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Abstract: Degradation of water quality in recreational areas can be a substantial public health concern.
Models can help beach managers make contemporaneous decisions to protect public health at recreational
areas, via the use of microbial fate and transport simulation. Approaches to modeling microbial fate and
transport vary widely in response to local hydrometeorological contexts, but many parameterizations
include terms for base mortality, solar inactivation, and sedimentation of microbial contaminants. Models
using these parameterizations can predict up to 87% of variation in observed microbial concentrations
in nearshore water, with root mean squared errors ranging from 0.41 to 5.37 log10 Colony Forming Units
(CFU) 100 mL−1. This indicates that some models predict microbial fate and transport more reliably
than others and that there remains room for model improvement across the board. Model refinement
will be integral to microbial fate and transport simulation in the face of less readily observable processes
affecting water quality in nearshore areas. Management of contamination phenomena such as the
release of storm-associated river plumes and the exchange of contaminants between water and sand at
the beach can benefit greatly from optimized fate and transport modeling in the absence of directly
observable data.
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1. Introduction

Water systems and the recreational opportunities that they afford bring millions of people outside
each year, especially during warm weather. Over 75% of people traveling in the summer visit beaches,
and in Chicago alone 20 million people go to Lake Michigan beaches annually, on average [1,2].
To protect public health and the safety of beachgoers, the Beaches Environmental Assessment and
Coastal Health (BEACH) Act of 2000 requires routine monitoring of coastal water quality at both
marine and freshwater beaches across the USA [3]. This monitoring, however, often involves obtaining
samples and either culturing for fecal indicator organisms (FIO) such as E. coli or enterococci or
using quantitative Polymerase Chain Reactions (qPCR) to determine FIO concentrations in the water.
These approaches take time, leading to a delay of up to 24 hours before obtaining water quality
information to effectively manage beach usage for public health. This delay can be the difference
between keeping beachgoers safe by advising against beach access and putting them in danger by
keeping a contaminated beach open for recreation.

To avoid the lag time associated with water sample analyses, mechanistic, statistical and other
data-based models have emerged as potentially feasible alternatives to daily water quality monitoring.
These models incorporate parameters associated with meteorology, hydrodynamics, human and wildlife
usage, water turbidity, and settling of suspended sediments to predict microbial concentrations [4–20].

Numerical mechanistic models have shown variable success in predicting microbial concentrations
in coastal and beach systems across space and time. As knowledge of aquatic systems and their
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various influences on waterborne microorganisms has progressed in recent years, predictive capacity
of models has increased as well [13,16,17,21]. However, with a still incomplete knowledge of how
components of the aquatic environment interact to influence microbial fate and transport, improving
the representation of processes as well as of source behavior, parameter identification and model
evaluation remains an evolving process.

This process is further complicated by the often rapidly changing conditions within aquatic
environments. For example, Lakes Michigan and Huron in the Laurentian Great Lakes, USA, have
become significantly clearer since the 1990’s, in response to an invasion by dreissenid mussels [22–24].
This clarification likely impacts microbial survival in the water, due to the subsequent changes in
sunlight extinction and solar microbial inactivation rates in the water [25]. Similarly, changes to
microbial sources and hydrodynamics associated with climate change [26–29] may lead to changes
in how microbial fate and transport can be effectively modeled. Not only is sea level predicted to
rise due to climate change, but frequency and intensity of storm events are projected to increase for
many regions as well [30]. Sea level rise will undoubtedly change the layout of beach areas, leading to
phenomena such as shoreline erosion and increased foreshore areas that are susceptible to microbial
transfer between water and sand [31]. At the same time, a predicted increase in the frequency and
intensity of storm events will likely lead to increased runoff of urban and agricultural contaminants to
rivers, which will in turn flow to coastal areas and potentially impact beach water quality [32].

Herein, we aim to compare the various approaches to modeling microbial (i.e., FIO) fate and
transport in coastal aquatic environments using coupled mechanistic hydrodynamic and transport
modeling approaches, to determine how these approaches impact model predictive capability. Examples
of such models include the Finite Volume Community Ocean Model (FVCOM, [33]), the Princeton
Ocean Model (POM, [15,20,34,35]), the Aquatic Ecosystem Model 3D (AEM3D, [17]), Delft3D [36],
and the Environmental Fluid Dynamics Code (EFDC, [37]) to name only a few. For the purposes
of this review, we will concentrate on these mechanistic and process-based models of FIO fate and
transport, but statistical and data-based modeling approaches are briefly discussed to the extent that
they can support mechanistic modeling efforts. We then discuss the application of such approaches
to emerging modeling questions surrounding the simulation of storm-associated river plumes and
microbial exchange between beach sand and water. While nearshore environments harbor a variety of
microorganisms, including bacteria, viruses and fungi, this work will focus on modeling of FIO such
as E. coli, enterococci, and coliforms. Understanding how numerical models predict water quality will
lend insight into which approaches may be most appropriate for modeling recreational water quality
to ensure public health in the face of climatic and environmental changes.

2. Modeling Hydrodynamics and Microbial Fate & Transport

Numerical modeling of hydrodynamics in coastal environments depends heavily on the physics
of the water body, meteorological conditions over time and the impacts of river/estuary inputs. Water
moves in three spatial dimensions and over time, so utilizing a three-dimensional hydrodynamic
model is key to adequately simulating water movementin coastal areas. Unstructured grid models
(e.g., FVCOM) may have advantages in simulating coastal water quality due to their ability to
accurately represent nearshore features such as irregular coastlines, barrier islands and sandbars,
harbors, breakwaters etc.

Generally, coastal hydrodynamics are governed by three-dimensional, unsteady forms of the
Navier-Stokes momentum equations (Equations (1)–(3)) and the assumption of the continuity equation
(Equation (4)) [33,38,39].
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In these equations, x, y, and z represent the east, north and vertical directions, while u, v, and w
denote the velocity components in the x, y, and z directions, respectively (m s−1). fu, fv are the Coriolis
terms, Fu, Fv are the horizontal diffusion terms in the x and y directions, respectively and Fw is a vertical
diffusion term (m2 s−1). Km denotes a vertical eddy viscosity coefficient (m2 s−1) and ρ0 represents the
density of water (kg m−3). Air pressure at the water surface is denoted by pa, hydrostatic pressure is
represented by pH, and q is the non-hydrostatic pressure (all in Pa) [33]. Using these equations, models
can effectively account for the effects of temperature, density, and Coriolis force on water movement
over time. The effects of waves in the nearshore environment (e.g., wave-current interactions, bottom
shear stress) can be simulated using coupled hydrodynamic and spectral wave models such as the
FVCOM-Surface Wave (FVCOM-SWAVE) model [40].

Building on the general hydrodynamic model, microbial fate and transport associated with diffusion,
dispersion, advection, and mortality within an aquatic system can be simulated [9,12,13,15–17,20,21,41].
The governing equation for microbial fate and transport is based on the advection-dispersion-reaction
(ADR) equation, formulated in terms of FIO concentration (Equation (5)). This equation includes terms
for advection, diffusion/dispersion in the water column, and microbial decay [16,33].
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In the equation, C corresponds to the microbial concentration (Colony Forming Units (CFU)
100 mL−1), k represents the overall microbial decay rate (d−1), and KV and KH are the vertical and
horizontal mixing coefficients, respectively (m2 s−1). Horizontal and vertical mixing are described using
the Smagorinsky and Mellor-Yamada 2.5 level turbulence parameterizations [33,39]. Microbial decay
can depend on factors such as microbial taxon and base mortality, water temperature and chemistry,
attachment to and detachment from suspended solids, settling after attachment to suspended solids,
sunlight inactivation, and interactions with other biota in the aquatic environment [21]. Because of its
dependence on these factors, the decay term in mechanistic models has taken on many forms within
the literature and is often a combination of multiple terms.

3. Boundary and Initial Conditions

Key drivers of hydrodynamics in the nearshore region include winds and/or tides [42,43] and
riverine/estuarine flows [9,44–46]. These are often governed by local conditions such as bathymetry,
wind stress, Coriolis force, and water temperature, which can vary spatiotemporally. For example,
seasonality of thermal or density stratification in large lakes such as Lake Michigan can impact
circulation as well as buoyancy of contaminant plumes, leading to differential impacts on water
quality and hydrodynamics throughout the year [47,48]. Similarly, estuarine exchange flows and the
corresponding changes in vertical density stratification (and hence vertical mixing) are controlled by
the along-channel wind component which changes seasonally [49]. In addition to seasonal-temporal
variability in fluid properties, there are spatial influences that control hydrodynamics. The impacts of
Coriolis force can vary by latitude as well as water body size, with effects becoming significant for
large (>5 km width) lakes and at high latitudes [50]. Because these effects can vary spatiotemporally
while also influencing large-scale hydrodynamics by influencing stratification, it is important to specify
related model boundary conditions as realistically as possible.

Boundary conditions for the momentum equations are well-known and include wind stress on
the surface of the water column and bed friction on the lake/seabed; additional details are available
in Chen et al. [33,39]. For the FIO transport model, the nature of the source(s) dictates the type of
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boundary conditions used. For beaches impacted by riverine sources, monitoring data collected at
the river mouth can be used to provide boundary forcing for the FIO transport model. However,
most mechanistic models use small time steps (on the order of seconds to minutes) while monitoring
data are collected less frequently (e.g., weekly or bi-weekly), introducing significant uncertainty into
the modeling due to a mismatch between the model time steps and forcing data. In addition, model
inputs are generally specified at regular intervals while monitoring data may be irregular and with
gaps (e.g., missing data during weekends).

One way to address this limitation is to use calibrated watershed models [51–53] or statistical
models to generate high-resolution boundary forcing data at the river mouth when high-resolution
discharge data are available (e.g., at a United States Geological Survey (USGS) gauging station in
the USA). Several researchers have exploited a potential correlation between river discharge (Q) and
FIO (e.g., E. coli) concentrations (C) and have used statistical relations between Q and C to generate
high-resolution tributary loading data for nearshore FIO models [16,17,20]. Compared to the use of
sparse monitoring data to represent tributary loading in FIO models, these approaches have promise,
as they can better describe rapid changes in loading and may be suitable for simulating the impacts
of extreme storm events on microbial water quality in coastal areas. For beaches with no known
riverine sources, observed FIO dynamics may be driven by local sources including birds [12,54,55],
resuspension of bottom sediment-bound FIO [45,46] and shoreline sand [7,56]. A comprehensive
analysis of the relative importance of the different sources calls for detailed modeling of hydrodynamics
including currents and waves, sediment transport, sediment-FIO interactions and relatively fine
computational grids to capture the impact of shoreline birds and sand. Because initial conditions
for hydrodynamic models of lakes and reservoirs may specify a waterbody that is initially at rest
(zero velocity components), a spin-up period is often used to allow models to catch up with observed
data. For FIO models, the initial concentration of FIO may include a small non-zero background
value and model spin-up time may allow for increased water quality predictability over the model
simulation period.

4. Components of the Microbial Decay Function

One form of the microbial decay function from Equation (5) is represented by Equation (6),
where total microbial loss (k) is characterized by the combination of a base mortality rate (kb1), light
inactivation rate (kbi) and settling rate (kbs) [41,57]. All of the decay terms in the equation are daily
decay rates (units of d−1).

k = kb1 + kbi + kbs (6)

The factors that influence these three terms, though, can be variable and specific to the model
domain, context, and aims.

Liu et al. [13] further separated this basic decay function for Lake Michigan, yielding a function
that accounted for bacterial loss due to settling and light inactivation, with a temperature correction
factor to justify changes due to temperature variations from 20 ◦C (Equation (7)). In this model, fp is the
fraction of FIO particles attached to suspended solids (unitless), vs represents settling velocity (m d−1),
H is the depth of the water column (m), kI is the inactivation rate associated with solar radiation
(m2 W−1 d−1), It denotes the solar irradiance at the surface of the water at time t (W m−2), θ is the
temperature correction factor (unitless), and T is the water temperature (◦C).

k =

[
fpvs

H
+ kIIt

]
θT−20 (7)

The right-hand side of this equation is composed of a sedimentation/settling term, a light inactivation
term, and a temperature correction factor, when read from left to right. Though it incorporates terms for
temperature, settling, and sunlight impacts on FIO, this form of the decay function fails to account for
other potentially important influences.
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Microbial survival in aquatic systems can be subject to impacts due to temperature, salinity, light
penetration and inactivation, predation, competition for resources, nutrient availability, and other natural
(or base) mortality. Similarly, conditions such as the presence of aquatic vegetation and dreissenid mussels
in a water body can impact bottom shear stress, thereby influencing sedimentation and resuspension of
FIO. These factors can be difficult to characterize, especially when they vary between systems. In marine
or brackish ecosystems where salinity may vary over time and space, it can have a substantial impact
on the survival and persistence of several microorganisms [21,58–66]. Similarly, in systems with high
levels of mixing or turbidity, FIO may not settle out of the water column as much as they would for
less well-mixed systems that would foster settling [67]. Finally, light inactivation has been shown to
play a significant role in FIO decay via inactivation in natural waters [68,69]. This is especially true for
oligotrophic or low-turbidity waters that do not have high levels of suspended solids that can serve as
refugia for FIO [25].

Impacts can also vary between different microorganisms. Cabelli [70], Colford et al. [71], and
Schang et al. [72] document differential sensitivities to environmental pressures between E. coli,
Cryptosporidium parvum, Giardia lamblia, and Campylobacter spp. in natural waters. Sanders et al. [73]
tested the impact of organism-dependent sensitivities to environmental survival influences on model
predictive ability. They found that a model with the same environmental influences underpredicted
E. coli concentrations, but overpredicted concentrations of both total coliforms and enterococci,
compared to observations.

4.1. Dark Mortality, Base Mortality and Temperature/Salinity Dependence

Base mortality (kb1) and dark mortality (kd) terms are often used in models to account for the
natural decay that microbes undergo, independent of sunlight effects. The value of kd can be highly
variable, depending on the geographic location and the microorganism of focus [15,16,21,74–77].
Models have been presented using kd values as low as 8.6 × 10−5 d−1 [15] and in vitro experiments
have yielded kd rates of up to 2.2 d−1 [74]. Once kd is established, it is then possible to correct for other
factors affecting kb1, such as temperature, salinity, or pH of the water.

While salinity and its impacts on microbial persistence are frequently negligible in freshwater
systems, marine and estuarine systems often have dynamic salinity conditions, and microbial decay
rates are proportional to salinity levels [21,58–66]. As a result, models in the context of marine or
estuarine systems calculate kb1 in terms of salinity, using either percentage of sea water (Ps, [59]) or
salinity (S, PSU) terms (Equations (8) and (9)).

kb1 = (kd + 0.006Ps) (8)

kb1 = (kd + 0.02S) (9)

Dark mortality rates are developed for a reference water temperature of 20 ◦C, so an adjustment to
account for variability in temperature is also needed. Microorganism base mortality terms are adjusted
for temperature using the Arrhenius equation [15,18,78]. Resulting temperature correction factor values
can range from 1.04 to 1.11 [78], but frequently are assumed to be 1.07 [79]. This adjustment indicates
a strong temperature dependence, with a doubling of the mortality rate for every 10 ◦C increase in
temperature [41]. The resulting full formulation of the base mortality term is thus represented by
equations 10 and 11, where θ represents the temperature correction factor.

kb1 = (kd + 0.006Ps)θ
T−20 (10)

kb1 = (kd + 0.02S)θT−20 (11)

A majority of existing models use some version of this formulation to determine base mortality
rate of microorganisms in natural waters (Table 1). Notable exceptions were found in models from
Liu et al. [80], McCorquodale et al. [81], Hipsey et al. [21], Rehmann and Soupir [78], Servais et al. [82,83],



Water 2020, 12, 1876 6 of 22

and de Brauwere et al. [84]. Rather than using a dark mortality rate to calculate base mortality,
Liu et al. [80] use the time to inactivate 90% of microorganisms in the dark (t90). McCorquodale et al. [81]
use a curve-fitting procedure on field-collected data to determine the impact of salinity on base
mortality. Hipsey et al. [21] and Rehmann and Soupir [78] incorporate the effects of salinity and pH
on mortality (cSM and cpHM , respectively), sensitivity of the microorganism to salinity and pH (β and
KδpHM

, respectively), nutrient limitation (fLIM) and dissolved organic carbon concentration (DOCL)
when calculating base mortality. Following Servais et al. [82,83], de Brauwere et al. [84] use a logistic
relationship between microbial decay and temperature to determine kb1.

Table 1. Base mortality terms used in contaminant fate and transport models.

Aquatic
Environment Type

Simulated
Microorganism Base Mortality Term Reference

Freshwater/Marine E. coli kdθ
T−20 Mancini [59]

Freshwater Lake/River Coliform kdθ
T−20 Auer and Niehaus [85]

Freshwater Lake/River Fecal Coliform kd Canale et al. [86]

Freshwater Lake E. coli, enterococci,
Fecal Coliform kd Jin et al. [74]

Freshwater Lake/River E. coli k Jamieson [87]

Brackish Lake Fecal Coliform
(
0.00014S2 + 0.0024S + 0.0253

)
θT−20 McCorquodale et al. [81]

Estuary/Coastal Total Coliform kdθ
T−20 Kashefipour et al. [44]

Estuary/Coastal Fecal Coliform kdθ
T−20 Kashefipour et al. [44]

Generic Coastal Model Generic Bacteria, Viruses,
Protozoa

[
kd

cSM Sα

35

[
1− f LIM(DOCL)

]β]
·

[
1 + cpHM

[
pHδ

KδpHM
+pHδ

]]
θT−20

Hipsey et al. [21]

Freshwater Stream E. coli

[
kd

cSM Sα

35

[
1− f LIM(DOCL)

]β]
·

[
1 + cpHM

[
pHδ

KδpHM
+pHδ

]]
θT−20

Rehmann and Soupir [78]

Freshwater Lake E. coli kdθ
T−20 Thupaki et al. [15]

Estuary/Coastal E. coli kd
e(
−(T−25)2

400 )

e(
−25
400 )

Servais et al. [82,83];
De Brauwere et al. [84]

Estuary/Coastal E. coli kd Bedri et al. [88]

Estuary/Coastal Fecal Coliform kdθ
T−20 Liu et al. [76]

Freshwater Lake E. coli kdθ
T−20 Thupaki et al. [35]

Estuary/Coastal Vibrio spp. kdθ
T−20 Froelich et al. [89]

River/Estuary Fecal Coliform kdθ
T−20 Boye et al. [90]

Freshwater Lake E. coli 2.3
t90
θT−20 Liu et al. [80]

Freshwater Stream Fecal Coliform kdθ
T−20 Reder et al. [91]

Estuary/Coastal Fecal Coliform kdθ
T−20 Gao et al. [45]

Estuary/Coastal Fecal Coliform kdθ
T−20 Liu et al. [77]

Freshwater Lake E. coli kdθ
T−20 Safaie et al. [16]

Freshwater Lake Fecal Coliform kdθ
T−20 Bravo et al. [20]

Estuary/Coastal E. coli
(
kd + ksalinity

)
θT−20 Garcia-Alba et al. [18]

Freshwater Stream E. coli kdθ
T−20 Mohammed et al. [51]

4.2. Solar Inactivation Terms

It is generally accepted that incoming solar radiation affects the survival of microbes in water
systems [69,85,92,93]. This is especially true in clear, oligotrophic waters, where solar inactivation
can be a predominant influence on microbial survival [25,68]. Many mechanistic fate and transport
modelers recognize the impacts of solar inactivation on microbial survival in water and include
inactivation parameters in their models.
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Accounting for solar irradiation in natural waters inherently involves the calculation of the light
extinction rate within the water column. The amount of light penetrating the water column declines
exponentially with depth and is influenced by the turbidity or clarity of the water, such that clearer
water yields a lower light extinction rate than turbid water. Lower light extinction rates, in turn,
yield more intense solar radiation at deeper depths in the water, leading to higher microbial solar
inactivation rates [41].

Nearly all of the models which account for solar inactivation use some variation of Equation (7) in
which the Beer-Lambert Law (Equation (12), [94]) is used to model the variation of solar radiation with
depth. In the Beer-Lambert equation, z is vertical coordinate of depth (m) and Iz represents the amount of
solar radiation at vertical coordinate z (W m−2). I0 is solar radiation at the water surface (W m−2), and ke is the
light extinction rate (m−1) [95]. It is important to distinguish between kI from Equation (7) and ke in Equation
(12). In Equation (7), the kI term is an inactivation rate for FIO as a result of solar radiation [16,73,80],
whereas ke in Equation (12) is the rate of light extinction with depth in the water column [21,41,95].

Iz = I0e−kez (12)

Model type can have a significant impact on the variables used in parameterization of solar
inactivation effects on FIO. Models may employ either total depth (H) or the vertical coordinate (z)
within their solar radiation parameterizations, depending on the model context. In two-dimensional
model frameworks, conditions within the water column are often vertically-integrated. For these cases,
fate and transport models use a single depth variable (H) and a single solar radiation variable (It) to
account for potential variability in the vertical dimension [13,41,45,78]. Fully three-dimensional models,
in contrast, explicitly define conditions at different depths in the water column via their incorporation
of the vertical coordinate variable z within their parameters. For example, fully three-dimensional
models will often incorporate variables for solar radiation at the water surface (I0) and solar radiation
at depth z (Iz) to capture differences with depth in the water column [15,16,21,35,59,74,85,86,90,91,96].

A variety of approaches have been used for characterizing the effects of solar inactivation on FIO fate
and transport. In some cases, models do not include solar inactivation terms at all [17,51,76,77,84,88],
often because the water is so turbid that solar effects are assumed negligible compared to other
environmental influences. Others use either a microbial decay rate solely as a function of incoming
solar radiation (Equation (7)) or as a function of the light extinction rate and depth in the water
(Equation (12), Table 2). Hipsey et al. [21] expanded the description of solar inactivation effects on FIO
in their generic modeling framework, including specific terms for dissolved oxygen (DO), pH, salinity
(S), and solar bandwidth (b). Garcia-Alba et al. [18] included terms corresponding to day length (DL)
and fraction of solar irradiance that is in the UV spectrum (fUV) as well as the typical light extinction
rate, solar inactivation rate, solar irradiance and depth terms seen in other models.

Table 2. Solar inactivation terms used in contaminant fate and transport models.

Aquatic
Environment Type Simulated Microorganism Solar Inactivation Term Reference

Freshwater/ Marine E. coli kI
I0

keH

(
1− e−keH

)
Mancini [59]

Freshwater Lake/River Coliform kI
I0
kez

(
1− e−kez

)
Auer and Niehaus [85]

Freshwater Lake/River Fecal Coliform kI
I0
kez

(
1− e−kez

)
Canale et al. [86]

Freshwater Lake E. coli, enterococci,
Fecal Coliform

αI0
keH

(
1− e−keH

)
Jin et al. [74]

Brackish Lake Fecal Coliform kLθT−20 McCorquodale et al. [81]

Estuary/Coastal E. coli kIIt Sanders et al. [73]

Freshwater Lake E. coli (kIIt)θT−20 Liu et al. [13]

Estuary/Coastal Total Coliform,
Fecal Coliform kIIt Kashefipour et al. [44]
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Table 2. Cont.

Aquatic
Environment Type Simulated Microorganism Solar Inactivation Term Reference

Generic Coastal Model Generic Bacteria, Viruses,
Protozoa

Nb∑
b=1


ϕ(kI + csS) fbI0

(
1−e−kez

−kez

)
·

(
DO

kDO+DO

)
·

(
1 + cpH

pHδ

(kpH)
δ
+(pH)δ

)
 Hipsey et al. [21]

Freshwater Stream E. coli kI
It

keH

(
1− e−keH

)
Rehmann and Soupir [78]

Freshwater Stream E. coli,
enterococci kIIt Cho et al. [97]

Freshwater Lake E. coli
(
kII0e−kez

)
θT−20 Thupaki et al. [15]

Freshwater Lake E. coli
(
kII0e−kez

)
θT−20 Thupaki et al. [35]

Marine Coastal Enterococci kIIt Feng et al. [98]

River/Estuary Fecal Coliform kIIt
1.0−e−keH

keH
Boye et al. [90]

Freshwater Lake E. coli (kIIt)θT−20 Liu et al. [80]

Freshwater Stream Fecal Coliform kI
I0

keH

(
1− e−keH

)
Reder et al. [91]

Estuary/Coastal Fecal Coliform (kIIt)θT−20 Gao et al. [45]

Marine Coastal Enterococci kIIt Feng et al. [99]

Freshwater Lake E. coli
(
kII0e−kez

)
θT−20 Nekouee et al. [47,96]

Freshwater Lake E. coli
(
kII0e−kez

)
θT−20 Safaie et al. [16]

Freshwater Lake Fecal Coliform
(
kII0e−kez

)
θT−20 Bravo et al. [20]

Estuary/Coastal E. coli kI ∗DL ∗ fUV ∗ I0
(

1−e−keH

keH

)
Garcia-Alba et al. [18]

4.3. Sedimentation Terms

In addition to solar inactivation, attachment to suspended solids and settling out of the water
column is another significant driver of FIO losses in aquatic environments. 80–100% of total coliforms
and E. coli have been shown to readily attach to suspended particles in the water column [100],
and viruses have also been shown to easily attach to particulate matter and settle out of suspension [101].

Similar to the solar inactivation term, several published models do not incorporate sedimentation
effects on microbial fate and transport [44,73,87,88,90,98,99,102,103]. In models that do incorporate
sedimentation losses, settling terms most frequently use parameters representing settling velocity
(vs, as calculated using Stokes’ Law), vertical coordinate (z) or the total water column depth (H), and the
fraction of the FIO that is attached to particles (fp, Table 3). In many cases, sedimentation terms are also
subject to temperature correction, in the same manner that base mortality and solar inactivation terms
utilize temperature correction factors [13,16,76,77], to acknowledge the fact that overall loss of FIO
increases with temperature.

Table 3. Sedimentation loss terms used in contaminant fate and transport models.

Aquatic
Environment Type

Simulated
Microorganism Sedimentation Loss Term Reference

Freshwater Lake/River Coliform vs
ze

Auer and Niehaus [85]

Freshwater Lake/River Fecal Coliform vs
z Canale et al. [86]

Freshwater Lake E. coli, enterococci,
Fecal Coliform fp

vs
H Jin et al. [74]

Brackish Lake Fecal Coliform fp
vs
Hθ

T−20 McCorquodale et al. [81]

Freshwater Lake E. coli fp
vs
Hθ

T−20 Liu et al. [13]

Generic Coastal Model Generic Bacteria, Viruses,
Protozoa

(
1− fp

)
vc
z +

fp
Ns∑

s=1

[
vs
z

(
As∑Ns

s=1 Ap

)]
Hipsey et al. [21]
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Table 3. Cont.

Aquatic
Environment Type

Simulated
Microorganism Sedimentation Loss Term Reference

Freshwater Stream E. coli vsC
H Rehmann and Soupir [78]

Freshwater Stream E. coli,
enterococci fp

vs
H Cho et al. [97]

Freshwater Lake E. coli ∂( fpvsC)
∂z

Thupaki et al. [15]

Estuary/Coastal E. coli vs
H De Brauwere et al. [84]

Estuary/Coastal Fecal Coliform fp
vs
Hθ

T−20 Liu et al. [76]

Freshwater Lake E. coli ∂( fpvsC)
∂z θT−20 Thupaki et al. [35]

Freshwater Lake E. coli fp
vs
Hθ

T−20 Liu et al. [80]

Freshwater Stream Fecal Coliform vs
H Reder et al. [91]

Estuary/Coastal Fecal Coliform fp
vs
Hθ

T−20 Liu et al. [80]

Freshwater Lake E. coli ∂( fpvsC)
∂z θT−20 Safaie et al. [16]

Freshwater Lake/River E. coli fp
vs
Hθ

T−20 Liu [38]

In their generalized sedimentation term, Hipsey et al. [21] expanded upon the simplified
sedimentation terms used in most other models. This expansion accounts for various particle size
classes (Ns), particle and attachment surface areas (Ap and As, respectively), and settling velocities for
attached (vs) and unattached (vc) FIO.

Bravo et al. [20] and Thupaki et al. [35] incorporated sedimentation effects by including them in
the vertical advection term of the 3D ADR equation (Equation (5)). As a result, the ADR presented is
Equation (13) and the microbial decay function (kC) only includes terms for base mortality and solar
inactivation in these models.

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

+
∂
((

w− fpvs
)
C
)

∂z
=

∂
∂x

(
KH

∂C
∂x

)
+

∂
∂y

(
KH

∂C
∂y

)
+
∂
∂z

(
KV

∂C
∂z

)
− kC (13)

5. Model Testing and Evaluation

There is a large number of processes influencing FIO fate and transport and it can be difficult to
identify a correct conceptual model that acknowledges process interdependencies over wide ranges of
environmental variables of interest. Therefore, it is difficult to fully test FIO models across environments,
and within the same environment, across different time periods (e.g., dry vs. wet weather events,
“normal” vs. extreme events). While calibrated FIO fate and transport models have the potential to aid
management by providing near real-time predictions, a majority of the published papers report results
of model back-testing (or history matching, see Bredehoeft and Konikow [104]).

To evaluate the goodness of fit between models and observational data as well as to identify
superior model formulations (by comparing different models), the use of multiple model evaluation
metrics may be more beneficial [104,105] than the use of a single metric such as the coefficient of
determination (R2) or root mean squared error (RMSE). This is due to the fact that no single model
performance metric captures all aspects of the data and simulation results, and all metrics have known
limitations. In the context of FIO and beach management, evaluating models using the confusion
matrix and concepts of sensitivity and specificity [19,106,107] have proven to be useful, especially for
the practical application of issuing beach advisories and closings.

Existing, published models have been tested in a number of ways. Most model testing protocols,
particularly those in more recent modeling studies, involve statistical analysis of comparability of model
results to observed data. A majority of published models have used RMSE or R2 as model performance
metrics (Table 4). Other statistics such as Normalized RMSE (NRMSE), Mean Absolute Error (MAE),
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Nash-Sutcliffe Efficiency (NSE) [108], Percent Bias (PBIAS) [109] or the Refined Willmott Index of
Agreement [110] have also been used by Boye et al. [90], Liu et al. [77] and Feng et al. [98]. A subset of
the published models was qualitatively assessed, often with comparisons to other models replacing
the more quantitative RMSE, R2, MAE, NSE and Wilmott index statistics [21,38,59,76,78,84,85,87,88].
In all applicable cases, the RMSE or MAE values have units of log10 FIO CFU 100 mL−1, while NRMSE
units are percentages and NSE values are unitless.

Table 4. Skill statistics and validation data for published numerical models of microbial water quality
and FIO fate and transport.

Aquatic
Environment Type

Simulated
Microorganism

Validation
Type/Statistic

Skill Statistic Value/Qualitative
Observations Reference

Freshwater/Marine E. coli Qualitative
Evaluation

Good agreement with coliform
mortality rates. Mancini [59]

Freshwater Lake/River Coliform Qualitative
Evaluation

Model was based on empirical
relationships from lab/field data. Auer and Niehaus [85]

Freshwater Lake/River Fecal Coliform Qualitative
Evaluation

Model output is comparable and
consistent with observed bacterial

loads during wet and dry
weather events.

Canale et al. [86]

Freshwater Lake E. coli, enterococci, Fecal
Coliforms

Qualitative
Evaluation

Fairly good prediction of
observed microbial

concentrations, but a general
underestimation by the model.

Jin et al. [74]

Freshwater Lake/River E. coli Qualitative
Evaluation

Modeled results generally
simulate observations well.

Empirical data should be used to
calibrate models for

nutrient-rich streams.

Jamieson [87]

Brackish Lake Fecal Coliforms Qualitative
Evaluation

Fecal coliform dilution-decay is
well-represented in the model, but
predictions are susceptible to high

levels of uncertainty associated
with observed values.

McCorquodale et al. [81]

Estuary/Coastal E. coli R2 0.19–0.70 Sanders et al. [73]

Freshwater Lake E. coli RMSE 0.71–0.84 Liu et al. [6]

Estuary/Coastal Total Coliform R2 0.715 Kashefipour et al. [44]

Estuary/Coastal Fecal Coliform R2 0.686 Kashefipour et al. [44]

Generic Coastal Model Generic Bacteria, Viruses,
Protozoa

Qualitative
Evaluation

The generic model did not
outperform other

models significantly.
Hipsey et al. [21]

Freshwater Stream E. coli Qualitative
Evaluation

Predictive capacity changes over
time. Model underpredicts E. coli

at shorter time scales but
reproduces measurements at

longer time scales after storms.

Rehmann and Soupir [78]

Freshwater Stream E. coli, enterococci NSE −0.02–0.81 Cho et al. [97]

Freshwater Lake E. coli RMSE 0.41 Thupaki et al. [15]

Estuary/Coastal E. coli Qualitative
Evaluation

Reference model overpredicted
median observations by 7 and 3%
at Temse and Uitbergen locations,
respectively, but the variability of
modeled results is much higher

(3% for Uitbergen, 50% for Temse)
than the observed data.

De Brauwere et al. [84]

Estuary/Coastal E. coli Qualitative
Evaluation

Model significantly
underestimates E. coli in a bay. Bedri et al. [88]

Estuary/Coastal Fecal Coliform R2 0.71–0.83 Liu et al. [76]

Freshwater Lake E. coli RMSE 0.52–1.36 Thupaki et al. [35]

Estuary/Coastal Vibrio spp. RMSE 0.80 Froelich et al. [89]

Marine Coastal Enterococci Willmott Index of
Agreement 0.47–0.60 Feng et al. [98]
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Table 4. Cont.

Aquatic
Environment Type

Simulated
Microorganism

Validation
Type/Statistic

Skill Statistic Value/Qualitative
Observations Reference

Freshwater Lake E. coli NRMSE 5–23 Nekouee et al. [47,96]

River/Estuary Fecal Coliform MAE 0.348 Boye et al. [90]

Freshwater Lake E. coli RMSE 2.24–3.00 Liu et al. [80]

Freshwater Stream Fecal Coliform RMSE 0.44–0.70 Reder et al. [91]

Estuary/Coastal Fecal Coliform RMSE 4.42–4.80 Gao et al. [45]

Estuary/Coastal Fecal Coliform RMSE 3.62–5.37 Liu et al. [77]

Marine Coastal Enterococci RMSE
MAE

0.67–0.92
0.47–0.72 Feng et al. [99]

Freshwater Lake E. coli
R2

RMSE
NSE

0.60–0.72
0.52–0.60
0.13–0.30

Safaie et al. [16]

Freshwater Lake/River E. coli RMSE/Qualitative
Evaluation

Model was optimized for RMSE,
given various Manning roughness

coefficients. Optimized model
used Manning roughness

coefficient = 0.035.

Liu [38]

Freshwater Lake Fecal Coliform RMSE 0.66 Bravo et al. [20]

Estuary/Coastal E. coli R2 0.87 Garcia-Alba et al. [18]

Freshwater Stream E. coli R2 0.26–0.31 Mohammed et al. [51]

Based on R2 to evaluate model performance, the model of Garcia-Alba et al. [18] produced one of
the best descriptions of observed data among the models considered here (R2 = 0.87). Their model
incorporated temperature- and salinity-dependent base mortality (kb1 =

(
kd + ksalinity

)
θT−20) and solar

inactivation terms accounting for day length and fraction of irradiance composed of UV radiation
(kbi = kI ×DL × fUV × I0

(
1−e−keH

keH

)
). Based on RMSE alone, one of the published models that best

approximates observed microbial concentrations is detailed in Thupaki et al. [15] (RMSE = 0.41 log10

CFU 100 mL−1). Within this model, kb1 = kdθ
T−20, kbi = (kIIt)·θT−20, and kbs =

∂( fpvsC)
∂z θT−20.

Although comparison of these model frameworks can lend insight into which ones may best
simulate microbial water quality, it is important to note that the models were developed under
varying contexts. One published approach attempted to develop a generic water quality model, to be
used across environments and target microorganisms [21]. This model framework led to complex
terms within the decay function, often including parameterization for salinity, pH, dissolved organic
carbon concentration, varying particle sizes and settling velocities, and variable sensitivity of the
microorganism to such environmental changes. The resulting validation of the model indicated that
the generic model did not outperform other existing models in its prediction of contaminant fate
and transport. Despite this lack of substantial improvement over existing models, the generality of
this model may be attractive to researchers looking for a single model to predict water quality under
various conditions.

A lack of ancillary data may provide a confounding factor in the use of generic models such
as the one described in Hipsey et al. [21]. In many cases, models are developed without the use of
DOC, pH, temperature and salinity data, instead relying on hydrodynamics and meteorology to model
FIO fate and transport. Likewise, additional water quality data such as DOC, pH, temperature and
salinity are often not collected or available for model development, potentially hindering the usage and
applicability of such a generic model. This could, however, indicate not that generic models may be less
useful than specific and localized models, but rather that in situ DOC, pH, temperature and salinity data
should be collected as part of the water quality monitoring process. For example, while the focus of
most FIO modeling efforts is to reproduce the observed FIO concentrations, if no temperature data are
collected in the nearshore region the ability of the coupled FIO-temperature-hydrodynamic model to
accurately represent FIO decay is questionable as base mortality, solar inactivation, and sedimentation
are often functions of temperature. A majority of the models reported in the literature use microbial
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decay formulations with a solar inactivation term and use FIO data collected during the daytime.
Previous research shows that the highest levels of FIO are typically observed during the early morning
hours (e.g., 6:00 AM) [111] due to the absence of solar radiation the previous night. Therefore, modeling
the nighttime variation of FIO is important to correctly describe FIO levels in the morning [112];
however, since monitoring data are not collected at night, this aspect has not received much attention
in the modeling literature.

In the absence of the specific data needed for the generic water quality model described above,
selection of an appropriate modeling framework should be based on the target FIO as well as the
environmental and hydrological context of the model.

6. Applying Microbial Fate and Transport Models to Extreme Storm Events

Numerical simulation of microbial water quality has evolved in recent years, as the dynamics
of processes such as solar inactivation have become clearer. Even so, the incomplete knowledge
of influences within aquatic systems on water quality indicates that there is still room for model
improvement. Likewise, climate and land use/urbanization changes provide additional contexts for
the prediction of microbial water quality [26]. Although the link between extreme precipitation and
waterborne disease outbreaks is well known [29,113], the current generation of FIO models can be
further refined and tested for their ability to reproduce observed dynamics during extreme storm
events. Major areas of research impacting coastal water quality from the perspective of extreme storm
events may include the exchange of FIOs between water and sand at beaches, the fate and transport of
FIOs in storm-associated river plumes and the expansion of water quality monitoring research into
microbial source tracking and environmental DNA (eDNA) for use in public health contexts.

The interaction between water and sand at the beach, and its impacts on recreational safety and
water quality, has been an active area of discussion in recent years [56,114–120]. Microorganisms in
beach sands have been cited as potential sources of contamination and swimmer infection as early
as 2003 [115]. The microbial community within beach sands is unique [15] in that it can serve as
either a sink or a source of FIO to the adjacent recreational water, depending upon wave energies,
currents and the movement of the water. When wave energy is low, FIO often get deposited from
the water and into shoreline sand where they can form biofilm communities, while higher wave
energy frequently leads to the release and re-suspension of FIO from the shoreline sand into the
water [56,116]. These sand-based sources and sinks can heavily impact spatial and temporal trends in
FIO concentrations at beaches. Further, the Intergovernmental Panel on Climate Change (IPCC) has
predicted increases in wind speeds and wave heights/energies in mid- and upper latitudes as a result of
climate change [121]. Similarly, the IPCC has predicted sea level rise in coming decades, a phenomenon
already being observed, leading to changes in the beach face and the intertidal zone that is impacted
by wave deposition/resuspension of FIO [56,122]. This will likely lead to increases in wave-induced
FIO release from sands and into recreational water. Because of the potential for climate change to
significantly impact sand-water exchange of FIO at beaches, it will be integral for numerical models to
include sand-sediment-water interactions when predicting microbial water quality. Currently there are
gaps in our understanding of these sand-sediment-FIO related processes and there is a need to further
refine our mechanistic modeling approaches based on high-quality field observations and datasets
which are often lacking. This will be especially important in substantially wave-impacted beach areas,
to improve upon model predictions that exclude sand/sediment parameters [35,46].

Such models accounting for sand-sediment-water interactions at the beach may take inspiration
from modeling frameworks that incorporate sedimentation. For instance, the modeling approach
developed by Hipsey et al. [21] includes terms for various particle size classes, accounting for differential
resuspension effects on “fine” and “coarse” particles. Fine particles require lower bed shear stress values
for resuspension, compared to coarse particles, so it may be important to differentiate between the
readily resuspended particles and those that are less likely to resuspend after deposition [98,100,123].
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After simulating sediment transport as a function of particle size, sediment-FIO interactions can be modeled
using attachment-detachment kinetics following those established for subsurface transport models [124].

An additional concern related to how climate change will impact recreational water quality
involves storm- and runoff-associated FIO at coastal areas. For many regions, including mid-latitudinal
coastal areas, climate change is expected to lead to increasingly frequent and intense storms [121].
Not only will these intense storms make recreation at beaches dangerous via rip tides, rip currents
and strong waves, but they will also send increased volumes of potentially contaminated runoff and
river water downstream, to be released to coastal areas [125]. As a result, recreational beaches may be
expected to experience the impacts of more frequent and larger storm-associated river FIO plumes.

Effective prediction of the coastal water quality impacts from river FIO plumes will be helpful
in not only understanding an additional source of contamination to recreational areas but will also
aid in the management of beach resources for public and environmental health. This simulation will
require the extension of existing numerical modeling approaches to include the determination of FIO
concentrations in dynamic river plumes as well as reliable estimation of plume dynamics.

A number of studies have reported a “first-flush” effect for FIO (e.g., [122,123]) in which elevated
FIO levels were observed following storm events with levels declining in later portions of the storm event
and in subsequent events over a season. However, other researchers did not report such an effect [126].
These differences can be attributed to different runoff characteristics of watershed areas, so linking coastal
water quality models with well-tested watershed models of FIO is expected to help address current
limitations of nearshore FIO models [127]. For example, microbial composition and concentrations in
runoff depend on upstream land uses; runoff from rural/agricultural watersheds is likely to have different
water quality concerns than runoff from urbanized or forested catchments [128–130]. These differences
are magnified during first flush phenomena and heavy storm events, where FIO can be released from
soils and into the water, leading to high FIO loads in rivers that can then degrade coastal water quality.
Therefore, calibrated upstream watershed models can be beneficial for modeling of coastal water quality
in response to storm-associated river plume releases, simply because of the differential impacts resulting
from different upstream watershed conditions that send FIO loads downstream to the coast.

In addition to the enteric pathogens of human health concern that can be indicated using FIO,
microorganisms that cause other health problems, such as respiratory and skin infections, are also often
present at beaches, and may be tracked to upstream sources [131]. This is especially true in the context
of extreme storm events when beaches are heavily impacted by upstream river flows and plumes.
Methods such as microbial source tracking (MST) and the monitoring of eDNA have shown value in
their ability to improve predictive modeling of extreme storm events by offering insights into sources
and transport pathways for FIO [7,132]. Differences in MST and eDNA monitoring results between
“normal” and heavy storm conditions can be helpful in determining the types of microorganisms that
become active within the aquatic environment in response to storm conditions [133]. Similarly, they can
be informative in characterizing upstream impacts on coastal areas, by revealing potential catchment
sources of microorganisms. Integrating well-calibrated watershed FIO models with nearshore water
quality models (e.g., Bedri et al. [53]) or statistical and data-based approaches that describe FIO
loading to coastal areas [20] may further improve the performance of nearshore FIO models during
extreme events.

Conditions surrounding FIO sedimentation, attachment to suspended solids, and resuspension in
riverbeds and coastal areas can vary greatly between storm events. However, there is a notable lack
of observational data on water quality during and immediately following different storm conditions.
High-resolution FIO data both within and between storm events will be critical to effective simulation
of FIO loading, attachment dynamics, sedimentation and resuspension kinetics, and overall water
quality in river plumes associated with heavy rain events. It can be difficult to collect these data,
due to safety considerations, but the use of sensor networks and small unmanned aerial vehicles
has emerged as a potential alternative to field data collection. Morgan et al. [134] demonstrated the
use of unmanned aerial vehicles to photograph and document inland irrigation ponds and used
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image analysis to characterize water quality from the images collected. Many existing sensors on
water bodies (e.g., select USGS gauging stations) also collect ancillary water quality data such as
turbidity and electrical conductivity. These easy-to-collect data have the potential to help further
constrain and evaluate FIO models because of their correlations to microbial water quality [10,11,16,135].
High-resolution water quality data collection is ideal for effective fate and transport modeling, but this
data collection can take many forms, including remote sensing and proxy data collection.

In the coastal environment, there are multiple ways to simulate river plumes in numerical water
quality models. Along with the river flow inputs, plumes may be characterized by tracking specific
FIO within a water quality or FIO-specific model. In these models, FIO concentrations associated with
the river inputs and decay function parameters can be specified to reflect local conditions. To assess
the relative contributions of FIO from riverine sources to a beach site, constant FIO concentrations or
arbitrary FIO masses can be input into the model over a release period [136,137] and breakthrough
curves can be generated over time for specific locations. In contrast, FIO concentrations that are
associated with riverine flows may be calculated using empirical relationships between river flowrate
and FIO concentration [16,17,20]. For beaches impacted by multiple river plumes (e.g., Liu et al. [13];
Kim et al. [138]), the plume dynamics and hence nearshore water quality can be significantly more
complex (Figure 1). Using realistic boundary conditions/forcing, models can track the FIO within the
plumes spatiotemporally. Another attractive option for simulating FIO plumes involves the use of
particle tracking [96,139–142], especially “reactive” particle tracking models that can account for FIO
losses [143]. In this case, FIO are released to the model domain (i.e., river outlets) as discrete particles.
Upon their release, the particles’ movements are tracked over time based on the simulated velocity
field in three dimensions. This approach, using a Lagrangian formulation for dispersion, has the
advantage that it does not suffer from excessive numerical dispersion inherent to Eulerian approaches.
All of these approaches have their merits and drawbacks, so it is likely that selection of an optimal
framework for plume modeling will require evaluation of the approaches within the context of the
research questions and local conditions.

Figure 1. Complex factors influencing fecal indicator organisms (FIO) fate and transport at river-impacted
nearshore areas.

Emerging issues such as water quality degradation associated with FIO exchange between water
and sand, river plumes, upstream watershed impacts, and heavy storm runoff are key to effective
modeling of microbial fate and transport in coastal areas. As such, future research and modeling
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in these areas will be beneficial to the water quality modeling community and knowledge base into
the future.

7. Conclusions

Numerical models of water quality in nearshore regions can be useful tools for management of
recreational water resources. Water quality and FIO fate and transport models within larger coastal
ocean modeling frameworks have the potential to predict the fate and transport of FIO and pathogens
of human health concern over time and across space. However, these models are only useful if they
are refined and validated against observations.

In recent years, development of reliable FIO fate and transport models for aquatic and coastal
systems has been an active area of research. As a result, modeling approaches frequently include
decay terms associated with base mortality, solar inactivation, and sedimentation, though the specific
parameterization of those terms can vary between models [41]. Highly generalized fate and transport
models expand upon those terms to account for the effects of salinity, water temperature, pH, dissolved
organic carbon, and differential settling rates due to varying particle sizes [21]. Model optimization
in terms of FIO tracking has led to frameworks with RMSE values as low as 0.41 log10 FIO CFU
100 mL−1 of water [15]. Some models have also been shown to predict up to 87% of variation in
FIO concentrations from observed data [18]. While these validation statistics indicate that model
frameworks are improving in their prediction of water quality, there is still room to optimize further.
It is also important to note that many of these model parameterizations are specific to their local model
domains. Generic models of FIO fate and transport can be developed, but without extensive datasets to
test and constrain processes generic model formulations may not offer superior performance compared
to simpler models [21]. Therefore, it will likely continue to be imperative that models be developed for
their specific contexts, in order to maximize their predictive capacity.

FIO fate and transport modeling frameworks linked to watershed models in the contexts of
water-sand exchange at the beach and release of FIO during storms can help us prepare for the potential
impacts of extreme events on coastal areas. High quality intra- and inter-event data as well as modeling
studies are needed to push the predictive capability of the current generation of FIO models. By refining
established FIO decay functions to maximize predictive ability of models and combining those with the
diffuse point and non-point FIO sources like plumes and sand-water exchange, prediction and tracking
of pollutants in nearshore water and sand can be optimized. Confidence in modeling results can be
maximized, allowing for more effective management for public health at nearshore and recreational
beach areas in the face of climate and land use change.
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