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Abstract: The runoff changes due to global warming in hydrological basins in the Qinghai–Tibetan
Plateau (QTP) have received worldwide attention. The headwater catchment of the Golmud River,
located in the northern QTP, is the main source of water resources for the Golmud city in an arid
region but has been poorly known for the hydroclimatological behaviors. In this study, a widely-used
hydrological model, the ABCD model (Thomas, H.A., Washington, DC, USA), is modified by
incorporating temperature-dependent hydrological processes and groundwater evapotranspiration
in cold regions with a few additional parameters. The new model is used to reconstruct the monthly
runoff in the past decades for the headwater catchment of the Golmud River and performs better than
other comparable models. As indicated, the annual snowmelt runoff increased with the increasing air
temperature and became more concentrated in April than in May. The frozen soil degradation could
increase the hydraulic conductivity of soils and lead to a rise in cold season runoff. The groundwater
level in the Golmud city was positively correlated to the annual runoff in the headwater catchment of
the Golmud River, indicating that an increase of the groundwater level could be triggered by the
rising trend in the streamflow of the Golmud River. This study suggests a useful hydrological model
for the groundwater management in the Golmud city.

Keywords: climate change; Qinghai–Tibetan plateau; ABCD model; snowmelt runoff; groundwater

1. Introduction

Catchments in mountains generally role as headwater region for adjacent lowlands, providing
variable water resources with the changing runoff that have great impacts on humanity and ecosystems
in the middle and lower reaches area [1]. Most of the large mountains in the world are cold with a local
climate that is sensitive to the rapid global warming in the last decades. Climate change caused by
global warming may significantly alter the hydrological processes in headwater catchments, leading
to a remarkable shift in the water balance, available water resources and extremes events (floods
and droughts) [2–4]. Therefore, it is a great challenge to assess or predict the change in the runoff of
headwater catchments for better managements of water use and ecosystem protections.

The Qinghai–Tibetan Plateau (QTP) roles as the water tower of Asia, which is the source area of
many large Asian rivers, such as the Yellow River, Yangtze River, and Brahmaputra River, providing
water resources for more than 1.4 billion of people [5]. The QTP has experienced significant warming
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during recent decades [6–10], and precipitation in the QTP has also experienced evident changes [11].
The impact of climate change is considered one of the major threats to the water resources in the
QTP [12]. Landscape changes in the QTP, e.g., changes in the cryosphere and vegetation, have been
also reported [13,14]. Therefore, the change in runoff with the influence of climate and landscape
changes has gradually become a hot topic in the research of regional hydrology in the QTP [15–20].
However, it is still a poor known factor with uncertainties for assessments on the hydrological changes
in the headwater catchments in the QTP due to limited observations [21–24].

River discharge is an essential hydrological variable to analyze runoff changes in the headwater
catchment. With large portions of ungauged areas, long-term high-resolution monitoring of river
discharge was absent in the QTP for many rivers. There has been a growing interest in retrieving
river discharge from remote sensing via altimeters [25] and spectral bands [26] over inland water
bodies. However, these techniques are mainly developed for large rivers and are not applicable to
many high-mountain QTP rivers, which feature complex topography and relatively narrow channels.
Recently, some studies developed data-driven models to reconstruct river discharge based on the
machine learning method [27,28]. However, data-driven models need huge amount of training data,
which are usually not available in the QTP due to scarce observations.

Compared with the method based on remote sensing, hydrological model simulation, driven by
observed atmosphere forcing data including precipitation, air temperature, and potential evaporation
may provide an accurate and flexible tool to reconstruct the long-term runoff series. Several existing
studies incorporated complex snow and frozen soil models with distributed hydrological models for
cold regions and illustrated the improvement of model performance for runoff simulation [29–31].
However, these models need high resolution data, and are difficult to be applied in basins with
extremely limited observations. Liu et al. [32] simulated snowmelt and monthly runoff of six major
rivers including the Qaidam Basin from 1980 to 2013 using the Soil and Water Assessment Tool
(SWAT) model (United States Department of Agriculture, Washington, DC, USA). However, due to
the lack of observations, the runoff was not validated in most sub-basins including the headwater
catchment of the Golmud River. Therefore, due to the scarce observations of complex environmental
information, it is not an efficient way to use distributed hydrological models in estimating runoff or
predicting long-term hydrologic responses to the climate change in most basins on the QTP, so that
conceptual hydrological models were recommended [23]. In some studies, statistical methods were
used to generate the rainfall scenarios [33,34] for climate impact analysis, and in several other studies,
the Budyko framework [35] was adopted. For example, Wu et al. [36] investigated the relationship
between the change in the permafrost and the parameter of the Budyko model for source regions
of the Yellow River. Wang et al. [37] also applied the Budyko model in a study of source regions of
the Yellow River and they argued that frozen ground degradation could reduce runoff by increasing
groundwater storage. These studies focused on the inter-annual change in streamflow because the
Budyko hypothesis is limited to the mean annual water balance. This indicates that it cannot be
applied for simulating and reconstructing monthly runoff. A few of the existing studies attempted
to simulate and analyze the changes in monthly or daily streamflow of rivers in the QTP by using
complicated distributed hydrological models [29,38,39]. However, as previously highlighted, the use of
process-based distributed hydrological models in the QTP region is a challenge because of significant
limitation in observations and large requirement of computational resources. It is promising to develop
models that are minimally parameterized, efficient, and accurate [40].

Unlike the Budyko framework, the ABCD model developed by Thomas [41] was a conceptual
hydrological model that can be used for the monthly or annual water balance. It only has four
parameters but clearly incorporates major hydrological processes and has been widely adopted in
hydrological studies. Alley [42] demonstrated that the ABCD model performs well in comparison with
other conceptual models for the monthly runoff simulation. Zhao et al. [43] argued that the Budyko-type
model at the annual scale and the SCS model at the rainfall-event scale could be considered as the
special extensions of the monthly ABCD model. This result illustrated the rigorous physical basis of
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the ABCD model. By using the ABCD model, Sankarasubramanian and Vogel [44] examined the water
balance of 1337 basins in the United States to explain the annual hydroclimatology of the United States
in the Budyko space. Wang and Zhou [45] modified the ABCD model by considering groundwater
evaporation and investigated the runoff changes in the Erdos plateau in Northwest China where the
climate is arid to semiarid. Han and Wang [46] well predicted the hydrological response to potential
extreme climate changes in the NLRB basin in the USA using the ABCD model. Therefore, the ABCD
model may be considered as an efficient tool for reconstructing the runoff in poorly observed rivers on
the QTP. Nevertheless, it is uncertain that the ABCD model can be efficiently used for catchments in
cold regions with permafrost because frozen soils and snowmelt were not considered in the model.
An attempt was made by Martinez and Gupta [47] who developed an augmented ABCD-snow model
with temperature-dependent components. This model introduced three parameters for the snow
accumulation and melt processes but the other parameters in the ABCD model were still assumed to
be independent on the air temperature.

This study focuses on further improvement of the ABCD model for catchments in cold regions.
We suggest several new formulas to handle the change in control parameters of the ABCD model with
the change in the air temperature. A few additional parameters are introduced. This modified model
incorporates the effect of temperature-dependent frozen soils on the hydrological processes in cold
regions. We use both of the new model and the original ABCD model to simulate and restore monthly
runoff data in the headwater catchment of the Golmud River which is located in the northern QTP.
As indicated from comparison between results of different models, the modified model performs much
better. Based on the calibrated model, we reconstructed the monthly river discharge in the headwater
catchment of the Golmud River and investigate the long-term changes in the streamflow in the period
from 1975 to 2015. At last, we analyzed the relationship between the runoff of the headwater catchment
of the Golmud River and the groundwater level in the Golmud city.

2. Study Area and Data

2.1. The Study Area

The study area (Figure 1) is the headwater catchment of the Golmud River that originates from
the Naijin River and Xueshui River in the Kunlun Mountains [48], northern QTP. It has an area of
18,675 km2, mainly covered by sparse grassland and barren land [49]. The elevation of ground surface
ranges from 3427 m to 5659 m. The mean annual precipitation and air temperature are 260 mm and
1.83 ◦C, respectively. In most of the mountain area, the mean air temperature is less than zero, forming
permafrost, glacier, and snowpacks. The mean annual river discharge at the outlet of headwater
catchment of the Golmud River is 26 m3/s. In average, the Naijin River and Xueshui River contributes
78% and 22%, respectively, to the total streamflow in the Golmud River. This is the only surface
water resource of the Golmud city where the mean annual precipitation is less than 50 mm under an
extremely arid climate condition. The Golmud River is an endorheic river in the Qaidam Basin, which
terminates at the Dabson Lake, a hypersaline lake.
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Figure 1. Study area and locations of the meteorological and hydrological stations.

The leakage of water from the Golmud River is the major recharge of groundwater in the area
of the Golmud city. This recharge highly depends on the runoff of the headwater catchment of the
Golmud River. As a consequence, the groundwater level in the Golmud city is subject to the streamflow
in the river. Due to changes in streamflow, the depth to subsurface water table in Golmud City has
experienced large oscillations in the past 40 years. In 1981, 1983, and 2010, significant rise of the
groundwater level caused serious disasters in the city area such as house collapses and grassland
immersion [50,51]. Previous studies on this kind of groundwater disasters mainly focused on the
inter-annual change in groundwater level [52,53], but it has been highlighted that groundwater in this
area is closely related to surface water [54]. However, one of the difficulties in the management of
the Golmud groundwater is the lack of understanding of long-term runoff changes in the headwater
catchment of the Golmud River, where frozen soils exist and streamflow is sensitive to climate change
in the QTP.

2.2. Data and Treatment

Several datasets were used in this study to prepare the input of the hydrological models, including
the distributed precipitation (P), air temperature (T), and potential evaporation (E0). As shown in
Figure 1, there was no national meteorological station in the headwater catchment of the Golmud River,
although some meteorological stations exist around the study area. To estimate the basin-averaged
monthly precipitation, the recently released global precipitation product TERRACLIMATE data [55]
was used, which has a spatial resolution of 4 km. Among the nearby national meteorological stations
(Figure 1), Golmud (with the lowest altitude) and Qumarleb (with the highest altitude), were selected
to examine the accuracy of the TERRACLIMATE precipitation data. The observed mean monthly
precipitation during 1965–2015 at the two meteorological stations are shown in Figure 2 and are
compared with the TERRACLIMATE data at pixel elements where the stations located in. It indicates
that the TERRACLIMATE data agreed well with the observed precipitation. This agreement illustrates
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that the TERRACLIMATE precipitation data are reliable in the study area and can be used to estimate
the average precipitation from this distributed data.
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Figure 2. Mean monthly precipitation observed at typical meteorological stations and extracted from
TERRACLIMATE data: (a) the Qumarleb meteorological station; (b) the Golmud meteorological station.

The distributed potential evaporation and air temperature were interpolated with distance
weighting method from six national meteorological stations around the study area (Figure 1). The
correlation between the air temperature and the elevation [50] was incorporated in generating the
distributed air temperature. The potential evaporation was calculated as the pan evaporation (Epan)
observed from a standard pan (601 mm in diameter) at each meteorological station multiplying an
empirical coefficient [56]. Daily T, P and Epan at the meteorological stations were obtained from the
dataset released by the China Meteorological Data Service Center (http://data.cma.cn). These data were
then used to estimate the monthly and annual T, P, and E0. A brief summary of the meteorological
data was provided in Table 1. The monthly and annual T and E0 data at these meteorological stations
were interpolated to produce 4-km resolution raster data in the study area.

Table 1. Background data of meteorological stations (period 1965–2015).

Station Xiaozaohuo Golmud Nuomuhong Wudaoliang Qumarleb Madol

Altitude (m) 2767.0 2807.6 2790.4 4612.2 4175.0 4272.3
Mean annual P (mm) 28.9 43.9 47.8 293.3 416.3 324.2
Mean annual T (◦C) 3.9 5.5 5.1 −5.1 −1.9 −3.5

Mean annual E0 (mm) 1570.0 1538.1 1351.9 795.6 770.6 881.6
Trend in P (mm/yr) +0.13 +0.16 +0.48 +2.22 +1.23 +1.41

Trend in T (◦/a) +0.06 +0.05 +0.04 +0.03 +0.04 +0.04
Trend in E0 (mm/yr) +1.22 −9.14 −7.42 −1.33 +3.13 +1.81

Applying the raster data of P extracted from TERRACLIMATE and the raster data of T and E0

interpolated from the meteorological stations, the basin-average monthly and annual T, P, and E0

were obtained for the study catchment. Figure 3 shows the annual data between 1965 and 2015 at
the basin-scale. As exhibited, there were increasing trends of P and T in the period 1965–2015 with

http://data.cma.cn
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different fluctuations. The trend of E0 was negative in this period and the fluctuation seemed to be
also in contrast to that of T. This decreasing trend in E0 is consistent with the decreasing trend in Epan

indicated by meteorological observations in the past 50 years around China [57,58]. Existing analyses
found that this negative trend in Epan was linked with the decreasing wind speed and solar radiation
as well as the increasing relative humidity [57,58], even though the increasing air temperature was
expected to be an positive factor for the evaporation process. Indeed, such a “paradox” did not only
exist in China but also was found to be a global phenomenon, which has been interpreted as a result of
significant decreases in sunlight due to increased cloud coverage and aerosol concentration [59]. Linear
slope in trends of T, P, and E0 at different meteorological stations are listed in Table 1. It is indicated
that the slope of T was relatively uniform for different places but the slope of P and E0 show significant
spatial variance. In particular, the trend of E0 was positive in some places, not always negative. These
differences imply the complexity of the climate change in the QTP.
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Figure 3. Variations of the annual precipitation, annual potential evaporation and annual mean air
temperature in the study catchment, at the basin-scale in average.

Streamflow in the Golmud River were observed at two different hydrological stations shown in
Figure 4a that operated in different periods. Groundwater levels in the region near the Golmud city
were monitored in observation wells G1–G4 (Figure 4a), with available data from 1990 to 2012 as shown
in Figure 4b. The regime of groundwater levels was significantly influenced by the streamflow in the
Golmud River observed at hydrological stations. The first hydrological station, W-III, was established
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before 1965 at the outlet of the headwater catchment of the Golmud River but destroyed by a heavy
flood in 1990. The second hydrological station, W-IV, was established in 1990 at a lower reach to replace
the W-III station, where the streamflow changed since 1990 as shown in Figure 4c. Several reservoirs
have been constructed in the river between W-III and W-IV since 1977. A significant leakage of water
from the reservoirs and riverbeds exists between W-III and W-IV because the groundwater level over
there is lower than the surface water level. Thus, the streamflow at W-IV does not represent the actual
runoff in the study catchment. However, the annual streamflow during 1990–2015 at W-III has been
estimated from the W-IV data using a restoration method in a previous study [54]. The combined
annual streamflow data at W-III are shown in Figure 4d. As indicated, the annual runoff shows a
significant fluctuation, partly following the variations of the local precipitation. The relationship
between the annual streamflow and groundwater level is discussed in Section 4.5.
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Figure 4. Locations of hydrological stations and observation wells (a) with available groundwater level
data (b). Streamflow observed at W-IV (c) and W-III (d) in different periods. Dashed line in (c) denotes
the restored streamflow at W-III obtained by considering the leakage of river water between W-III and
W-IV [54]. The annual precipitation at the Golmud city is also shown as histograms in (c) and (d).

3. Methodology

3.1. ABCD Model

The ABCD model divides the whole catchment water storage into soil water and groundwater [41],
as that shown in Figure 5a. The rainfall (P) is partitioned into the evapotranspiration (E), the surface
runoff (D), and the change in soil water storage. A delayed infiltration from the soil water recharges
the groundwater. The total runoff is a combination of the surface runoff and the base flow that released
from groundwater.
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(ABCD-CR) model.

For a monthly simulation, the change in soil water storage in the ith month is calculated as follows:

Si − Si−1 = Pi − Ei −Ri −Di (1)

where Si−1 and Si are, respectively, the effective soil water storages at the end of (i − 1)th and ith month,
Pi, Ei, Ri and Di. are the precipitation, actual evapotranspiration, groundwater recharge and surface
runoff in the ith month, respectively. The change in groundwater storage is calculated as follows:

Gi −Gi−1 = Ri − Fi (2)

where Gi and Gi−1 are, respectively, the effective groundwater storages at the at the end of (i − 1)th and
ith month, Fi is the base flow in the ith month. The ABCD model estimates Ri, Gi, and Fi as follows:

Ri = cWi −Yi (3)

Di = (1− c)(Wi −Yi) (4)

Fi = dGi (5)

where c and d are two dimensionless parameters for the monthly simulation, whereas Wi and Yi are
two state variables defined, respectively, as follows:

Wi = Pi + Si−1 (6)
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Yi = Ei + Si . (7)

A nonlinear relationship between Yi and Wi was proposed [42]:

Yi(Wi) =
Wi + b

2a
−

(Wi + b
2a

)2

−
Wib

a

0.5

(8)

where a (dimensionless) and b (mm) are two parameters. The values of Si and Gi are finally estimated
as:

Si = Yiexp(−
E0i
b
) (9)

Gi =
[c(Wi −Yi) + Gi−1]

1 + d
(10)

where E0i is the potential evaporation in the ith month.
In the ABCD model, the summation of the surface runoff, Di, and the base flow, Fi, yields the total

runoff, Qi, which can be expressed as follows:

Qi = (1− c)(Wi −Yi) + dGi (11)

3.2. Modified ABCD Model for Cold Regions (ABCD-CR)

The first essential condition that should be considered in cold regions is the existing of frozen soils,
which highly depends on the air temperature. In general, frozen soils are low-permeability materials
that can decrease the effective hydraulic conductivity of shallow soils and aquifers for the subsurface
flow. Therefore, development of shallow frozen soils when the air temperature dropped below the
freezing point could reduce both of groundwater recharge and discharge [60]. This mechanism was not
considered in the ABCD model but the parameters c and d were related to groundwater recharge and
discharge. We suggest a modification of c and d from constants to temperature-dependent parameters
as follows:

c =
{

c0eαTi , Ti ≤ 0
c0, Ti > 0

, d =

{
d0eαTi , Ti ≤ 0

d0, Ti > 0
(12)

where α is an additional parameter (1/◦C) representing the influence of negative air temperature, Ti is
the basin-average monthly mean air temperature, c0 and d0 are normal values of c and d when the air
temperature is positive.

Another condition that should be considered in cold regions is the snow cover (possibly overlying
glaciers). Snowmelt water (possibly including the release of glaciers) could be an additional supply
to the soil water in non-frozen seasons, particularly in April and May. This was also ignored in the
ABCD model. To modify the model, we divide the total precipitation, P̂i, into the rainfall, P′i , and the
snowfall, P∗i , as follows:

P′i =
{

0, Ti ≤ 0 °C
P̂i, Ti > 0 °C

, P∗i =
{

P′i , Ti ≤ 0
0, Ti > 0

. (13)

Here we did not follow the snow model supposed by Martinez and Gupta [47] who introduced
two temperature thresholds and required daily minimum temperature data for input. The practicability
of Equation (13) is higher because it does not include additional parameters and only require the
average monthly mean air temperature. The snowfall increases the solid water storage in the snow
cover and/or glaciers, S∗i , as:

S∗i = S∗i−1 + P∗i , for Ti < 0. (14)

When Ti is higher than 0 ◦C, it is considered that a basin-scale snowmelt water depth (possibly
mixed with melting glaciers), D∗i , will comes into being as follows [61]:

D∗i = βTiS∗i−1, for Ti > 0 (15)
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where β is also an additional parameter (1/◦C). Equation (15) is different from the snowmelt formula
proposed by Martinez and Gupta [47], who assumed that the released runoff from the snowmelt is
independent on temperature when the air temperature is higher than the “rain” threshold. Their
assumption is not reasonable because the snowmelt rate is highly dependent on the air temperature.
In the frozen season with Ti < 0, we assume that D∗i = 0. A positive D* will cause a decrease in S*:

S∗i = S∗i−1 −D∗i = (1− βTi)S∗i−1, for Ti > 0 (16)

Note that D∗i should be restricted to S∗i−1 when the result of Equation (15) is higher than S∗i−1. In this
study we include the smelt water in the equivalent precipitation Pi (The role of Pi is the same of that in
the ABCD model.) on the land surface, as follows:

Pi = P′i + D∗i (17)

In addition to the previous modification, we introduce the groundwater evapotranspiration in the
model. Wang et al. [45] highlighted that the groundwater evapotranspiration in zones with a small
depth to water table could significantly influence the catchment water balance. In cold regions, shallow
groundwater with relatively high temperature maintains unfrozen soils and can directly contribute to
the land surface evapotranspiration. The groundwater evapotranspiration occurs in a small part of
the catchment and roles as an additional loss of water from the normal soil water evapotranspiration,
which depends on the depth to water table with a complicate process. To simplify the simulation, in
this study we assume that the groundwater evapotranspiration at the basin scale, E∗i , is proportional
to both of the groundwater storage, Gi, and the potential evaporation, E0i, in excess of the soil water
evapotranspiration, Ei, as follows:

E∗i =
Gi

Gmax
(E0i − Ei) (18)

where Gmax is the potential maximum groundwater storage (L).
The modifications on the frozen soils, snow cover and groundwater evapotranspiration are

incorporated into the original ABCD model to develop a new conceptual hydrological model, named
ABCD-CR, for catchments in cold regions. The outline of ABCD-CR model is shown in Figure 5b.
Equations (3)–(9) in the ABCD model are still applied but includes the temperature-dependent
parameters defined in Equation (12). The change in groundwater storage is estimated by:

Gi −Gi−1 = c(Wi −Yi) − dGi − E∗i . (19)

Substituting Equation (17) into Equation (18), we have:

Gi =
(
1 + d +

E0i − Ei
Gmax

)−1
[c(Wi −Yi) + Gi−1]. (20)

The total runoff is the summation of the surface runoff, Di, the base flow, Fi, and the snowmelt
runoff, D∗i , as follows:

Qi = (1− c)(Wi −Yi) + dGi + D∗i . (21)

The ABCD-CR model has 7 parameters: a, b, c0, d0, Gmax, α and β.

3.3. Calibration and Performance Assessment of Models

In this study, not only the ABCD and ABCD-CR models are used. To check the efficiency of
considering different processes (frozen soils, snow cover, and groundwater evapotranspiration) in this
cold region, we add two models, ABCD-I and ABCD-II, in the comparison. The ABCD-I model is
close to the ABCD model, and the only difference is that the ABCD-I model includes the groundwater
evapotranspiration. In the ABCD-II model, the temperature-dependent behaviors are incorporated as
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the same in the ABCD-CR model, but the groundwater evapotranspiration is not considered. It is an
equivalent model of ABCD-CR when we specify Gmax = ∞ in Equation (17). After preheating of the
models on runoff simulation of the study catchment, we presumed the ranges of parameter values that
should be satisfied in the model calibration (Table 2).

Table 2. Presumed parameter ranges for model calibration and optimal results.

Model a b (mm) c0 d0 α (1/◦C) β (1/◦C) Gmax (103 mm)

ABCD
Model

0.8–1.0
(0.96) * 20–160 (98) 0.8–1.0

(0.911)
0.001–0.01

(0.003) 0 / ∞

ABCD-I
Model

0.8–1.0
(0.84) 20–160 (45) 0.8–1.0

(0.933)
0.001–0.01

(0.004) 0 / 1–10 (5.2)

ABCD-II
Model

0.8–1.0
(0.97)

20–160
(100)

0.8–1.0
(0.923)

0.001–0.01
(0.005)

0.01–0.2
(0.038)

0.01–0.2
(0.053) ∞

ABCD-CR
Model

0.8–1.0
(0.86) 20–160 (43) 0.8–1.0

(0.902)
0.001–0.01

(0.004)
0.01–0.2
(0.037)

0.01–0.2
(0.142) 1–10 (5.2)

* Values in () are results of the model calibration.

The models were calibrated with the input monthly meteorological data in the period 1982–1985,
to produce monthly runoff results matching observation data at the hydrological station W-III in the
same period. Modeling performance was assessed using the Nash–Sutcliffe efficiency (NSE) [62].
Better performance is exhibited when NSE is closer to 1. For monthly simulation, the performance
would be quite well when NSE > 0.7 and satisfactory when NSE > 0.5. For a test model, the NSE
depends on the parameter values and was taken as the objective function in the calibration. The error
of the modeling results was also evaluated with the Mean Absolute Relative Error (MARE).

The data in the period 1986–1989 were used to verify the calibrated models. This validation has to
be terminated in 1990 when the hydrological station W-III was destroyed. The restored streamflow
data [54] from the hydrological station W-IV was not used for the model verification due to uncertainties
in estimating the leakage loss between W-III and W-IV. However, the calibrated models can be applied
to produce new restored streamflow for the period since 1990 and the result is presented in Section 4.

3.4. Sensitivity Analysis on Runoff to Temperature

In the study area, the change in air temperature is a critical force that triggering changes in climatic
and hydrological conditions. To check the unique impact of the change in air temperature on the
change in runoff, we perform a special sensitivity analysis using the ABCD-CR model. A hypothesized
scenario is used as the baseline for the period 1975–2015 when the air temperature showed a significant
increasing trend. This scenario is characterized by a repeat of rising and falling temperature in every
year with the same patterns from 1965 to 1974. However, the monthly precipitation and potential
evaporation in this scenario are not changed from the actual data. Such a scenario is organized for
the ABCD-CR model to produce a baseline of the runoff in the study area and denoted as baseline
simulation. The comparison between this baseline simulation and the normal simulation with the
actual air temperature is discussed in Section 5.1.

4. Results

4.1. Validation and Calibration Results of the ABCD-CR Model

We calibrated and validated the ABCD-CR model using the observed runoff data, for periods
of 1982–1985 and 1986–1989, respectively. The parameters were optimized by maximizing the
Nash–Sutcliffe efficiency (NSE) in the calibration period. The time from January 1963 to December
1981 was used as the preheating period to minimize the influence of uncertainties in initial conditions
on the model simulation. The length of this period is enough to eliminate the effect of initial conditions
on the comparison of different models. The identified parameters of the ABCD-CR model are shown
in Table 2. Figure 6 shows the simulated and observed monthly runoff curves at the W-III station for a
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comparison. The modeling results basically agree with the observation. As shown in Table 3, the NSE
of the ABCD-CR model is greater than 0.7 in both of the calibration and validation periods, indicating
that this model performs well. The MARE is less than 20%, also indicating a high accuracy. To check the
robustness of the model calibration, an experiment with a longer validation period was also operated.
In the experiment, the period 1963–1973 was chosen for model preheating and the period 1974–1977
with mean annual T of 0.99 ◦C was chosen as the calibration period. A 12 years period from 1978 to
1989 with mean annual T of 1.49 ◦C, which was warmer than that in the calibration period, was treated
as the validation period. Result of the ABCD-CR model in this experiment is shown in Figure S1 in
the Supplementary Material, which indicates that the simulated monthly runoff also agrees well with
observations at the W-III station. The NSE was 0.70 and 0.69 for the calibration and validation periods,
respectively, similar to that of the ABCD-CR model (Table 3) using periods 1982–1985 and 1986–1989
for calibration and validation, respectively. These results illustrate that the calibrated ABCD-CR model
is sufficient for long-term runoff simulation in the headwater catchment of Golmud River.
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Figure 6. Monthly runoff results of the study catchment in the calibration and validation period
obtained from the ABCD-CR model.

Table 3. Performance of models in calibration and validation periods.

Model
NSE Error (MARE, %)

Calibration Verification Calibration Verification

ABCD Model 0.47 0.55 30.07 35.81
ABCD-I Model 0.55 0.59 26.13 28.10
ABCD-II Model 0.63 0.66 19.11 26.32

ABCD-CR 0.72 0.72 17.53 17.25

4.2. Comparison among Different Models

We firstly compared the ABCD Model with the ABCD-CR model using the same methods in
preheating, calibration, and validation. The calibrated parameters and simulated runoff for the ABCD
model are shown in Table 2 and Figure 7a, respectively. The NSE of the ABCD model is less than
0.5 (Table 3) in the calibration period, indicating an unsatisfactory result. Although the NSE is slightly
higher than 0.5 in the calibration period, the MARE is quite large (higher than 30%). The ABCD model
is not successful in capture the runoff patterns, especially in the summer (Figure 7a). It significantly
underestimated the peaks of runoff in summer and overestimated the low flow during the cold season.



Water 2020, 12, 1812 13 of 23
Water 2020, 12, x FOR PEER REVIEW 13 of 23 

 

Figure 7. Monthly runoff results of the study catchment in the calibration and validation period 

obtained from (a) the ABCD model, (b) the ABCD-I model, and (c) the ABCD-II model. 

The simulated monthly runoff from the ABCD-I model is shown in Figure 7b. The ABCD-I 

model yields higher NSE values than that of the ABCD model. However, compared with the ABCD-

CR model, the ABCD-I model still has lower NSE values and lager MARE (Table 3). The errors are 

mainly caused by the poor performance in the cold season (October to March). As shown in Figure 

7b, the observed runoff decreased from above 4 mm in October to about 2 mm in January when the 

temperature decreased, while the simulated runoff could not drop so much due to using constant c 

and d. As shown in Table 2, the b value of the ABCD-I model (less than 50 mm) is quite smaller than 

the b value in the ABCD model (close to 100 mm) because the limit of Gmax at 5200 mm. It allows the 

ABCD-I model to capture the high runoff in the summer. 

Figure 7c shows the simulated monthly runoff by the ABCD-II model. The NSE of the ABCD-II 

model is higher than the NSE values of the ABCD and ABCD-I models but still smaller than 0.7 (Table 

3). For the runoff in the cold season, the ABCD-II model performs better than the ABCD and ABCD-

I models because it incorporates the temperature-dependent parameters. However, it remains a large 

b value (100 mm) that is similar to the ABCD model and requires a highest d value among that of 

these models (Table 2), causing a significant change in groundwater storage. We found that the 

annual groundwater storage obtained by the ABCD and ABCD-II model increased rapidly and 

leaded to unreasonable rises in runoff during 1990–2015 (Section 4.3). This unreasonable result is 

caused by ignoring the groundwater evapotranspiration. In comparison, the groundwater storage 

simulated from the ABCD-CR model was relatively stable with a fluctuation that agrees with the 

variations in the annual precipitation. 

Consequently, the different performances of the ABCD-I and ABCD-II models indicate that both 

of the groundwater evapotranspiration and temperature-dependent runoff generation are necessary 

in consideration for the study area. The ABCD-CR model significantly improves the runoff 

simulation from the original ABCD model, with a relatively low number of additional parameters.  

Figure 7. Monthly runoff results of the study catchment in the calibration and validation period
obtained from (a) the ABCD model, (b) the ABCD-I model, and (c) the ABCD-II model.

The simulated monthly runoff from the ABCD-I model is shown in Figure 7b. The ABCD-I model
yields higher NSE values than that of the ABCD model. However, compared with the ABCD-CR model,
the ABCD-I model still has lower NSE values and lager MARE (Table 3). The errors are mainly caused
by the poor performance in the cold season (October to March). As shown in Figure 7b, the observed
runoff decreased from above 4 mm in October to about 2 mm in January when the temperature
decreased, while the simulated runoff could not drop so much due to using constant c and d. As shown
in Table 2, the b value of the ABCD-I model (less than 50 mm) is quite smaller than the b value in the
ABCD model (close to 100 mm) because the limit of Gmax at 5200 mm. It allows the ABCD-I model to
capture the high runoff in the summer.

Figure 7c shows the simulated monthly runoff by the ABCD-II model. The NSE of the ABCD-II
model is higher than the NSE values of the ABCD and ABCD-I models but still smaller than 0.7 (Table 3).
For the runoff in the cold season, the ABCD-II model performs better than the ABCD and ABCD-I
models because it incorporates the temperature-dependent parameters. However, it remains a large
b value (100 mm) that is similar to the ABCD model and requires a highest d value among that of
these models (Table 2), causing a significant change in groundwater storage. We found that the annual
groundwater storage obtained by the ABCD and ABCD-II model increased rapidly and leaded to
unreasonable rises in runoff during 1990–2015 (Section 4.3). This unreasonable result is caused by
ignoring the groundwater evapotranspiration. In comparison, the groundwater storage simulated
from the ABCD-CR model was relatively stable with a fluctuation that agrees with the variations in the
annual precipitation.

Consequently, the different performances of the ABCD-I and ABCD-II models indicate that both
of the groundwater evapotranspiration and temperature-dependent runoff generation are necessary in
consideration for the study area. The ABCD-CR model significantly improves the runoff simulation
from the original ABCD model, with a relatively low number of additional parameters.
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4.3. Restored Runoff at W-III for the Period 1990–2015

As previously mentioned, the hydrological station W-III had been out of service since it was
destroyed in 1990. As a consequence, the river discharge from the headwater catchment of the Golmud
Rver has been unknown since 1990. This causes a difficulty in assessing the change in water resources
for the Golmud city. However, the unknown streamflow can be restored by the hydrological models
developed in this study.

From the comparison among different models, we were sure of that the ABCD-CR model can
provide the most reliable result of the restored river discharge at the hydrological station W-III. We used
the calibrated models introduced in Section 4.2 to simulate the monthly runoff at the hydrological station
W-III for the period 1990–2015 with the same meteorological forcing data. Results are summarized
in Figure 8. In the period 1990–2015, the annual P showed an increasing trend before 2010 and then
fell rapidly, whereas the annual E0 showed a slight decreasing trend (Figure 8a). The annual runoff

reproduced by the ABCD and ABCD-II model show evident increasing trends and are much larger
than that reproduced by ABCD-CR (Figure 8b) because of ignoring the groundwater evaporation,
which seem unreasonable. It also demonstrates that the improvement of considering groundwater
evaporation is necessary. In comparison, the simulated changes in the annual runoff at W-III from
ABCD-I and ABCD-CR are closer to that reconstructed by Wang and Wang [54] with an estimation of
the river water leakage between W-III and W-IV. It can be seen that the result in Wang and Wang [54] is
generally smaller than that from ABCD-I and ABCD-CR, especially in the period 2000–2004 and after
2013. The reconstructed runoff from the ABCD-CR model follows well with the fluctuation in annual P,
which seems more reasonable. It is clear that the climate change was the major force of the increase in
the annual runoff in this study catchment with an extremely low population density (<3 people/km2,
2018 census data) and a little change in the land use.
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The mean annual water balance data in the study catchment were summarized for the periods
1990–2000, 2001–2015, and compared to that in the period from 1982 to 1989 (Table 4). From the
period 1982–1989 to period 1990–2000, the mean annual T increased with 0.55 ◦C, whereas the mean
annual P decreased with 29.7 mm and the mean annual E0 changed a little. This led to a reduction
in recharge from P to G and a small change in the mean annual Q (+2.4 mm) as estimated from the
ABCD-CR model, with slight releases in S* and D*. However, the ABCD model resulted in a higher
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increase in the mean annual Q (+5.18 mm). In the period 2001–2015, both the mean annual T and P
increased significantly in comparison with that in the period 1982–1989, whereas the mean annual
E0 decreased with 8.3 mm. It led to a substantial increase in the mean annual Q (+16.4 mm from the
period 1982–1989) with increases in E and E* while decreases in S* and D*, as estimated from the
ABCD-CR model. In comparison, the ABCD model overestimated the increase in the mean annual Q.
This is mainly caused by the overestimation of the groundwater storage with a much higher ∆G and
the underestimation of the mean annual E.

Table 4. Water balance data in different periods.

Periods 1982–1989 1990–2000 2001–2015

Mean annual T (◦C) 1.43 1.98 2.82
Mean annual P (mm) 268.5 238.8 293.9
Mean annual E0 (mm) 483.1 484.7 474.8

Mean observed Q (mm) at W-III 48.3 null null
Mean observed Q (mm) at W-IV null 29.9 42.2

Mean annual
results from the

ABCD-CR model
(mm)

E (E*) 187.3 (52.94) 188.9 (61.18) 206.1 (70.64)
∆S (S*) −0.02 (12.30) 0.03 (11.92) −0.04 (11.12)

D* 12.2 12.1 11.3
∆G 33.52 0.09 23.84
Q 47.7 50.1 64.1

Mean annual
results from the

ABCD model (mm)

E 189.5 173.64 189.76
∆S −0.18 −0.05 −0.15
∆G 27.13 11.36 35.17
Q 48.7 53.88 69.09

Wang and Wang [54] only restored the annual streamflow at the hydrological station W-III in the
period from 1990 to 2015. In this study, we restored the monthly runoff with respect to W-III using
the ABCD-I model and ABCD-CR model, and their differences are compared in Figure 9. As that
illustrated in Figure 9a, the average monthly T from April to September (warm season) in every year
is higher than zero, followed by a rise and fall in the average monthly P. In the other months (cold
season), the average monthly T is below zero and P is generally smaller than 20 mm. Both the ABCD-I
model and ABCD-CR model could capture the response of runoff to the precipitation in the warm
season, resulting in similar monthly runoff data. For the cold season, the runoff reconstructed from the
ABCD-CR model soundly follows the change in the air temperature, but that reconstructed from the
ABCD-I model shows too small variation. This result implies that the temperature-effect should be
considered in a hydrological model for reconstructing the streamflow at W-III in the cold season.
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4.4. Effect of Temperature Changes on Runoff

The increasing air temperature may directly lead to changes in the snowmelt and frozen soils,
which are worth checking for the study on changing streamflow in a cold region. In the study catchment,
the annual T increased rapidly at a rate of 0.5 ◦C/dec during the period of 1975–2015, as shown by the
normal curve in Figure 10a. After 1994, the annual T became significantly higher than the baseline
extracted from the data during 1965–1974. The snowfall also displayed a slight increase from 1975
to 2015 at a rate of 0.07 mm/yr (Figure 10b). In particular, we use the method of sensitivity analysis
(Section 3.4) to investigate the change in snowmelt runoff in April and May. When the increasing
trend in the air temperature is replaced by the baseline, the snowmelt simulated from the ABCD-CR
model will slightly increase in both April (Figure 10c) and May (Figure 10d). This rise of snowmelt
runoff is a unique effect of the increasing snowfall. In comparison, the normal simulation (with the
true data of T) results of the ABCD-CR model yield an increasing snowmelt in April with a higher
rate (Figure 10e) than the baseline result and display a decreasing snowmelt in May (Figure 10f).
Such opposite trends for the April and May snowmelt runoff were a unique effect of the increasing T.
The snowmelt becomes more concentrated in April as triggered by the increasing air temperature and
it leads to a reduction in the May snowmelt because the remained snow cover storage in May becomes
smaller and smaller. Note that the total snowmelt runoff still exhibits an increasing trend as a result of
the increasing snowfall. Thus, the period of spring flood in the Golmud River will be shorten by the air
temperature rising while the peak of the flood will increase.
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Figure 10. Comparable data and results for the normal and baseline simulations: (a) The annual
mean air temperature; (b) the annual snowfall; (c,e) are the snowmelt runoff in April from the normal
simulation and baseline simulation, respectively; (d,f) are the snowmelt runoff in May from the normal
simulation and baseline simulation, respectively.

Landscape changes in the study area mainly resulted from frozen soil changes. The hydraulic
conductivity is affected by temperature, which is controlled by soil freezing and thawing. In this study,
this mechanism is described by linking air temperature to parameter c and d in the ABCD-CR model.
As air temperature rises, c and d increase, which describes the increase in hydraulic conductivity due
to changes in frozen soil. The trends in temperature are almost the same at the rate of +0.4 ◦C/dec
in the warm season and cold season, as shown in Figure 11a,b. Figure 11c shows that the runoff in
the baseline simulation almost equals to the normal simulation in the warm season. However, for
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the cold season the runoff in the normal simulation was larger than that in the baseline simulation,
as shown in Figure 11d. This result implies that the frozen soil degradation was a positive change
for the cold season runoff, leading to the increase trend in the annual cold season runoff during the
period from 1975 to 2015. Differently, the impact of the frozen soil on the warm season runoff was
quite limited. Thus, the change in the warm season runoff should be mainly caused by the changes in
the precipitation and evapotranspiration.
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4.5. Streamflow Versus Groundwater Level

It has been considered that the change in streamflow of the Golmud River triggered the fluctuation
of groundwater in the Golmud city [54] that shown in Figure 4b. To check the relationship between the
stream flow and groundwater, we plotted the annual runoff in the headwater catchment of the Golmud
river (estimated from the ABCD-CR model) and the observed groundwater level in G1–G4 in Figure 12.
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groundwater level in G1 (a), G2 (b), G3 (c)and G4 (d) (Figure 4b).

As indicated, a strong positive correlation between the streamflow and the groundwater level
exists for G1–G3 (Figure 12a–c). It implies that the groundwater level in the area of the Golmud city is
mainly controlled by the runoff in the study catchment, even other factors such as the local precipitation
could also influence the groundwater regime. In the Golmud city, the annual P is less than the 4% of the
annual E0 (Table 1), resulting in a tiny groundwater recharge from the local precipitation in comparison



Water 2020, 12, 1812 18 of 23

to the leakage recharge from the Golmud river. More streamflow in the river brings more leakage into
groundwater and causes higher groundwater level so that the groundwater level is positively related to
the runoff in the headwater catchment. The groundwater utilization and management in the city could
also influence the groundwater regime. However, the observation wells G1–G3 are far enough from
the center of the city to avoid the significant impact from human activities. The correlation between
the streamflow and the groundwater level in G4 (Figure 12d) is also positive but weak (R2 < 0.4).
G4 is located in the eastern bank of the Golmud River and close to the urban zone (Figure 4a), where
the disturbance from the groundwater utilization and management is significant. Nevertheless, the
positive correlation between the groundwater level and streamflow demonstrates that the runoff rise
in the headwater catchment of the Golmud river was the major cause for the rising groundwater level
in the area of the Golmud city over the past 20 years.

The ABCD-CR model developed in this study can role as a useful tool for predicting the streamflow
changes in the upper Golmud River basin with the changing climate in the QTP. And then, the results
of the ABCD-CR model can be used to assess the trend in the groundwater level near the Golmud city.
This is a worthy work in the future study.

5. Discussion

5.1. Comparison with Previous Similar Studies

The ABCD model is a widely used hydrological model due to its simplicity and efficiency.
In recent years, the ABCD model was mainly applied for analyzing changes in runoff at the annual
scale [44–48], although it was proposed at monthly scale [42]. On the other hand, the ABCD model
was rarely examined in cold regions. This study shows that the difference between the annual runoff

simulated by the ABCD model and the ABCD-CR model was limited (Figure 8b). However, the
ABCD model has unreasonable results at monthly scale, and ABCD-CR model greatly improves the
performance in runoff simulation by considering groundwater evaporation and the temperature effect
on model parameter. This finding is partly consistent with that of Wang and Zhou [45] who found
that groundwater evaporation must be considered in the simulation of the ABCD model when the
groundwater level was high at monthly scale. Moreover, this study found that the temperature effect
on the runoff should also be considered in cold regions in addition to the groundwater evaporation.

The basic finding with the ABCD-CR model in this study is consistent with some other studies in
cold regions using distributed hydrological models [29–31]. For example, Qi et al. [30] incorporated a
three-layer snowmelt model and frozen soil parameterization to the Water and Energy Budget Based
Distributed Hydrological Model (WEB-DHM). They found that the modified WEB-DHM improved
the performance for simulating river discharge in the source region of the Yangtze River, especially in
spring and in the cold season. Gao et al. [31] simulated cryospheric processes including snow and soil
freezing/thawing with the Geomorphology-Based Eco-Hydrological Model (GBEHM) for the upper
Heihe River basin, northeastern QTP. They also found that an increasing air temperature will cause an
increase in runoff in spring and winter, which were attributed to the increased snowmelt and increased
hydraulic conductivity triggered by frozen soil degradation. These models required a large amount of
observed data for model input and parameter estimation. Therefore, they are not easy to be applied in
the regions with scare observations such as the headwater catchment of the Golmud River. This study
considered the key processes in cold regions and incorporated them in the ABCD-CR model with a
simplified way. As indicated, the temperature-dependent processes can be sufficiently captured with a
few additional parameters to the original ABCD model, which is an advantage for the application of
hydrological models in cold regions with limited observations.

In recent years, researchers proposed remote sensing approaches to retrieve river discharges in
the QTP [25,26]. Wang et al. [63] proposed a method to retrieve the river discharge using the area of
water surface estimated from remote sensing images. However, this method was mainly applied for
large rivers, and was difficult to be used for the narrow river segment (width < 400 m), such as the
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Golmud River, due to the limitation in remote sensing images. For the narrow rivers, they argued
that a rating curve need to be developed based on in-situ discharges and river width (or precipitation)
estimated from satellite data [63]. Similar with hydrological models, the rating curve needs to be fitted
and may have large uncertainties in parameter. On the other hand, the remote sensing approaches
could only retrieve runoff data in the period after the launching of the satellite. Compared with the
remote sensing approaches, the ABCD-CR model provides a more flexible and efficiency method to
reconstruct the runoff data.

This study found that the runoff from the headwater catchment of the Golmud River dominated
the changes in groundwater level in the middle and lower Golmud River basin. This finding is
consistent with Kou [64] and Wang and Wang [54]. Kou [64] studied the interactions between surface
water and groundwater in the middle and lower Golmud River basin. He found that the lateral
recharge in deep aquifers could be ignored and the leakage from the Golmud River was the main
source of the recharge of groundwater. He also found that groundwater utilization rate was less
than 10%, indicating water extraction from human activities had limited effect on the changes in
groundwater level. Wang and Wang [54] also argued that the upstream surface water was the main
source of groundwater recharge.

Changes in runoff in the headwater catchment of the Golmud River were rarely studied in the
previous studies. Kong et al. [65] analyzed the isotopic characteristics of the river water in the Qaidam
Basin including the whole Golmud River basin and analyzed the changes in streamflow in recent
20 year. They found an increasing trend in precipitation and snowmelt, and considered climatic factor
was the main factor increasing river discharge in the rivers. These findings agreed with the results
of model simulation in this study. Wen et al. [66] used three trend analysis methods to investigate
variations in monthly and annual runoff in the upper reaches of the Bayin River basin located near
the headwater catchment of the Golmud River. They found that annual runoff showed a significant
increase from 1959 to 2013 and the river experienced a period of large positive anomaly since the
beginning of 21st century. This trend is similar with the changes in runoff retrieved by the ABCD-CR
model in the study area.

5.2. Uncertainties and Limitations

Results in this study could be influenced by uncertainties in the observation. Because no national
meteorological stations were located in the study catchment, it is difficult to fully reproduce the actual
spatial distributions of the precipitation, causing uncertainties in the model input. More meteorological
observations in the study area are expected to improve hydrological studies. In this study we assumed
that the change in the air temperature has the same hydrologic effect as that from the change in
ground temperature, which is not reasonable if the difference between the air temperature and ground
temperature was significant. It could be fixed if the ABCD-CR model uses the monthly data of the
ground temperature, while, this kind of observations was absent in the study area.

Additional limitations in the ABCD-CR model are linked with the simplifications. For example,
the effect of frozen soil changes on runoff was simply represented by the temperature-dependent
parameters, c and d. Complex soil freezing and thawing processes were not fully incorporated.
It reduces the computational cost but may ignore more complicated impacts of frozen soil changes on
hydrological processes. This limitation should be examined in further investigations. Equations or
formulas describing the heat transfer in soil may be incorporated to the model to improve the model
performance in a future study. On the other hand, the runoff simulated by the ABCD-CR model could
provide boundary conditions for a groundwater model, leading to a coupling of surface and subsurface
processes which could be applied to predict groundwater changes in future studies.

6. Conclusions

In this study, the ABCD model was modified with temperature-dependent parameters and
groundwater evapotranspiration to simulate monthly runoff for catchments in a cold region. The new
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hydrological model, namely ABCD-CR, was used in analyzing the headwater catchment of the Golmud
River located in the QTP, China, with significantly limited observations. This catchment has missed
hydrological gauge data since 1990 because the damage of the hydrological station in a heavy flood.
We reconstructed the monthly streamflow patterns for the catchment and analyzed the temperature
effect. The following conclusions can be drawn:

(1) Incorporating the temperature and groundwater-evapotranspiration effects could significantly
enhance the performance of the hydrological model for catchments in cold regions. Among
several comparable hydrological models, the ABCD-CR model provides the best simulation on
the monthly runoff in the headwater catchment of the Golmud River observed before 1990. For the
period after 1990, the ABCD model overestimated the mean annual runoff and underestimated
the mean annual evapotranspiration.

(2) With increasing in the air temperature during 1975–2015, the annual snowmelt runoff in the study
catchment showed an increasing trend and a change in seasonal distribution. The concentrated
release period of the snowmelt runoff gradually shifted from May to April. The spring flood in
the Golmud River will shorten the time while raise the peak.

(3) The ABCD-CR model can capture the increasing effect of the hydraulic conductivity of soils with
the frozen soil degradation caused by the global warming. As revealed, the frozen soil degradation
led to an increase in the cold season runoff whereas did not affect the warm season runoff.

(4) The annual runoff in the headwater catchment of the Golmud River was positively correlated
with the groundwater level in the area of the Golmud city. The increasing streamflow in the
Golmud River was the major cause for the rising groundwater level in the Golmud city over the
past 20 years.

The model developed in this study may provide a useful tool for analyzing the changes in the
catchment scale runoff in cold regions triggered by the climate change.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/6/1812/s1,
Figure S1: Monthly runoff results from the ABCD-CR model in the experiment using a 4-year calibration period
(1974–1977) and a 12-year validation period (1978–1989).
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