
water

Article

Structural Properties of the Static Armor during
Formation and Reestablishment in Gravel-Bed Rivers

Qiang Wang, Yunwen Pan, Kejun Yang and Ruihua Nie *

State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University,
Chengdu 610065, China; 2017323060034@stu.scu.edu.cn (Q.W.); panyunwen0056@sina.com (Y.P.);
yangkejun@scu.edu.cn (K.Y.)
* Correspondence: nierh@scu.edu.cn

Received: 26 April 2020; Accepted: 6 June 2020; Published: 28 June 2020
����������
�������

Abstract: The formation and reestablishment of bed structural properties in the static armor layer
is an important research subject. To address this issue, we conducted a series of static armor layer
experiments in a laboratory flume that focused on formation and reestablishment. Through an
automatic measurement system, we obtained a real-time bed load transport rate. The bed surface
elevation at different flow intensities was obtained using a PTS (Photo Terrain Scanning) system.
The results show that the formation and reestablishment of the bed load transport rate in the static
armor layer increased from zero to its peak before decaying. The bed structure response was found
to be highly dependent on the unevenness of the bed surface elevation. The bed surface elevation
of a static armor layer in a laboratory flume is considered as a two-dimensional random field.
In a two-dimensional random field, the changes in bed elevation are characterized using statistical
parameters. Statistical parameters are evaluated from precise digital elevation models (DEMs) of
bed surfaces. Experimental results provide the change of probability distribution functions (PDFs)
and second-order structure functions of bed elevations between formation and reestablishment after
breaking the static armor layer. By quantitatively analyzing the changes in these statistical parameters,
we quantified the difference between the bed structure in the static armor layer formation and the
new static armor layer formed after being broken. Thus, this finding reveals that the bed structure
of the static armor layer formed by different flow intensities is different, and this difference can be
quantified using statistical methods.

Keywords: static armor layer; bed structure; bed load transport; statistical parameter; two-
dimensional random field

1. Introduction

River channels downstream from dams form static armor layers caused by clear-water wash. The
armor layer protects the riverbed and is important for the stability of the river channel. However,
the flood control requirements can increase flow discharge and break the armor layer, inducing bed
incision as well as scour at river banks or instream structures [1–5]. Stable armor layers commonly
occur in poorly-sorted gravel-bed rivers when the imposed bed shear stress is less than the critical
shear stress needed to initiate particle motion on the bed surface [6–8].

A significant amount of research has been conducted on the formation of the armor layer by
laboratory and field investigations [9–16]. Some scholars’ studies have attempted to investigate
the breakup and reestablishment of armor layers in the field and laboratory [8,17,18]. Vericat et al.
(2006) described the breakup and reestablishment of an armor layer in a large regulated river with
field observations, suggesting that the magnitude of a flood controls the degree of armoring on the
riverbed [8]. Orrú et al. (2016) studied armor layer breakup and reestablishment with laboratory
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experiments using a trimodal mixture composed of a 1 mm sand fraction and two gravel fractions
(6 mm and 10 mm) [18]. There are also other factors that affect the stability of the static armor layer,
such as dynamic lift, backwater, and local scour [19–21]. The formation and breaking processes of
the static armor layer often occur in nature. Paying attention to the changes in bed stability in these
processes has significance for guiding the riverbed evolution process and engineering construction.

The stability of the armor layer is closely related to the surface structure in gravel-bed rivers.
At present, research on surface roughness of gravel-bed rivers is divided into three types. The first type
measures the characteristic particle size of the bed’s surface layer using different methods to represent
the riverbed’s roughness [22]. The second type uses the equivalent particle size to establish contact
with surface roughness [23,24]. Both methods are based on the mutual difference between particles,
and the influence of the bed surface structure is not considered. Therefore, the third type studies the
roughness of riverbed surfaces by using statistical rules in accordance with the random field [25–34].
At present, the improvement of terrain scanning technology has made the study of gravel-bed rivers
into a more elaborate research stage. Terrestrial laser scanning (TLS) is used in a large number of field
trials [35–38]. The improvement of imaging technology [39,40] has also provided some convenience
for the study of gravel-bed rivers. Using high-precision photographs, high-precision terrain elevation
models can be generated to study the surface of gravel riverbeds.

Although some models [41–43] can be used to predict bed load sediment transport rates or bed
shear stress, these models do not adequately consider the effects of grain hiding and bed structure.
Moreover, scholarship that has analyzed the influence of bed structure has only focused on qualitative
analysis, rarely quantifying it to a numerical value. Therefore, the quantification of the bed structure is
of great significance in improving the predication accuracy of the sediment transport rate model. This
work used a series of replicated flume experiments to determine the change in bed surface structure in
the static armor layer’s formation and reestablishment. The main objective was to quantify the role of
the bed structure in the formation and reestablishment of the static armor layer by using mathematical
tools. This work considered the bed surface elevation as a two-dimensional random field. Then, we
analyzed the differences between formation and establishment of static armor layer via statistical
parameters (probability distribution functions, PDFs) and a two-order structure function to explore a
mathematical indicator that can quantify the difference.

2. Materials and Methods

2.1. Experimental Setup

Experiments were conducted in a 37 m long, 1 m wide, and 0.6 m deep flume (Figure 1) at the
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, China. The
actual effective length of the flume was 21 m, with a 12.3 m glass section in the middle of the flume.
The rest of the flume was concrete. At the flume starting point, the bed was immobile for the first
7 m downstream and was divided into two parts. The first part was a 6.5 m long gravel transition
segment with grain sizes between 20 mm and 25 mm. The other part was 0.5 m long with grain sizes
of approximately 15–20 mm at the front of the flume. A layer of bed material (15 cm deep) was placed
along the flume to serve as an initial bed material mixture. The flume bed material was composed of a
non-uniform sediment with a median grain size (D50 = 4 mm) and a distribution truncated at 1 and
16 mm (Figure 2) (σg =1.98; σg is the standard deviation, (D84/D16)0.5 and D84 = 8 mm).
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Figure 2. Grain size distributions of the initial bed surfaces materials. 

The experiments were carried out under conditions of clear-water washing. Then, a steady 
flow discharge continued for a period of at least 24 h until a static armor layer was formed. 
Venditti’s criterion argues that when the bed load transport rate decreases to 3%–6% of the peak 
value, the static armor layer is formed [44]. Four different initial flows formed four stable static 
armor layers and increased the flow intensity to 1.2 times the flow intensity when the armor layer 
was initially formed. This ensured that the static armor layer was completely broken. In each case, 
the initial slope and the bed surface grain size distribution were the same. The experimental runs 
differed in the discharge only (the flow intensity used the riverbed shear stress τ to characterize 
flow intensity). Table 1 summarizes the hydraulic conditions for each set of the experiments.  

Table 1. Hydraulic condition for each set of laboratory flume experiments. 

Run Group Discharge(L/s) Shear Stress(Pa) Depth-Average(cm) Slope τdest/τform 1 

Run 1 
1-0 50 3.73  7.61 0.005 1 
1-1 67.8 4.47  9.12 0.0048 1.2 

Run 2 
2-0 67.8 4.51  9.2 0.005 1 
2-1 88 5.64  11.51 0.0047 1.2 

Run 3 
3-0 40 3.29  6.72 0.005 1 
3-1 54 3.97  8.10 0.0049 1.2 

Run 4 
4-0 54 3.97  8.10 0.005 1 
4-1 72 4.76  9.72 0.0047 1.2 

1 τform is the shear stress when the static armor layer is formed; τdest is the shear stress when the 
armor layer is destroyed. 

Figure 1. Line sketch of the experimental setup.
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The experiments were carried out under conditions of clear-water washing. Then, a steady flow
discharge continued for a period of at least 24 h until a static armor layer was formed. Venditti’s
criterion argues that when the bed load transport rate decreases to 3%–6% of the peak value, the static
armor layer is formed [44]. Four different initial flows formed four stable static armor layers and
increased the flow intensity to 1.2 times the flow intensity when the armor layer was initially formed.
This ensured that the static armor layer was completely broken. In each case, the initial slope and the
bed surface grain size distribution were the same. The experimental runs differed in the discharge only
(the flow intensity used the riverbed shear stress τ to characterize flow intensity). Table 1 summarizes
the hydraulic conditions for each set of the experiments.

The upstream water supply was controlled by a water pump measured with a rectangular
sharp-crested weir. The downstream water level was controlled with a tailgate located at the flume’s
downstream end. No sediment was supplied from upstream during the experiments. At the flume’s
downstream end, the transported bed load was monitored with a continuous weighing mechanism
that captured the sediment exiting the flume in a basket. In the end, the flume was suspended
from a load cell that recorded the weight of collected materials at 1 s intervals. The water surface
elevation was monitored using four automatic gauges (Model LH-1), which each had a hammer at
one end. Point measurement of the water level was achieved using a water level measurement every
1 s. The bed surface topography was monitored using a PTS series 3D scanning system (Figure 3).
The 3D scanner used structured light scanning technology, which has a short scanning time, high
data quality, and high density. The measurement results were output to conventional CAD/CAM
(Computer Aided Design/ Computer Aided Manufacturing)software to generate digital models and
CNC (Computerized Numerical Control) processing codes. The bed elevation was measured every
1 m along the longitudinal direction of the flume. The scanning accuracy of this instrument was
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0.02–0.05 mm. The single bed scanning area was 60 cm × 60 cm and there were about scanning points
about 300,000. The digital elevation models (DEMs) used on the riverbed surface were obtained using
these point clouds. At the end of each run, we sampled and sieved the sediment particles on the bed
surface at 17 m and 21 m from the flume’s starting point. First, we used red paint to spray a 20 cm ×
20 cm square area on the target area, and then used tweezers and a brush to carefully peel off the bed
surface with red marks on the bed. Lastly, we dried and sieved the sediment to obtain the grain-size
distribution of the bed surface.

Table 1. Hydraulic condition for each set of laboratory flume experiments.

Run Group Discharge(L/s) Shear Stress(Pa) Depth-Average(cm) Slope τdest/τform
1

Run 1
1-0 50 3.73 7.61 0.005 1

1-1 67.8 4.47 9.12 0.0048 1.2

Run 2
2-0 67.8 4.51 9.2 0.005 1

2-1 88 5.64 11.51 0.0047 1.2

Run 3
3-0 40 3.29 6.72 0.005 1

3-1 54 3.97 8.10 0.0049 1.2

Run 4
4-0 54 3.97 8.10 0.005 1

4-1 72 4.76 9.72 0.0047 1.2
1 τform is the shear stress when the static armor layer is formed; τdest is the shear stress when the armor layer
is destroyed.
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Figure 3. The PTS series 3D scanning system: (a) Overall picture of the scanning system; (b) overall
picture of the scan head. 1. camera; 2. grating emitter; 3. raster transmitter adjustment button;
4. handle.

Run 1-0 was purely for degradation. The bed load transport rate rapidly increased to the peak and
decayed until the bed load transport rate value reached zero. Eventually, the bed formed a stable static
armor layer. Run 1-1 was the stage in which the armor layer was completely broken. At this time, the
bed load transport rate restarted from zero and reached its peak value before beginning to decay. Run
1-0 and Run 1-1 formed a complete formation and destruction process within the static armor layer.
In this complete cycle, the bed load sediment transport rate underwent a process of first increasing to
the peak, decreasing to zero, and increasing again to the peak (not equal to the previous peak) before
decreasing. Figure 4a shows the bed load transport rate of Run 1. The figure shows that when the flow
intensity (Q = 68.7 L/s) increased to 1.2 times the initial flow intensity (Q = 50 L/s), the maximum bed
load transport rate rapidly increased and the static armor layer was broken. After that, we used a new
flow intensity (Q = 67.8 L/s) to form a new static armor layer, then used 1.2 times the previous flow
intensity (Q = 88 L/s) to destroy it, as shown in Figure 4b (Run 2). Figure 4c,d shows the change of the
bed load transport rate with time in Run 3 and Run 4. The bed load transport process in Runs 3 and 4
was similar to that of Runs 1 and 2. Four sets of experiments used different initial flow discharges to
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form four different static armor layers, which were then increased by 1.2 times the corresponding flow
intensity of the armor layer to ensure complete destruction of the static armor layer.
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(c) Run 3; and (d) Run 4.

2.2. Analytical Methods

As a first step in our analysis, the detrended DEMs were used to estimate probability distribution
functions (PDFs) by first removing the mean bed elevations and then building smoothed histograms
using 100 bins. The second step of our investigation of surface structure was the evaluation of
structure functions. The second-order structure function (slao called semivariogram) is a unique tool
for statistics [25–34]. It describes both the structure and randomness of regionalized variables. When
∆x or ∆y exceeded a certain value, ψ, the value of the second-order structure function, did not increase.
This value of z(xi) took xi as the center and the range ψ as the radius. There was a correlation between
any two directions—z(xi + nδx) or z(yi + mδx). The surface of the gravel riverbed was closely related
to the correlation of different positions on the riverbed due to the unevenness between the particles
and formation of various arrangements (such as cluster structure, line structure, triangle structure, etc.)
The second-order structural function of riverbed elevation can be used to analyze the changes in the
bed structure on the gravel-bed surface.

For this purpose, we applied the generalized second-order structure function:

D(∆x, ∆y) =
1

(N − n)(M−m)

N−n∑
i=1

M−m∑
j=1

{
z
(
xi + nδx, y j + mδy

)
− z

(
xi, y j

)}2

(1)

where ∆x = nδx and ∆y = mδy are the spatial lags (maximum set at ±300 mm); δx and δy are the
sampling intervals (both 1 mm) in the longitudinal and transverse directions, respectively; and n = 1,2,3
. . . N and m = 1,2,3 . . . M. N and M are the number of samples (300 and 300, respectively) in the same
two directions. Low values of D(∆x, ∆y)/2σz

2 indicate high levels of correlation between bed levels
with a longitudinal and transverse lag in ∆x and ∆y. As the value of D(∆x, ∆y)/2σz

2 increased, the
degree of correlation decreased. When D(∆x, ∆y)/2σz

2 reached 1, the bed elevation had no correlation
at such lags. It can be reasonably assumed that the bed topography was randomly organized. D(∆x,
∆y)/2σz

2 larger than 1 were associated with a negative correlation [30]. The second-order structure
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function of a globally homogeneous random field has the following relationship with the correlation
function R(∆x, ∆y):

D(∆x, ∆y) = 2
{
σz

2
−R(∆x, ∆y)

}
(2)

where σ is standard deviation of bed elevations. The D values are normalized with 2σz
2 and plotted

as a surface to show the variation in the structure function with regard to the sampling lags in
different directions.

3. Results

3.1. Probability Distribution Functions of the Bed Surface Elevation

At present, there are many parameters that can indicate, to a certain extent, the bed structure.
In this section, we selected the probability distribution functions (PDFs) of the bed elevation to analyze
changes in the bed structure. The DEMs were used to estimate PDFs by first removing the mean bed
elevations and then building smoothed histograms using 100 bins. There was an obvious difference in
bed elevation PDFs between the armor layer formation and reestablishment after breaking the static
armor layer. The surface elevation distribution can provide useful information about surface structure.

Figure 5 shows the probability distribution functions of the bed elevation at different locations in
the four sets of experiments (x = 17# and 21#, where x is the distance from the starting point of the
flume). It can be seen that in each experiment, the initial physically-screened bed produced PDFs,
which were relatively narrow and symmetrical. This is representative of a large number of elevation
data points that were very close to the mean value. When the experiment was pure degradation
(armor layer formation process), the movement intensity of the small particles on the riverbed was
greater than the large ones. With time, the bed load transport rate gradually decreased to zero and a
stable static armor layer was formed. In this process, the sediment particles left on the surface of the
riverbed were rearranged to form a new bed surface structure and the riverbed’s surface elevation
also changed. Therein, the riverbed was no longer flat, so the PDFs also changed at this time. The
asymmetry also became wider, which meant that the standard deviation was getting bigger. When
the flow intensity increased enough to destroy the riverbed surface’s static armor layer, the sediment
particles on the riverbed were put back into motion. Therefore, the sediment transport rate once again
formed a peak and decayed, causing the sediment particles to reorganize and arrange themselves until
the riverbed reached a steady state. As the flow intensity increased, the interaction between particles
and flow increased, and the riverbed’s sediment arrangement became more complicated. Therefore,
the elevation of the riverbed changed more severely, becoming more uneven. Thus, the PDFs became
even less symmetrical and the shape grew wider.
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Figure 5. Probability density curve of riverbed elevation over average bed surface (x = 17 and 21 m):
(a) Run 1~2, x=17 m; (b) Run 3~4, x = 17m; (c) Run 1~2, x = 21 m; and (d) Run 3~4, x = 21 m.

3.2. Second-Order Structure Functions of the Bed Elevation

3.2.1. Overall Change in the Second-Order Structure Function

When flow conditions changed, the bed structure and values of the second-order structure
functions became different. Three fundamental types (i.e., the initial bed surface, armor layer formation
surface, and breakup surface) were presented at the measurement location. Figures 6–8 show the
second-order structure functions of the riverbed under different experiments at x = 21#. The first type
was an artificially flattened original bed surface (a bed surface that has not been washed by flow is
relatively smooth). The second type was the pure degradation in the upstream without sediment
supply (pure degradation occurs when there is little to no sediment being supplied from upstream).
The bed load transport rate dropped quickly to near zero. The third type was the bed surface that
formed after the flow intensity increased and the armor layer was broken. The bed load transport rate
process was similar to the second type and was also rapidly reduced to zero.
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When the bed surface was not washed (Figure 6), the bed surface was relatively smooth. Whether
the small or large particles were evenly scattered on the riverbed, the hidden exposure between the
large and small particles was not reflected. The change in elevation at different locations on the
riverbed was relatively small. The entire second-order structure function plot shows a relatively
smooth shape. As ∆x and ∆y increased, the value of D(∆x, ∆y)/2σz

2 also increased. In other words,
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as the sampling interval increased, the interaction between the particles gradually decreased. The
second type was the pure degradation in the upstream part without sediment supply (Figure 7a–d).
Under the scouring of the constant flow intensity, all sizes of sediment particles were put into motion.
However, due to the selection effect, the proportion of small-grain sediments was much higher than
that of large-grained sediments. The proportion of large-grained sediments increased in the bed
and the concealment effects of large-grained sediments on small-grained sediments were enhanced.
Various forms of clusters formed between the large and small particles, and the final bed load transport
rate gradually approached zero. The third type was the pure degradation of the static armor layer
reestablishment (plots presented in Figure 8a–d). After the static armor layer was destroyed, the bed
surface became more complicated under the action of flow. Thus, the second-order structure functions
of the bed became more complicated. The D(∆x, ∆y)/2σz

2 value of the static armor layer after the
breaking increased with ∆x and ∆y, the second-order structure function became more unsmooth, and
the undulation grew larger.

3.2.2. The Second-Order Structure Function Change Along the Longitudinal Direction

Figure 9 shows the second-order structure function of the bed elevation when the bed is in the
initial state along the longitudinal direction. It shows that the value of the second-order structure
function was stable in the longitudinal direction, concentrated between 0.3 and 0.4. Because the
bed did not experience flow erosion, it appeared uniform in all directions. When the static armor
layer formed, the second-order structure function changed greatly. In Run 3, the value of D(∆x,
∆y)/2σz

2 decreased in the longitudinal direction, which meant that the interaction between the particles
increased. In general, after the riverbed roughened, the second-order structure function decreased in
the longitudinal direction, becoming non-uniform. As the sampling interval increased, the riverbed
variability increased. The reason for the decrease here was because the riverbed had a certain
organizational structure, which strengthened the connection between the particles in space and the
difference between them in the riverbed. Figure 10 shows the change of the second-order structure
function in the longitudinal direction during the formation and reestablishment after the static armor
layer was broken in Run 3 and Run 4. The flow intensity increased until it exceeded 1.2 times the
intensity of the initial formation of the static armor layer and thus the second-order structure function
of the riverbed had a greater change in the longitudinal direction. The value became smaller, which
explains why the connection between points further increased. This also reflects why the riverbed
structure gradually strengthened in the process
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3.2.3. The Second-Order Structure Function Change along the Transverse Direction

Figure 11 shows the change in the second-order structure function of the riverbed when the bed
was in initial state along the transverse direction. In the transverse direction, y, the parameter showed
an upward trend with an increased sampling interval; the value was about 0.8 or less. However, when
the static armor layer was formed (Figure 12), it was found that the second-order structural function of
the bed elevation in the transverse direction was still not very large and the values were relatively
concentrated, i.e., there was no particular difference between the sampling points of the riverbed in
this direction. This is because the scouring effect of the flow was mainly reflected in the direction of the
downstream flow. However, the shaping effect in the lateral direction was small. Therefore, when the
flow intensity changed, the second-order structure function of the riverbed elevation changed a little in
the lateral direction.
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4. Discussion

We conducted a series of armoring and destructive flume experiments with no sediment supply
in the upstream. The initial bed materials and slope of the run were the same, and only the flow
discharge was different. Previous studies of armor formation and static armor layer destruction focused
more on the reconstruction period, the physical mechanism of the destruction process, and critical
instability [8,17,18]. Scholars have also studied the structural properties of mobile armors formed at
different flow strengths in gravel-bed rivers [45]. However, research on the statistical characteristics of
the riverbed after the formation and reconstruction of the static armor layer was lacking. We obtained
the riverbed surface elevation data of the formation and destruction stages of the static armor layer
through terrain scanning, and analyzed and studied the riverbed structure using statistical methods.

4.1. Bed Surface Coarsening Characteristics

The grain size composition of the armor layer surface can intuitively reflect changes in the bed
surface. Figure 13 shows the armor layer’s grain size distribution in Runs 1–4. The median particle size
D50 of the initial bed materials was 4 mm and the D50 of the bed surface increased to 6.5–7 mm after
the formation of the static armor layer. When the new armor layer formed after the static armor layer
broke, the median particle size, D50, increased to 7.4–7.8 mm. During the formation of the static armor
layer, as the flow intensity increased, the bed surface became coarser, and the riverbed became more
stable. These results are closely related to the increase in the proportion of large particles in the bed
surface [11]. Therefore, river roughness can be characterized by the riverbed surface’s characteristic
particle size (i.e., D50 or D84), but the characteristic particle size can only represent the proportion
of the riverbed particle size and cannot quantify the interactions between different particles on the
riverbed [22]. It is for the above reasons that studying the arrangement and concealed exposure of
different sediment particles on the riverbed is an important part of understanding the static armor
layer’s formation and destruction processes [28,33,35].
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Figure 13. The grain size distribution of the armor layer: (a) Run 1; (b) Run 2; (c) Run 3; and (d) Run 
4. 

The arrangement of sediment particles and formation of the bed structure on the riverbed is 
the result of an interaction between the flow and the bed surface [10–12]. Therefore, the statistical 
characteristics of the riverbed can be further quantitatively analyzed. Figure 14 shows the partially 
surface morphology of the riverbed after roughening. Further, the figure shows that various 
particle aggregates (red dotted circles in the figure) formed in the static armor layer. Figure 14a 
shows that cluster-like structures easily formed around large-grained sediments on the riverbed. 
The irregular cluster-like structures together with bed coarsening (increasing particle size of D50 or 
D84) improved the bed surface stability. Figure 14b is an actual picture of the central position of 
riverbed, where we can more clearly observe various structures formed by large and small particles 
on the riverbed. These aggregates are an important factor in maintaining the riverbed’s stability. 
Because of the existence of these aggregates, the correlation between the elevations of different 
points of the riverbed is strengthened. Therefore, to some extent, the statistical parameters of the 
riverbed elevation can be used to reflect changes in the riverbed structure [11,12,40].  
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The arrangement of sediment particles and formation of the bed structure on the riverbed is
the result of an interaction between the flow and the bed surface [10–12]. Therefore, the statistical
characteristics of the riverbed can be further quantitatively analyzed. Figure 14 shows the partially
surface morphology of the riverbed after roughening. Further, the figure shows that various particle
aggregates (red dotted circles in the figure) formed in the static armor layer. Figure 14a shows that
cluster-like structures easily formed around large-grained sediments on the riverbed. The irregular
cluster-like structures together with bed coarsening (increasing particle size of D50 or D84) improved
the bed surface stability. Figure 14b is an actual picture of the central position of riverbed, where
we can more clearly observe various structures formed by large and small particles on the riverbed.
These aggregates are an important factor in maintaining the riverbed’s stability. Because of the
existence of these aggregates, the correlation between the elevations of different points of the riverbed
is strengthened. Therefore, to some extent, the statistical parameters of the riverbed elevation can be
used to reflect changes in the riverbed structure [11,12,40].
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4.2. Bed Surface Structural Properties

The probability density functions of the bed surface elevations were plotted. Initially, these curves
were narrow, yet as time progressed in pure degradation cases, the curves became progressively flatter
and skewness increased [30,34,40,45]. With the change in flow intensity, there was a greater interaction
between surface layer and flow, and the bed elevation changed drastically in two stages (i.e., formation
and reestablishment). Although the probability density curves showed some evidence of change
occurring on the bed topography, it failed to provide a reliable tool to represent particle stability and
the degree of organization of mobile beds [30,40]. In principle, it did not carry enough information on
the bed structure.

Therefore, the second-order structure function was adopted because it distinguished different
bed structures [30,40,45]. The second-order structure function proved able to reliably show that the
grain scale structure developed with coherence in both longitudinal and transverse directions in the
degradation phases (i.e., the static armor layer formation and destruction). In the static armor layer’s
formation and destruction stages, the D(∆x, ∆y)/2σz

2 value changed, which reflected the changes in
bed structure during this process (Figure 8). The value of the static armor layer’s broken stage was
smaller than the value of the corresponding formation stage. As the flow intensity increased, the
interaction between the flow and the bed surface strengthened. After the static armor of the bed surface
broke, the unevenness of the riverbed elevation further increased, and the relationship between the
particles increased. Thus, the value became smaller after it broke. In turn, we can use these differences
to quantify changes in the bed structure during the static armor layer’s formation and destruction.

In the longitudinal direction, there was a strong streamwise coherence [30,40], particularly at
the smaller lateral lags (as Figure 10). This indicates the presence of distinct longitudinal grain-scale
structures. We compared the static armor layer formation and destruction with the second-order
structure function at different locations (17# and 21#) and plotted the difference in the same graph
(Figure 15). The difference in D(∆x, ∆y)/2σz

2 values reflected the degree of the riverbed’s deformation,
which in turn reflected the degree of change in the bed structure. The difference between each group
was relatively close, which means that when the increase in flow intensity was the same, the change
in bed structure also changed around a certain standard. These findings provide us with new ideas
for quantifying the bed structure. We believe that in this process, the change in the bed structure can
be expressed by the difference in D(∆x, ∆y)/2σz

2 values. As shown in Figure 16, the difference in
D(∆x, ∆y)/2σz

2 of our experiment (the amplitude increase in shear stress is 20%) was relatively stable.
The data points were basically concentrated (0.12 (17#) and 0.24 (21#)). When the riverbed position
was different, the ∆D(∆x, ∆y)/2σz

2 was also different in its two states (the two states are the formed
and destroyed armor layer). However, the ∆D(∆x, ∆y)/2σz

2 was the same when the increase in flow
intensity was at the same position and close to a certain value. Our findings also show that in the static
armor layer’s destruction process, the influence of the bed structure became larger, and the stability of
the riverbed after the formation of the new static armor layer improved.
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5. Conclusions

This paper investigated the bed load transport rate and bed surface elevation changes in the
static armor layer’s formation and reformation after breaking. By taking the bed surface elevation as
a random two-dimensional field, the variation of some statistical parameters (including probability
distribution functions and second-order structure functions) of the bed elevation were obtained, and
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the changes of the bed structure of the two processes were also obtained. The key findings of this study
are as follows:

(1) The static armor layer’s formation process was similar to the reestablishment process after
breaking of the static armor layer. The bed load transport rate increased rapidly from zero to
the peak and then slowly decayed. As the flow intensity increased, the peak value of bed load
transport rate also increased.

(2) The probability distribution function of bed elevation underwent some adjustments between
the static armor layer’s formation and reestablishment. Although the probability distribution
function curve showed evidence of change in bed topography, this parameter failed to provide
a reliable tool to represent particle stability and the degree of mobile bed organization. This
parameter only reflected the changes in bed structure to a certain extent, but it did provide
sufficient information for the changes.

(3) The second-order structure functions were effectively quantified between the bed structure’s
formation and reestablishment of the static armor layer. With regard to the increase in flow intensity,
the difference in bed structure between the static armor layer’s formation and reestablishment
was a relatively stable value. When the flow intensity increased by 20%, the previously formed
stable static armor layer broke and the two-order structural function difference became relatively
stable (0.12 (17#) and 0.24 (21#)). The difference in bed structure of the armor layer formed by
different flow intensities was quantified using this parameter’s difference.
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