 1000 simulations were run. The SUFI-2 algorithm was applied
to categorize the most active ten parameters from a list of seventeen parameters. A t-test was applied
to identify the relative significance of the parameters. The t-stat and P-value enable us to elect the
parameter according to its sensitivity. The larger the value of t-stat and lower the value of P make the
parameter more sensitive (Figure 7). Parameters, CH_K2, CH_N2, followed by CN2 and ALPHA_BF
were found to be more sensitive, shown by a smaller value of P as tabulated in Table 3. The selected ten
out of seventeen parameters, which vigorously govern the rainfall-runoff process, are listed in Table 4.Water 2020, 12, x FOR PEER REVIEW 9 of 21 
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Table 3. Parameter sensitivity analysis.

Parameter Name Definition t-Stat p-Value

r__CN2.mgt SCS curve number −10.751 0.000

v__ALPHA_BF.gw Base flow factor −6.063 0.000

v__GWQMN.gw
Threshold depth of water in the

shallow aquifer for return flow to
occur (mm H2O)

−1.089 0.276

v__SUB_SMTMP(..).sno Snowmelt base temperature −0.776 0.438

v__GW_DELAY.gw Groundwater delay −0.567 0.571

v__GW_REVAP.gw Groundwater revap coefficient −0.558 0.577

v__SUB_SMFMX(..).sno Maximum melt rate for snow
during year (mm H2O/◦C/day) −0.279 0.780

v__SUB_SMFMN(..).sno Annual minimum melt rate
for snow −0.231 0.817

v__EPCO.hru Plant uptake compensation factor −0.158 0.875

r__SOL_AWC(..).sol Available water capacity of soil layer 0.000 1.000

v__SUB_SFTMP(..).sno Snowfall temperature 0.242 0.809

v__REVAPMN.gw
Threshold depth of water in the

shallow aquifer for “revap” to occur
(mm H2O)

0.658 0.510

v__RCHRG_DP.gw Deep aquifer percolation fraction 0.799 0.424

v__SUB_TIMP(..).sno Snow temperature lag factor 1.093 0.275

v__ESCO.hru Soil evaporation
compensation factor 2.426 0.015

v__CH_N2.rte Manning’s “n” value for the channel 13.114 0.000

v__CH_K2.rte Effective hydraulic conductivity
of channel 27.547 0.000

Table 4. Initial and optimized sensitive parameter ranges during calibration of daily IMERG-F.

Sr. Parameters
Initial Parameters Ranges Optimized Parameters Ranges

Lower Limit Upper Limit Lower Limit Upper Limit

1 v__ALPHA_BF.gw 0 1 0 0.65

2 v__GW_DELAY.gw 0 500 145.20 435.79

3 v__REVAPMN.gw 0 500 218.19 654.80

4 v__GW_REVAP.gw 0.02 0.2 0.02 0.11

5 v__SUB_SMTMP().sno −5 5 −5 0.18

6 v__SUB_SFTMP().sno −5 5 −4.34 1.89

7 r__CN2.mgt −0.25 0.25 0.24 0.25

8 v__CH_K2.rte 0.001 200 55.08 165.32

9 v__CH_N2.rte −0.01 0.3 0.107 0.3

10 v__ESCO.hru 0 1 0.474 1.42

4.3. Calibration and Validation

After GSA, calibration was done with ten sensitive parameters by running 500 simulations in
three iterations. A single iteration for validation was carried out by selecting a similar number of
simulations as in the last iteration of the calibration.
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4.4. Performance Indices

Two indices—P-factor and R-factor—were introduced in SWAT-CUP to quantify the prediction
uncertainties [53]. The P-factor is the percentage of observed data bracketed by a 95% prediction
boundary often known as 95 % prediction uncertainty, or 95PPU. Its value ranges from 0 to 1, in which
a value close to 1 depicts the very high model performance and agrees the 100% enveloping of the
observed data within the model prediction uncertainty. The R-factor denotes the thickness of the
95PPU envelope and varies in the range 0–1 [54]. P and R factors are closely linked to each other,
which indicates that a higher value of P-factor can be achieved with the expense of the higher value
of the R-factor. The best-calibrated ranges can be achieved by balancing in P and R factor values.
For calibration of discharge, the P-factor value greater than 0.7 and R-factor value less than 1.5 is
acceptable [74].

Coefficient of determination (R2) and the Nash–Sutcliffe efficiency (NSE) [75] were used to indicate
the goodness of fit for the best simulation. R2 depicts the strength of linear correlation between observed
and simulated discharge values and its value stretches from 0 to 1. The best model performance is
indicated by a value close to 1 and a value greater than 0.5 is considered acceptable [76]. NSE defines
how perfectly the observed and simulated data match the 1:1 line [77]. Its value lies in −∞ to 1.
Moriasi et al. [76] classified the model performance using NSE value: unsatisfactory performance
(NSE ≤ 0.50), satisfactory performance (0.50 ≤ NSE ≤ 0.65), good performance (0.65 ≤ NSE ≤ 0.75) and
very good performance (0.75 ≤ NSE ≤ 1.00).

PBIAS tends to capture the underestimation or overestimation of simulated values from observed
values. PBIAS has 0 value under optimal conditions, whereas a positive value shows an underestimation
of the prediction and negative value depicts that the model overestimates the prediction [78].
Van Liew et al. [79] classified PBIAS values into three classes: good at ±20%, satisfactory between
±20% and ±40% and unsatisfactory at ±40%.

5. Results

5.1. Calibration and Validation of the SWAT Model

The list of ten sensitive parameters with their initial and optimized ranges, obtained in the
calibration of daily IMERG-F model, are tabulated in Table 4. These ten parameters, with their
initial parameters’ ranges, were further used in the calibration of other models. Eckhardt et al. [80]
described that the range of parameters in the calibration process should be in physically permissible
limits. Optimized parameter ranges were obtained by running three iterations of 500 simulations each.
To identify the best parameter ranges for simulation, Nash–Sutcliff efficiency (NSE) was selected as an
objective function due to its extensive use in hydrologic modeling [81].

Calibration and validation are very important aspects of hydrological modeling. In the calibration
phase, model parameters are tuned enough to get good agreement between observed and simulated
values. Further, these tuned parameters are validated for the next period. The fitted values of tuned
parameters used in the calibration and validation of the model are given in Table 5. In this study,
daily time series data of six years (2001–2006), including the initial warmup period of two years
(2001–2002), were used for calibration of the model while the model was further validated for the next
four years (2007–2010). Moreover, the model was also calibrated and validated on a monthly timescale
for the same duration.
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Table 5. Fitted parameter values of IMERG-F and 3B42.

Sr. Parameters

Fitted Parameter Values

IMERG-F 3B42

Daily Monthly Daily Monthly

1 v__ALPHA_BF.gw 0.26 0.22 0.21 0.52

2 v__GW_DELAY.gw 184.43 334.96 314.04 320.43

3 v__REVAPMN.gw 425.58 585.38 599.35 475.36

4 v__GW_REVAP.gw 0.02 0.02 0.02 0.04

5 v__SUB_SMTMP().sno −3.22 −1.46 −4.82 −1.07

6 v__SUB_SFTMP().sno −1.07 −2.08 −2.00 0.13

7 r__CN2.mgt 0.25 0.24 0.25 0.23

8 v__CH_K2.rte 131.48 103.48 115.82 160.14

9 v__CH_N2.rte 0.25 0.17 0.29 0.21

10 v__ESCO.hru 1.32 1.05 1.38 1.32

5.2. Runoff Simulation on Daily and Monthly Timescale

To check the detectability of satellite precipitation products, two types of products were used in the
SWAT model to simulate the runoff at the Marala Barrage gauging site in River Chenab. The model was
set up with a daily GPM product (IMERG-F) and a daily TRMM product (3B42). It was then calibrated
using the SWAT-CUP model in the SUFI-2 algorithm. Calibrated and validated outputs of IMERG-F
and 3B42 on daily timescale are shown in Figure 8. The calibration range in Figure 8 is 2003–2006
and the validation range is 2007–2010. Calibrated and validated hydrographs show that both satellite
precipitation products have less tendency to capture peaks, whereas low flows are well captured in the
model. It is observed in the peak of the validation period in 2009 that the IMERG-F product captures a
peak more precisely than the 3B42 product. Five kinds of evaluation indices (P-factor, R-factor, R2,
NSE and PBIAS) were used to evaluate the detection precision of IMERG-F and 3B42 as depicted in
Figure 9. For best flow model calibration, values of P-factor and R-factor should be greater than 0.7
and less than 1.5, respectively. According to Figure 9a,b, the values of the P-factor and R-factor are
within acceptable limits for IMERG-F and 3B42 products. The results of R2 show that IMERG-F has
outperformed the 3B42 (Figure 9c), where calibration of IMERG-F and 3B42 displays 0.61 and 0.57
while validation displays 0.66 and 0.64, respectively. A similar trend for NSE is noted in Figure 9d,
where calibration of IMERG-F and 3B42 exhibit 0.54 and 0.45, while for validation the values are 0.61
and 0.54, respectively. Figure 9e shows that the SWAT model driven by daily IMERG-F precipitation
produces a moderate underestimate of 22.8% in calibration and 21.5% in validation, whereas 3B42 data
produces extreme underestimation of 30.9% in calibration and 31.1% in validation. From the above
discussion, the daily IMERG-F appears to be a little more favorable than the daily 3B42 precipitation
product in an ungauged Chenab River catchment.

In the case of monthly aggregated flows from daily flows, the model results are fairly in line with
the observed monthly flows (Figure 10). There is a significant improvement in the performance of both
IMERG-F and 3B42 products compared to the daily timescale. As on the daily timescale, the model is
unable to capture the peak flows, whereas, on a monthly timescale, model performance in capturing
the peaks is very accurate. However, results produced by IMERG-F are still better than 3B42 on a
monthly scale. In terms of R2 and NSE, both IMERG-F and 3B42 exhibit higher values on a monthly
timescale than a daily timescale. The accumulated monthly simulated flows using IMERG-F produces
best-simulated results with R2 of 0.86 and 0.89, NSE of 0.77 and 0.82 for calibration and validation,
respectively (Figure 9c,d). The statistical comparison for both products on a monthly scale is also
displayed in Figure 9. However, the ability of both satellite products to capture the peak flows is lower,
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but overall, the IMERG-F performed better than 3B42. Therefore, by observing the statistical indices
of both satellite products, the IMERG-F is considered to be a perfect replacement for the 3B42 for an
ungauged Chenab River catchment.

Water 2020, 12, x FOR PEER REVIEW 11 of 21 

 

Table 5. Fitted parameter values of IMERG-F and 3B42. 

Sr. Parameters 
Fitted Parameter Values 

IMERG-F 3B42 
Daily Monthly Daily Monthly 

1 v__ALPHA_BF.gw 0.26 0.22 0.21 0.52 
2 v__GW_DELAY.gw 184.43 334.96 314.04 320.43 
3 v__REVAPMN.gw 425.58 585.38 599.35 475.36 
4 v__GW_REVAP.gw 0.02 0.02 0.02 0.04 
5 v__SUB_SMTMP().sno −3.22 −1.46 −4.82 −1.07 
6 v__SUB_SFTMP().sno −1.07 −2.08 −2.00 0.13 
7 r__CN2.mgt 0.25 0.24 0.25 0.23 
8 v__CH_K2.rte 131.48 103.48 115.82 160.14 
9 v__CH_N2.rte 0.25 0.17 0.29 0.21 

10 v__ESCO.hru 1.32 1.05 1.38 1.32 

5.2. Runoff Simulation on Daily and Monthly Timescale 

To check the detectability of satellite precipitation products, two types of products were used in 
the SWAT model to simulate the runoff at the Marala Barrage gauging site in River Chenab. The 
model was set up with a daily GPM product (IMERG-F) and a daily TRMM product (3B42). It was 
then calibrated using the SWAT-CUP model in the SUFI-2 algorithm. Calibrated and validated 
outputs of IMERG-F and 3B42 on daily timescale are shown in Figure 8. The calibration range in 
Figure 8 is 2003–2006 and the validation range is 2007–2010. Calibrated and validated hydrographs 
show that both satellite precipitation products have less tendency to capture peaks, whereas low 
flows are well captured in the model. It is observed in the peak of the validation period in 2009 that 
the IMERG-F product captures a peak more precisely than the 3B42 product. Five kinds of evaluation 
indices (P-factor, R-factor, R2, NSE and PBIAS) were used to evaluate the detection precision of 
IMERG-F and 3B42 as depicted in Figure 9. For best flow model calibration, values of P-factor and R-
factor should be greater than 0.7 and less than 1.5, respectively. According to Figure 9a and Figure 
9b, the values of the P-factor and R-factor are within acceptable limits for IMERG-F and 3B42 
products. The results of R2 show that IMERG-F has outperformed the 3B42 (Figure 9c), where 
calibration of IMERG-F and 3B42 displays 0.61 and 0.57 while validation displays 0.66 and 0.64, 
respectively. A similar trend for NSE is noted in Figure 9d, where calibration of IMERG-F and 3B42 
exhibit 0.54 and 0.45, while for validation the values are 0.61 and 0.54, respectively. Figure 9e shows 
that the SWAT model driven by daily IMERG-F precipitation produces a moderate underestimate of 
22.8% in calibration and 21.5% in validation, whereas 3B42 data produces extreme underestimation 
of 30.9% in calibration and 31.1% in validation. From the above discussion, the daily IMERG-F 
appears to be a little more favorable than the daily 3B42 precipitation product in an ungauged Chenab 
River catchment. 

(a) (b) 

Water 2020, 12, x FOR PEER REVIEW 12 of 21 

 

(c) (d) 

Figure 8. Hydrographs between daily observed and simulated flows (a) IMERG-F calibration (b) 
IMERG-F validation (c) 3B42 calibration (d) 3B42 validation. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Hydrographs between daily observed and simulated flows (a) IMERG-F calibration
(b) IMERG-F validation (c) 3B42 calibration (d) 3B42 validation.

5.3. Taylor Diagrams

Taylor diagrams were plotted to concise the statistical summary on how well satellite-based
simulated discharge agrees with the observed discharge at the Marala Barrage gauging site (Figure 11).
Taylor [82] has constructed a significant diagram by plotting the standard deviation of the time series
of the simulated values and the Pearson correlation between the time series of simulated and observed
values. He also realized the connection between standard deviation, correlation and the centered
pattern Root Mean Square (RMS) error difference and found that they can be displayed in a single
diagram. In Taylor diagram, the RMS error in simulated discharge is related to the distance from the
“observed” point on the x-axis, the correlation (similarity between simulated and observed discharges)
is proportional to the azimuthal angle, and the standard deviation of simulated discharges is related to
the radial distance from the origin. Model simulations will be considered as best fit with the observed
discharge when it will lie near to the point marked “Observed” on the x-axis.

Figure 11 indicates that among both satellite precipitation products, IMERG-F and 3B42,
the IMERG-F-based model run provides the best approximation to the time series of observed discharge.
However, 3B42 driven simulation run is satisfactory comparable to observed discharge. The overall
hydrologic model performance at monthly and daily scale is depicted in Figure 11, where the blue
square represents the 3B42 product and the red triangle represents the IMERG-F. It is evident from
Figure 11a,b that at daily timescale, the value of R is between 0.76–0.81, and the RMS error value is
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between 506.22–655.54 m3/sec. In contrast, at a monthly scale (Figure 11c,d), the value of R is between
0.90–0.94, and the RMS error value is in between 295.71–445.11 m3/sec. This trend depicts that the
results from monthly simulations dominate results from daily simulations. Nevertheless, IMERG-F
performs better than 3B42 on both monthly and daily timescale. The monthly 3B42-based model run
obtained lower R (calibration, 0.90 and validation, 0.92) and higher RMS errors (calibration, 445.11 m3/s
and validation, 373.81 m3/s) than the monthly IMERGE-F-based model run with R (calibration, 0.93 and
validation, 0.94) and RMS errors (calibration, 357.88 m3/s and validation, 295.71 m3/s) (Figure 11c,d).
The best simulation in all model runs is from monthly IMERG-F with a higher value of R and less
RMS error.
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The comparison between simulated discharges from IMERG-F and 3B42 shows that IMERG-F is
the best precipitation input for the Chenab River catchment. The simulated flow from IMERG-F is
more in agreement with the observed flow and has much better values of performance indices than
3B42. This tendency is similar for daily and monthly timescale. This study is useful for the ungauged
Chenab River catchment where data sharing is very insufficient from the Indian side catchment. In this
situation, satellite-based precipitation estimates would bring significant results for rainfall-runoff

modeling for this river. The overall complete performance indices of calibration and validation stages
of IMERG-F and 3B42 are given in Tables A1 and A2.

6. Summary, Conclusions and Recommendations

6.1. Summary

The main objective of this study was to choose the feasible satellite precipitation product from two
renowned products, i.e., GPM IMERG-F version 6 and TRMM 3B42 version 7, for reliable hydrological
modeling in the ungauged catchment of Chenab River in Pakistan. The physical-based semidistributed
hydrological model of SWAT was selected to simulate the runoff in the catchment. To evaluate the
prediction uncertainties, Abbaspour et al. [74] recommended that the values of the P-factor should
be greater than 0.7 and the value of R-Factor should be less than 1.5 for calibration of discharges.
For all calibrated and validated events, the value of P-Factor is greater than 0.77 for IMERG-F and
greater than 0.63 for 3B42. The range of R-Factor is between 1.14–1.25 and 1.04–1.16 for IMERG-F
and 3B42, respectively. To evaluate the performance of satellite precipitation products, three main
statistical indices, R2, NSE and PBIAS, were considered. The simulated results for daily 3B42 show
a lower resemblance to daily observed discharges with R2 (0.57 Calibration, 0.64 Validation) and
NSE (0.45 Calibration, 0.54 Validation). The daily IMERG-F gives a satisfactory performance with R2
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(0.61 Calibration, 0.66 Validation) and NSE (0.54 Calibration, 0.61 Validation). A model performance
with accumulated monthly flows from satellite precipitation products shows a significant improvement,
which indicates a better agreement with observed hydrographs in both calibration and validation
phases. IMERG-F input yields the best model performance at monthly timescale with R2 of 0.86
and 0.89 and NSE of 0.77 and 0.82 for calibration and validation, respectively. The monthly output
of 3B42 is also satisfactory with R2 of 0.81 and 0.85 and NSE of 0.64 and 0.72 for calibration and
validation, respectively. Both satellite products underestimate the discharges at daily and monthly
scale. However, 3B42 produces more underestimation with PBIAS (30.9 Calibration, 31.1 Validation)
than IMERG-F with PBIAS (22.8 Calibration, 21.5 Validation). The retrieved results from the Taylor
diagram depicted that IMERG-F outperformed the 3B42 precipitation with higher values of R and
lower RMS error (Table A2).
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6.2. Conclusions

In comparison to daily timescale simulations, the performance of IMERG-F v6 and 3B42 v7
depicted that discharge simulation at a monthly timescale has higher values of R2, NSE and R,
while values of PBIAS and RMS error are lower. Moreover, from the comparison between IMERG-F v6
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and 3B42 v7, it was observed that the performance of IMERG-F v6 was more favorable than 3B42 v7 by
indicating higher R2, NSE and R values and lower PBIAS and RMS error at both monthly and daily
timescale. Therefore, GPM IMERG-F v6 is identified as a potential replacement for TRMM 3B42 v7
product at the Chenab River catchment.

6.3. Recommendations

Overall, this study demonstrates that satellite precipitation products are a valuable source of
rainfall data and provide useful input for hydrological simulation in the ungauged Chenab River
catchment. These results could encourage water managers to choose satellite precipitation products
for runoff modeling in this catchment or nearby similar catchments in the future. This research was
only accomplished by using only two open-source satellite precipitation products, while there are
many other open-source precipitation products are available. Moreover, climatic data like temperature,
wind speed, solar radiation and evaporation can be accessed from other open-source platforms.
This means that the use of open-source data for hydrologic simulation in ungauged catchments is
worth studying.
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Appendix A

Table A1. Performance indices results of calibration (2003–2006) and validation (2007–2010).

Satellite Precipitation Product Calibration/Validation Timescale P-factor R-factor R2 NSE PBIAS

IMERG-F

Calibration
Monthly

0.77 1.18 0.86 0.77 22.8

Validation 0.81 1.14 0.89 0.82 21.5

Calibration
Daily

0.80 1.25 0.61 0.54 22.8

Validation 0.83 1.20 0.66 0.61 21.5

3B42

Calibration
Monthly

0.63 1.09 0.81 0.64 30.9

Validation 0.67 1.04 0.85 0.72 31.1

Calibration
Daily

0.74 1.16 0.57 0.45 30.9

Validation 0.75 1.08 0.65 0.54 31.1

Table A2. Taylor diagram statics of model for calibration (2003–2006) and validation (2007–2010).

Statistics Satellite Precipitation Product
Monthly Daily

Calibration Validation Calibration Validation

R
IMERG-F 0.93 0.94 0.78 0.81

3B42 0.90 0.92 0.76 0.81

RMS error
IMERG-F 357.88 295.71 601.61 506.22

3B42 445.11 373.81 655.54 545.90

Standard
Deviation

IMERG-F 722.13 681.06 834.12 772.86

3B42 727.80 690.71 811.47 765.67
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