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Abstract: The impacts of climate change on water resources management as well as the increasing
severe natural disasters over the last decades have caught global attention. Reliable and accurate
hydrological forecasts are essential for efficient water resources management and the mitigation of
natural disasters. While the notorious nonlinear hydrological processes make accurate forecasts a
very challenging task, it requires advanced techniques to build accurate forecast models and reliable
management systems. One of the newest techniques for modelling complex systems is artificial
intelligence (AI). AI can replicate the way humans learn and has the great capability to efficiently
extract crucial information from large amounts of data to solve complex problems. The fourteen
research papers published in this Special Issue contribute significantly to the uncertainty assessment
of operational hydrologic forecasting under changing environmental conditions and the promotion
of water resources management by using the latest advanced techniques, such as AI techniques.
The fourteen contributions across four major research areas: (1) machine learning approaches to
hydrologic forecasting; (2) uncertainty analysis and assessment on hydrological modelling under
changing environments; (3) AI techniques for optimizing multi-objective reservoir operation; and (4)
adaption strategies of extreme hydrological events for hazard mitigation. The papers published in
this issue can not only advance water sciences but can also support policy makers toward more
sustainable and effective water resources management.
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1. Introduction

Natural disasters have been inclined to increase and become more severe over the last decades
due to climate change. A preparation measure to cope with future floods is flood forecasting in each
river basin for warning persons involved and for mitigating damages and the loss of life. Hydrological
forecasting is essential for efficient water resources management and the mitigation of natural disasters
such as floods and droughts. Establishing a viable hydrological forecasting model for communities
at risk requires the combination of meteorological and hydrological data, forecast tools and trained
forecasters. Forecasts must be sufficiently accurate to promote confidence so that communities and users
will take effective actions when being warned. Multidisciplinary research and advanced methodologies
in hydrological forecasts, especially in extreme floods and droughts, are widely implemented for water
planning and management, which ultimately lead to improved optimum water resources management
and effective control under a changing environment. Among them, artificial intelligence (AI) techniques
are efficient tools for extracting the key information from complex highly dimensional input–output
patterns and are widely used to tackle various hydrological problems such as flood forecasts discussed
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in this Special Issue [1–14]. Over the last decades, many studies have demonstrated that artificial
intelligence (AI) techniques, such as machine learning (ML) methods, can produce flood forecasts
in a few hours [15–19] while extending to seasonal forecasts many months in advance for larger
river basins [20–24]. AI can also be an ideal tool for managing water resources in an ever-changing
environment and for allowing water utility managers to effectively optimize multi-objective water
resources revenues [25–30].

Reliable and accurate streamflow forecasts with lead-times from hours to days are critical to
managing floods and to improving the efficiency of streamflow forecasts utilized for real-time reservoir
operation. All forecasts, however, involve various degrees of uncertainty, which could be associated
with meteorological data, hydrological model mechanics and parameters, or the model’s errors in
forecasts. To implement streamflow forecasts in real-time reservoir operation, we must deal with the
uncertainty involved in streamflow forecasts. Although the forecast uncertainty plays an important
role in reservoir operation and has been extensively studied in hydrology, there are comparatively
less studies discussing the effect of forecast uncertainty on real-time reservoir operations [31–36].
This Special Issue aims at overcoming these challenges, addressing continuing efforts undertaken to
gain insights on hydrological processes, dealing with the effect of forecast uncertainty, and engaging in
more efficient water management strategies in a changing environment.

2. Summary of the Papers in the Special Issue

The papers in this Special Issue are well-balanced in terms of their focuses, encompassing
hydrological forecasts, uncertainty analyses and water resources management. Three papers [1–3]
address operational hydrological forecasts by using various machine learning (ML) methods. In [1],
the authors propose an Internet of Things (IoT) machine learning-based flood forecast model to predict
average regional flood inundation depth in a river basin in Taiwan, and they demonstrate how to on-line
adjust the machine learning models so that the models’ accuracy and applicability in multi-step-ahead
flood inundation forecasts are promoted. They also highlight the combination of IoT and machine
learning techniques could be beneficial to flood prediction. In [2], the authors introduce a general
framework that fuses an unscented Kalman filter (UKF) post-processing technique with a recurrent
neural network for probabilistic flood forecasting conditional on point forecasts. They declare that the
proposed approach could overcome the under-prediction phenomena and alleviate the uncertainty
encountered in data-driven flood forecasting so that model reliability as well as forecast accuracy for
future horizons could be significantly improved. In [3], the authors propose a random forest (RF)
model to predict the Normalized Difference Vegetation Index (NDVI) and explore its relationship with
climatic factors. The results demonstrate that RF can be integrated into water resources management
and can elucidate ecological processes in the Yarlung Zangbo river basin. These studies clearly indicate
that machine learning techniques have a great capability to model the nonlinear dynamic features in
hydrological processes, such as flood forecasts and NDVI, and IoT sensors are useful instruments for
carrying out the monitoring of natural environments and enhancing hydrological forecasts.

Papers [4–6] report research on uncertainty analysis and assessment in hydrological modelling
and forecasting. In [4], Hong’s method is implemented to execute the point estimate method (PEM)
in a case study that simulates water runoff using the ANUGA hydrodynamic model for an area in
Glasgow, UK. The authors demonstrate that the Hong’s method could more efficiently produce very
similar probabilistic flood-inundation maps in the same areas as those of Monte Carlo (MC) simulation,
where the Hong’s method requires just three 11-minute simulation runs, rather than the 500 required for
the MC simulation. In [5], the authors propose a multiple-criteria decision analysis method, namely the
Generalized Likelihood Uncertainty Estimation-Technique for Order Preference by Similarity to Ideal
Solution (GLUE-TOPSIS). The proposed method was implemented in the Storm Water Management
Model (SWMM) and applied to the Dahongmen catchment in Beijing, China. They conclude that the
proposed GLUE-TOPSIS is a valid approach to assessing the uncertainty of the urban hydrological
model from a multiple objective perspective, which improves the reliability of model results in the
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urban catchment. In [6], the authors evaluate the parameter uncertainty for the Snowmelt Runoff

Model (SRM) based on different calibration strategies and its impact on a data-scarce deglaciating
Yurungkash watershed in China. The results show that the future runoff projection contains a large
amount of uncertainty and the onset of snowmelt runoff is likely to shift earlier in the year and the
discharge over the snowmelt season is projected to increase.

Hydrological nonstationary has brought great challenges to the reliable applications of hydrological
models with time-invariant parameters. Two papers [7,8] investigate the predictive ability and
robustness of a hydrological model under changing environments. In [7], the authors propose a
new method based on empirical mode decomposition (EMD) to synthesize and generate data which
be interfered with the non-stationary problems. The new synthetic and historical flow data were
used to simulate the water supply system of the Hushan reservoir in Taiwan, and the compared
results show that the synthetic data are like the historical flow distribution. In [8], the authors
investigate the predictive ability and robustness of a conceptual hydrological model (GR4J) with
time-varying parameter under changing environments. The results show that the performance of
streamflow simulation was improved when applying the time-varying parameters. Furthermore,
the GR4J model with time-varying parameters outperformed the original GR4J model by improving
the model robustness. Overall, these studies emphasize the importance of considering the parameter
uncertainty of time-varying hydrological processes in hydrological modelling and climate change
impact assessment.

Due to climate change, the importance of reservoirs is likely to increase, not only for water storage
purpose but also for maximizing water use benefits and mitigating climate extremes. Four papers [9–12]
employ advanced optimization methods to derive reservoir operating rules for multi-reservoir systems
and/or optimize multi-objective reservoir operation. In [9], the authors conduct a multi-target
single dispatching study on ecology and power generation in the lower Yellow River to solve the
single-objective and the multi-objective optimal schema using the genetic algorithm (GA) and an
improved non-dominated genetic algorithm (NSGA-II). The results provide a decision-making basis for
the multi-objective dispatching of the Xiaolangdi reservoir and have important practical significance
for further improvement on the ecological health of the lower Yellow River. In [10], the authors fuse
the grey entropy method (GEM) with the Mahalanobis–Taguchi System (MTS) for selecting the optimal
water level scheme at the Pankou reservoir in flood season. The results show that the optimal scheme
selected by the proposed model can achieve greater benefits within an acceptable risk range and thus
better coordinate the balance between risk and benefit, which verifies the feasibility and validity of the
model. In [11], the authors show the advancement of the seasonal flow forecasts could provide the
opportunity for reservoir operators to identify the early impoundment operation rules (EIOR) in the
upper Yangtze river basin. Their results indicate the proposed GloFAS-Seasonal forecasts are skillful
for predicting the streamflow condition according to the selected 20th and 30th percentile thresholds
and the obtained seasonal forecasts and the early reservoir impoundment could enhance hydropower
generation and water utilization. In [12], a novel enhanced gravitational search algorithm (EGSA) is
proposed to resolve the multi-objective optimization model by considering the power generation of a
hydropower enterprise and the peak operation requirement of a power system located on the Wujiang
river of China. The results show that the EGSA method could obtain satisfying scheduling schemes in
different cases for the multi-objective operation of hydropower system.

The early warning and post-assessment of extreme hydrological events are crucial for hazard
mitigation. In [13], the authors explore the most effective flood control strategy for small and
medium-scale rivers in highly urbanized areas. The probable cost-effective flood control scheme is
to construct two new tributaries for transferring floodwater in the midstream and downstream of
the Shegong river into the downstream of the Tieshan river. Their results indicate that flood control
for small- and medium-scale rivers in highly urbanized areas should not simply consider tributary
flood regimes but, rather, involve both tributary and mainstream flood characters from a whole
region perspective. In [14], the authors report emergency disposal solutions for properly handling the
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landslide and dammed lake within a few hours up to days for mitigating flood risk. They present a
general strategy to effectively tackle the dangerous situation created by a giant dammed lake with
770 million m3 of water volume and formulate an emergency disposal solution for the 25 million m3 of
debris, composed of engineering measures of floodgate excavation and non-engineering measures of
reservoirs/hydropower stations operation. The disposal solution not only reduces a large-scale flood
(10,000-year return period, 0.01%) into a small-scale flood (10-year return period, 10%) but minimizes
the flood risk with no death raised by the giant landslide.

3. Conclusions

Over the last several decades, substantial climate changes have occurred due to global warming.
We also notice that artificial intelligence has been satisfactorily used to enhance our knowledge, to learn
hydrological processes, and to engage in more efficient water management strategies under changing
environmental conditions. The research papers published in this Special Issue contribute significantly
to our understanding of the hydrological modelling approaches as well as water resources management.
They can be categorized into four main subject areas: (1) machine learning methods for hydrologic
forecasting; (2) uncertainty analysis and assessment on hydrological forecasts; (3) AI techniques for
optimizing multi-objective reservoir operation; and (4) adaption strategies of extreme hydrological
events for hazard mitigation. These papers presented novel methods to learn the complex hydrological
processes and model hydrological forecasts, reduce models’ uncertainty, and optimize water resources
management. The selected manuscripts presented in this Special Issue make original contributions
to addressing the state-of-the-art of artificial intelligence techniques, which provide a high level of
research and practical information of implementing AI methods and strategies for accurate flood
forecasts and reservoir operation, along with case studies from different regions of the world.
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