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Abstract: Modelling of water flow in the hyporheic zone and calculations of water exchange between
groundwater and surface waters are important issues in modern environmental research. The article
presents the Analytical Hyporheic Flux approach (AHF) permitting calculation of the amount of
water exchange in the hyporheic zone, including vertical water seepage through the streambed and
horizontal seepage through river banks. The outcome of the model, namely water fluxes, is compared
with the corresponding results from the numerical model SEEP2D and simple Darcy-type model.
The errors of the AHF model, in a range of 11–16%, depend on the aspect ratio of water depth
to river width, and the direction of the river–aquifer water exchange, i.e., drainage or infiltration.
The AHF model errors are significantly lower compared to the often-used model based on vertical
water seepage through the streambed described by Darcy’s law.

Keywords: groundwater–surface water interaction; analytical model AHF; numerical model SEEP2D

1. Introduction

Surface waters and groundwater are elements of the environment that are not isolated from each
other. Continuous water exchange with varying intensity occurs between them. The phenomenon
can be investigated in the physical context and as an important constituent of water management
decision-making. Water exchange within river–aquifer systems can be assessed either numerically or
analytically, depending on the feasibility of the applied approach for the assumed purpose. This article
presents both approaches with particular emphasis on analytical modelling of the phenomenon.
The expected advantage of using analytical models lies in their accuracy and computational simplicity.
Stream–subsurface water exchange is currently recognised as a fundamental process affecting
the transport and fate of contaminants and other ecologically relevant substances in streams [1].
The quantitative and qualitative characteristics of such exchange are inextricably influenced by several
physiographic, climatic, and anthropogenic factors [2–10].

A great deal of environmental issues concerning water exchange between rivers and groundwater
are resolved by means of various numerical models depending on the assumed spatial scales of flow
phenomena. The literature on the subject provides examples of the application of 3D models [11]
and analyses based on simulations with two-dimensional models [12]. Despite an increase in the ability
of such models to reproduce the complexity of the described processes, water exchange in the hyporheic
zone is still subject to insufficiently detailed investigation [13,14]. The river–aquifer interaction is an
example where accurate assessment of all three components of groundwater velocity beneath and in the
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vicinity of a riverbed is essential for correct calculation of flow paths and discrimination of bottom and
bank water exchange in the hyporheic zone [14,15]. Because mathematical description of the physical
interaction between surface and subsurface flows is a relatively difficult task, a simple approach is
adopted in a multitude of practical cases. The two types of flow are modelled separately, and their
coupling is accomplished by means of the linear Darcy-type formula accounting for the difference in
height of water tables in the river and the adjacent aquifer, and assuming inverse proportionality to
the resistance of the riverbed sediment layer separating the two flow domains [14,16]. The formula
imitates vertical seepage through the semi-pervious layer, as proposed already in 1979 by Rushton and
Tomlinson [17]. The majority of numerical models of regional groundwater flow currently still describe
water exchange within river–aquifer systems as vertical water seepage through riverbed sediments,
whereas the corresponding water flux (per unit length of river stretch segment) is approximated by the
Darcy-type model (DM) represented by Equation (1):

Qtot = −
W̃r·ks

ds
(Φ∗ −Hr),

(
m3/s/m

)
(1)

where W̃r is the width of the riverbed (m); ks is the hydraulic conductivity of river sediments (m/s);
ds is the thickness of river sediments under the river bottom (m); Φ* is the piezometric head in the
aquifer next to the riverbed (m); and Hr is the height of water table in the river (m).

This approach is implemented in the widely used MODFLOW model providing a stable and
convergent numerical solution. In DM model, Equation (1), friction that hampers water flow through
river sediments is usually described by just one lumped parameter—resistance c = ds

ks
(s). Although the

flow intensity through the sediments depends on local minor changes in the values of their hydraulic
conductivity, in most groundwater analyses, it is impractical to quantify such small-scale variability,
and the seepage Equation (1) is commonly considered a satisfactory basis to approximate the bulk flow
rate of water through river sediments [17].

Physically, groundwater flows in three dimensions of space. Models describing water exchange
process, however, are frequently reduced to two-dimensional flow in a vertical plane perpendicular to
riverbed. The legitimacy of the approach was confirmed by Rushton and Rathod [18]. Technically,
any 2D approximation to flow made for a central vertical plane of a homogenous segment of a river
stretch is replicated unchanged along each segment. In the majority of regional hydrogeological studies
such an approach assumes that the exchange of water between the river and the aquifer occurs only
through the river bottom. This simplification is justified when the dimensions of the river banks are
significantly smaller when compared to the dimensions of the river bottom. When the size of the river
banks is comparable with the width of the riverbed, however, the share of water flow through river
banks in total water exchange also increases. Therefore, the simplified estimate of the total water flow
through river sediments based on Equation (1) may be significantly in error. Errors in water exchange
within the river–aquifer systems are addressed in [19], examining the issue of consistency of water
balances of surface waters and groundwater. In this article, analytical and numerical models of water
exchange through the river bottom and banks are considered as an essential part of multistage research
aimed at modelling of water fluxes in the hyporheic zone of rivers. The research particularly aims at
evidencing that the application of analytical models of flow across the river banks in addition to flow
through the river bottom may reduce errors in assessing water exchange within river–aquifer systems.
This is particularly evident in juxtaposition of the outcomes of the analytical model (or its numerical
counterpart) to the measure of water exchange calculated by means of the third type of models—
the Darcy-like Equation (1)—when the latter is applied in physically unjustifiable situations.

The analytical approach addressed in this article applies the “method of fragments” developed by
Carslaw and Jeager [20]. The method was originally applied to solve analytical problems of steady
2D heat conduction in solid bodies of complex shape [21]. The method was soon undertaken by
Polubarinova [22,23]. She adopted and extended the methods of Carslaw and Jeager for solving
problems of flow within complex porous structures (aquifers, dikes, etc.). The analytical description of
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water exchange between the river and aquifer has been reviewed from a historical point of view in the
available literature [24]. Similar solutions for the improvement of the accuracy of the river–groundwater
system interaction have also been published [25,26].

Through proposing the Analytical Hyporheic Flux model (AHF), this article focuses on an
analytical description of the local river–riparian aquifer water exchange, and challenges the insufficient
accuracy of the commonly used Equation (1). The analytical formulae of the AHF model permit
estimating water fluxes including vertical water seepage through the streambed as well as seepage
through river banks.

2. Materials and Methods

2.1. The Flow System

Water exchange between the river and aquifer occurs both through the river bottom and river
banks. For rivers where Lbott >> Lbank (Figure 1a), vertical water seepage is the dominant part of
total flow. For rivers where both lengths are comparable (Figure 1b), both streams are significant.
Flow through the river banks should be particularly included in the description of the river–riparian
aquifer water exchange in small rivers of the lowland landscape (e.g., the Upper Biebrza River in
Poland) characterised by high depth relative to river width. The latter geometry is typical for small
lowland rivers in agricultural regions in Poland. In the developed AHF model, allowing for calculation
of the amount of water exchange in the hyporheic zone including vertical water seepage through
the streambed and horizontal seepage through river banks, the geometry of the river cross-section
and shape of river sediment is approximate with rectangle geometry. The analytical model of water
exchange was developed with the assumption of simplified rectangular geometry of the riverbed
cross-section (Figure 2).

Figure 1. Cross section through different shapes of riverbed: (a) Lbott >> Lbank; and (b) Lbott ≈ Lbank.

Figure 2. River–aquifer system of the Upper Biebrza River in Poland and outline of the exemplary
system geometry used in the AHF and SEEP2D models.
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Figure 3 illustrates the simplified geometry of the river–aquifer system and its relevant variables
and parameters. For the sake of simplicity, the flow domain was subdivided into four subdomains,
namely P.1, P.2, P.3, and P.4, each with a rectangular shape. Although the partition of the flow domain
into simpler fragments is a relatively old method [20,27], it is still used in numerous cases to simplify
the analytical approach [28], or in benchmarking of numerical models [29].

Figure 3. Flow subdomains: P.1 and P.2, in aquifer under river sediments; P.3, river sediments right/left
of the river bank; P.4, river sediments under river bottom; (y, z), general system of coordinates.

In the exemplary system, a vertically averaged (therefore constant) piezometric head in the riparian
aquifer Φ∗ along the right vertical boundaries of subdomains P.1 and P.3, and the height of water table
in the river–Hr are considered as external enforcing factor for water flow in the river–aquifer system.

The following dimensions are ascribed to river sediments of the river–aquifer system presented in
Figure 3: Da is the thickness of the aquifer beneath river sediments (m), Wrs is the half-width of river
sediments (m), ds is the thickness of river sediments below the river bottom (m), Wr is the half-width of
the riverbed (m), Lar is the one-side length of the riparian aquifer (m), Dar is the maximum thickness of
the riparian aquifer (m). The mineral bedrock beneath the riparian aquifer is adopted as the reference
level for all variables. In the analytical model of groundwater flow in and under sediments, two state
variables are defined: Φa(y) is the piezometric head in the semi-confined aquifer under the river
sediments (m), h(y) is the height of free water table in river sediments of P.3 (m), hs is the height
of free water table in P.3 at the river bank (m). Aquifer and river sediments are also described in
terms of their hydraulic parameters: ka is the hydraulic conductivity of aquifer under river sediments,
i.e., in P.1 and P.2 (m/s), ks is the hydraulic conductivity of river sediments in P.3 and P.4 (m/s), c = ds

ks
is the resistance to water flow in P.4 (s). Moreover, two variables describe external enforcing factors
of the river is the aquifer system is the Figure 3: Φ* is the averaged piezometric head in the riparian
aquifer along the right vertical boundary of subdomains P.1 and P.3 (m), Hr is the height of water table
in the river (m). Two resultant variables are calculated by the AHF model: Qbott is the vertical seepage
through the river bottom per 1 meter of the river stretch segment from/to flow domain P.2 (m3/s/m),
Qbank is the horizontal seepage through the river bank per 1 meter of the river stretch segment from/to
flow domain P.3 (m3/s/m).

Two halves of the river sedimentary envelope and two halves of a riparian valley—left (L)
and right (R)—are neither physically nor geometrically identical. The model of seepage in river
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sediments and groundwater flow in the adjacent aquifer generally requires assessment of two different
sets of parameters corresponding to L and R parts of the river–aquifer system. The assessment of
the shape and location of a no-flow boundary between L and R parts of the system, however, is not
possible with a simple analytical model considered in this article, because it requires solving a free
boundary problem instead. In this article, river–aquifer water exchange is assessed by formulating an
analytical model with only one set of identical parameters for the L and R sides of the flow system.
Future stages of the research are planned to extend the present analytical model through relaxation
of its most restrictive assumptions. The model is therefore anticipated to become suitable for more
accurate assessment of water exchange with better approximation to the real flow system.

2.2. The AHF Model–Analytical Description of Water Seepage through River Sediments

Groundwater flow equations and their solutions used for calculating water exchange within
different types of river–aquifer systems have been presented in the literature for a relatively long time.
Water exchange through the river bottom has been in the focus of analytical models in a multitude
of cases. A distinctive feature of the AHF model is simultaneous consideration of water exchange
through sediments below the river bottom–P.4, and through sediments to the right of the river bank–P.3
(Figure 3). Several assumptions were made in order to simplify the analytical model of seepage
in river sediments in terms of its physical adequacy and computational feasibility. The analytical
model is aimed to ensure that the continuity of flow between the two water environments is fulfilled.
The assumptions refer to geometry and processes in subdomains P.1 and P.2 of the aquifer under river
sediments, and P.3, P.4 in river sediments. The simplifying assumptions for the AHF analytical model
are as follows:

1. Due to its slow dynamics, groundwater flow in and under river sediments can be approximated
with a steady state flow. The assumption was analysed by Nawalany [30] who evidenced
that despite a rapidly fluctuating river water table, a slow response of groundwater flow in
the adjacent aquifer occurs as a consequence of dumping of high frequency changes in pore
pressure by porous rocks. The adequacy of such an assumption was also discussed in more recent
literature [26,31,32]. Preliminary field measurements in a real river–aquifer system show that
water table fluctuations in the river–Hr, and slow response of free water table that follows in the
adjacent riparian aquifer–Φ∗ support the assumption of merely quasi-steady water exchange in
the exemplary river–aquifer system. Both variables Hr and Φ∗ are used in the analytical AHF
model as two independent external variables enforcing water flow in river sediments.

2. The symmetry of the L and R parts of the river–aquifer system implies an existence of a no-flow
boundary within the aquifer bellow river sediments. In the AHF model, this boundary is assumed
to be a vertical line in the middle of the river. This rather restrictive simplification will be relaxed
in the future developments of the model.

3. Flow in subregion P.4 is assumed to be approximately vertical, because the left and the right
boundaries of P.4 are vertical, whereas the upper boundary condition of the river water table is
horizontal. Subregion P.4 is therefore described as a semi-pervious layer exerting a resistance
drag (c) to water flowing from P.2 to the river bottom.

4. Water flow between P.3 and P.4 is assessed as negligible. Therefore, the internal boundary between
the two subregions is considered a no-flow boundary. The boundary between P.1 and P.3 is also
assumed to be a no-flow boundary.

5. The base of the river–aquifer system is impervious. Direct recharge of river sediments from the
top by infiltrating precipitation is also assumed negligible.

Below flow in P.1, P.2, and P.3 parts of the river–aquifer system is described in terms of their
boundary conditions, groundwater flow equations and their solutions, and respective parameters.
Flow in subdomain P.4 is approximated by vertical seepage through the semi-pervious layer, and is
linked to flow in P.2.
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Flow in subdomain P.1 is confined and described by the Laplace equation:

ka(
∂2Φa(y, z)

∂y2 +
∂2Φa(y, z)

∂z2 ) = 0, for y ∈ [Wr, Wrs], z ∈ [0, Da] (2)

with boundary conditions: left boundary is the horizontal component of specific discharge

−ka
∂ Φa(W+

r , z )
∂y equal to the horizontal component of specific discharge −ka

∂ Φa(W−r , z )
∂y at the vertical

boundary between P.1 and P.2 and piezometric head continuous, i.e.,

Φa(W−r , z ) = Φa(W+
r , z) (3)

right boundary is the imposed piezometric head (1st type b.c.), i.e.,

Φa(Wrs, z) = Φ∗ = const (4)

lower boundary is the impervious boundary (2nd type b.c.), i.e.,

∂Φa(y, 0)
∂z

= 0 (5)

upper boundary is the no flow boundary (2nd type b.c.), i.e.,

∂Φa(y, Da)

∂z
= 0 (6)

because no water exchange is assumed between P.3 and P.1.
The solution to Equation (2) can be found by means of the factorisation method like in Nawalany‘s

work [27], where some non-zero penetration of the riverbed into a confined aquifer Dr > 0 was assumed.
When Dr converges to zero (as in the example of this article), the solution converges to

Φ̃a(y, z) =
∞∑

i=1
Disinh[µi(Wrs − y)] cos (µiz) + Φ̃

∗

− β∗(Wrs − y)

for y ∈ [Wr, Wrs], z ∈ [0, Da]
(7)

where
Φ̃a(y, z) = Φa(y, z) −Hr

Φ̃
∗

= Φ∗ −Hr

whereas its derivatives are equal to

∂Φ̃a(y, z)
∂y

= −
∞∑

i=1

Diµi cosh [µi(Wrs − y)] cos (µiz) + β∗ (8)

∂Φ̃a(y, z)
∂z

= −
∞∑

k=1

Diµisinh[µi(Wrs − y)] sin (µiz). (9)

Elements of series (Di), i = 1, 2 . . . . and value of β∗ are derived further from requirements of flow
continuity at the boundary between P.1 and P.2.

Solution of Equation (7) satisfies right b.c. as Φ̃a(y = Wrs, z) = Φ̃
∗

and, consistently,
∂Φ̃a(y=Wrs,z)

∂z = 0 for all z ∈ [0, Da]. For y ∈ [Wr, Wrs], Equation (9) satisfies lower b.c.,

i.e., ∂Φ̃a(y, z=0)
∂z = 0. To also satisfy the no flow condition on the upper boundary of P.1,

i.e., ∂Φ̃a(y, z=Da)
∂z = 0, µi must be equal to
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µi =
i π
Da

for i = 1, 2, . . . , (10)

Notice also that total outflow from P.1 into the riparian aquifer is equal to

QP.1→rip = −ka
∫ Da

0
∂Φ̃a(y=Wrs,z)

∂y dz = ka
∑
∞

i=1 Diµi
∫ Da

0 cos (µiz)dz−
kaDaβ∗ = −kaDaβ∗

(11)

The minus sign in Equation (11) means that at that border, water physically flows along the x-axis
if β∗ < 0, and opposite to y-axis if β∗ > 0.

Flow in subdomain P.2, i.e., in the part of the aquifer under river bottom sediments of P.4, is also
described by the Laplace equation:

ka (
∂2Φa(y, z)

∂y2 +
∂2Φa(y, z)

∂z2

)
= 0 for y ∈ [0, Wr], z ∈ [0, Da] (12)

with boundary conditions: left boundary is the no flow boundary (2nd type b.c.), i.e.,

∂Φa(0, z)
∂y

= 0 (13)

right boundary is the horizontal component of specific discharge −ka
∂ Φa(W−r , z )

∂y equal to horizontal

component of specific discharge −ka
∂Φa(W+

r , z)
∂y at the vertical boundary between P.2 and P.1, and also

piezometric head is continuous, i.e.,

Φa(W−r , z ) = Φa(W+
r , z) (14)

lower boundary is the impervious boundary (2nd type b.c.), i.e.,

∂Φa(y, 0)
∂z

= 0 (15)

upper boundary is the seepage through a layer of river sediments of P.4 to river bottom, i.e.,

qs = −ka
∂Φa(y, Da)

∂z
=

Φa(y, Da) −Hr

c
(16)

The solution to the flow Equation (12) in P.2 satisfying b.c.-s, Equations (13)–(16), can be found by
means of the factorisation method. It is given by the following formula

Φa(y, z) = Hr +
∞∑

k=1

Ak cosh (λky) cos (λkz), for y ∈ [0, Wr], z ∈ [0, Da] (17)

whereas its derivatives are equal to

∂Φa(y, z)
∂y

=
∞∑

k=1

Akλksinh(λky) cos (λkz) (18)

∂Φa(y, z)
∂z

= −
∞∑

k=1

Akλk cosh (λky) sin (λkz) (19)
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Parameters λk are specified through b.c. (16)

− ka
∂Φa(y, Da)

∂z
=

Φa(y, Da) −Hr

c
≡ −

∂Φ̃a(y, Da)

∂z
=

Φ̃a(y, Da)

χ2 (20)

where Φ̃a(y, z) = Φa(y, z) −Hrand χ2 = ka c (21)

Substituting Equation (17) and Equation (19) to Equation (20) provides∑
∞

k=1 Akλkχ
2 cosh (λky)tg(λkDa) cos (λkDa) =

∑
∞

k=1 Ak cosh (λky) cos (λkDa) => λkχ
2tg (λkDa) = 1

Elements of series (λk), k = 1, . . . can be calculated from the non-linear algebraic equation

Da

χ2
1

λ̃k
= tg(λ̃k) (22)

where λ̃k = λkDa (23)

for instance by the Newton method.
Elements of series (Ak), k = 1, 2, . . . are derived below from the requirements of continuity along

the vertical boundary between P.1 and P.2. Once parameters Ak and λk are known, Qbott can be
calculated from Equation (19) by integrating specific discharge qz over top horizontal boundary of
subregion P.2, i.e.,

Qbott =

∫ Wr

0
qz(y, Da)dy =

∫ Wr

0
−ka

∂Φa(y, Da)

∂z
dy = ka

∞∑
k=1

Akλk sin (λkDa)

∫ Wr

0
cosh (λky)dy (24)

hence

Qbott = ka

∞∑
k=1

Ak sin (λkDa)sinh(λkWr), (m3/s/m) (25)

Flow continuity between subregion P.1 and P.2. In order to evaluate elements of series
(Ak), k = 1, 2, . . ., (Di), i = 1, 2, . . . and value of β∗, the piezometric head and horizontal components of
specific discharge must be assumed continuous along the boundary between flow subregions P.1 and
P.2, i.e., at y = Wr and for z ∈ [0, Da]

∞∑
k=1

Ak cosh (λkWr) cos (λkz) =
∞∑

i=1

Disinh[µi(Wrs −Wr)] cos (µiz) + Φ̃
∗

− β∗(Wrs −Wr) (26)

∞∑
k=1

Akλksinh(λkWr) cos (λkz) = −
∞∑

i=1

Diµi cosh [µi(Wrs −Wr)] cos (µiz) + β∗ (27)

Once elements of series (Ak), k = 1, 2 . . . are known, value of β∗ can be calculated from mass
conservation in flow subregions P.1 and P.2, i.e., from equality of Equations (11) and (25)

QP.1→rip = Qbott ≡ −kaDaβ
∗= ka

∑
∞

k=1 Ak sin (λkDa)sinh(λkWr) ≡

β∗= −
∑
∞

k=1 Ak sin(λkDa) sinh(λkWr)/Da
(28)

To evaluate elements of the two series, (Ak), k = 1, 2 . . . and (Di), i = 1, 2 . . ., equality (6.2) needs to
be multiplied by b = (Wrs −Wr) and added to Equation (26), resulting in∑

∞

k=1 Ak[cosh(λkWr) + λkbsinh(λkWr)] cos(λkz) =
=

∑ j=∞
j=1 D j[sinh

(
µ jb

)
− µ jb cos h

(
µ jb

)
] cos

(
µ jz

)
+ Φ̃

∗ (29)
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Ultimately, values of (2N + 2) unknowns—(Ak), k = 1, 2 . . . , (N + 1),(Di), i = 1, 2 . . . , (N + 1)—
need to be found. Simultaneous substitution of Equation (28) for β∗ and zm = mDa

N , m = 0, 1 . . . , N
for z into Equations (26) and (27) leads to a set of (2N + 2) linear algebraic equations, where infinite
series are approximated with their finite counterparts∑N+1

k=1 Ak{cosh (λkWr) cos (λkzm) −
b

Da
sin(λkDa)sinh(λkWr)}−∑N+1

i=1 Disinh[µib] cos (µizm) = Φ̃
∗

, m = 0, 1, . . . , N
(30)

∑N+1
k=1 Ak{λksinh(λkWr) cos (λkzm) + sin(λkDa)sinh(λkWr)/Da}+

+
∑N+1

i=1 Diµi cosh [µi b] cos (µizm) = 0 , m = 0, 1, . . . , N
(31)

Hyperbolic sine and cosine in Equations (30) and (31) need some pre-calculation to avoid rising
exponents, i.e., sinh α = exp α [1− exp (−2α)]/2 and cosh α = expα [1 + exp (−2α)]/2. By denoting

Âk = Akexp (λkWr) (32)

D̂i = Diexp (µib) (33)

ω̃mk =
{
cos(λkzm) −

b
Da

sin(λkDa)tgh(λkWr)
}
[ 1 + exp (−2λkWr) ]/2˜̃ωmk =

{{
λk cos(λkzm) +

sin(λkDa)
Da

}
[ 1− exp(−2λkWr)]/2

δ̃mi = − cos(µizm)[1− exp(−2µib)]/2˜̃
δmi = µi cos(µizm)[1 + exp(−2µib)]/2

Equations (30) and (31) can be written shortly as

N+1∑
k=1

Âkω̃mk −

N+1∑
i=1

D̂iδ̃mi = Φ̃
∗

, m = 0, 1, . . . , N (34)

N+1∑
k=1

Âk
˜̃ωmk +

N+!∑
i=1

D̂ĩδ̃mi = 0 , m = 0, 1, . . . , N (35)

or in the block-matrix form for as Ω̃(N+1)x(N+1)|˜̃Ω(N+1)x(N+1)|

∆̃(N+1)x(N+1)˜̃∆(N+1)x(N+1)


 Â(N+1)x1

D̂(N+1)x1

 = [
P(2N+2)x1

]
(36)

where

Ω̃(N+1)x (N+1) =
{
ω̃mk

}
(m = 0, 1, . . . , N ; k = 1, . . . , N + 1)˜̃Ω(N+1)x (N+1) =

{˜̃ωmk
}
(m = 0, 1, . . . , N ; k = 1, . . . , N + 1)

∆̃(N+1)x (N+1) =
{
δ̃mk

}
(m = 0, 1, . . . , N ; k = 1, . . . , N + 1)˜̃∆(N+1)x (N+1) =

{̃
δ̃mk

}
(m = 0, 1, . . . , N ; k = 1, . . . , N + 1)

Â(N+1) x 1 =
[
Âk

]
(k = 1, . . . , N + 1) is the first (sub)vector of unknowns

D̂(N+1) x 1 =
[
D̂i

]
(i = 1, . . . , N + 1) is the second (sub)vector of unknowns

P(2N+2) x1 = [
Φ̃
∗

0
] is the right hand side vector.
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After solving Equation (36) for (Ak), k = 1, 2 . . . , (N + 1), the sought seepage through river bottom
is the Qbott can be readily calculated from approximations of Equation (11) or (24)

Qbott = −kaDaβ
∗ or (37)

Qbott = ka

N+1∑
k=1

Ak sin(λkDa)sinh(λkWr) = ka

N+1∑
k=1

Âk sin(λkDa)[1− exp (−2λkWr)]/2 (38)

Convergence of finite series (Ak), k = 1, 2 . . . , (N + 1) and (Di), i = 1, 2 . . . , (N + 1) has been
checked for increasing N.

Flow through river sediments in subdomain P.3 is unconfined and, after moving the origin of
coordinates to point (yo = Wr, zo = Da), described by the Laplace equation

ks(
∂2Φs(y, z)

∂y2 +
∂2Φs(y, z)

∂z2 ) = 0 , for y ∈ [0, b], z ∈ [0, h(y)] (39)

where
Φs(y, z) = Φ(y, z) −Da is the piezometric head in sediments of P.3 (m),
b = Wrs −Wr is the width of P.3 (m),
h(y) := h(y) −Da is the height of free water table in P.3 over the reference level z0 = Da, (m)
with boundary conditions at:
left boundary consisting of three segments: (assumed) no-flow boundary between P.3 and P.4

(2nd type b.c.), i.e., ∂Φs(0, z)
∂y = 0, 0 ≤ z ≤ ds, constant head along the water part of the river bank

(1st type b.c.), i.e., φs(0, z) = Hr, ds < z ≤ Hr, seepage face hs along the aerial part of the river bank
(1st type b.c.), i.e.,

φs(0, z) = z, Hr < z ≤ hs = h(0) (40)

right boundary is the constant piezometric head (1st type b.c.), i.e.,

φs(b, z) = φ∗, 0 ≤ z ≤ φ∗ (41)

lower boundary is the (assumed) no flow boundary between P.1 and P.3 (2nd type b.c.), i.e.,

∂ φs(y, 0 )

∂z
= 0, 0 ≤ y ≤ b (42)

upper boundary is the free boundary of P.3, i.e., φs(y, h(y)) = h(y) with no recharge from the top i.e.,

∂ φs(y, h(y))
∂z

= 0, 0 ≤ y ≤ b (43)

External constraints are also referenced to z0 = Da, i.e., Hr := Hr −Da and φ∗ := φ∗ −Da.
Because the height of free water table h(y) in P.3 is unknown, and so is the height of seepage face

hs = h(0), algebraic relationship φs(y, h(y)) = h(y) is added to make the solution to Equation (39)
unique. The unknown shape of subregion P.3 makes the problem Equations (39)–(43) into a free
boundary issue, and is cumbersome to solve. The calculation of river inflow/outflow to/from subregion
P.3, Qbank, however, is possible by means of the method originally derived by Czarny [23]. It allows for
calculating unconfined flow in sediments of subdomain P.3 without actual solving of the free boundary
problem Equations (39)–(43). By applying Leibnitz theorem to Darcy’s Law, the following general
formula for total flow in P.3, Qs(y), can be derived

Qs(y) =
∫ h(y)

0 [−ks
∂Φs(y,z)

∂y ]dz = −ks
∂
∂y {

∫ h(y)
0 Φs(y, z) dz− [h(y)]2

2 } =

= −ks
∂
∂y { h(y)Φ̃(y) − [h(y)]2

2 }

(44)
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where Φ̃(y) = 1
h(y)

∫ h(y)
0 Φs(y, z) dz is the average piezometric head in river sediments of P.3 along any

arbitrary vertical at y over the assumed reference level at z0 = Da.
Equation (44) has been originally derived by Czarny [23] to justify the use of the Dupuit parabola

when calculating inflow of groundwater to an excavation. In this article, the Czarny method is slightly
generalised by considering a no-flow boundary at lower part of the left vertical boundary of P.3
(see Equation (40)).

Because there is neither seepage from P.1 to P.3 nor recharge from the top, the continuity of flow

in P.3 requires that ∂Qs(y)
∂y = 0, and therefore

∂2

∂y2

h(y)Φ̃(y) −
[h(y)]2

2

 = 0 (45)

The general solution to this equation can be proposed in a simple form

h(y)Φ̃(y) −
[h(y)]2

2
= Ay2 + By + C (46)

Substitution of parabola, Equation (46) to Equation (45) results in A = 0, and therefore

h(y)Φ̃(y) −
[h(y)]2

2
= By + C (47)

whereas the sought total flow at any y can be calculated from Equation (44), i.e., Qs(y) = −ksB.
Constants B and C can be assessed from the assumed boundary conditions at the P.3 left and right

boundaries, namely for y = 0: h(0)Φ̃(0) − [h(0)]2

2 = C, where h(0) = hs, whereas term h(0)Φ̃(0) at the
river bank is equal to

h(0)Φ̃(0) =
∫ h(0)

0
Φs(0, z)dz =

∫ ds

0
Φs(0, z)dz +

∫ Hr

ds

Φs(0, z)dz +
∫ hs

Hr

Φs(0, z)dz. (48)

The first integral can be derived from the observation that for φ∗ > Hr,piezometric head along
the flowline located at lower no-flow horizontal part of P.3 boundary, i.e., at z = 0 (z0 = Da),
and continuing further along the no-flow lower part of the left vertical boundary of P.3 at y = 0, changes
linearly from φ∗ down to Hr. Therefore, for 0 ≤ z ≤ ds , φs(0, z) = Hr +

φ∗−Hr
b+ds

(ds − z, ) and hence∫ ds

0 φs(0, z) dz = Hrds +
φ∗−Hr
b+ds

d2
s

2 . Using b.c. Equation (40) for other parts of the left boundary of P.3,

the remaining two integrals can be calculated,
∫ Hr

ds
φs(0, z) dz = Hr(Hr − ds) and

∫ hs

Hr
φs(0, z)dz =

h2
s−H2

r
2 .

Adding the three integrals of Equation (48) provides C = h(0)Φ̃(0) − [h(0)]2

2 =
H2

r
2 + Φ∗−Hr

b+ds

d2
s

2 .

For y = b: h(b)φ̃(b) − [h(b)]2

2 = Bb + C =⇒ φ∗φ∗ −
[φ∗]2

2 = Bb + C =⇒ B =
{
[φ∗ ]2

2 −
H2

r
2 −

φ∗−Hr
b+ds

d2
s
2 }

b ,
and therefore one-side

Qbank = Qs(y = 0) = −ksB = −
ks

2b

{
[Φ∗]2 −H2

r −
Φ∗ −Hr

b + ds
d2

s

}
(49)

For Φ∗ > Hr, Qbank < 0, which indicates inflow to the river from P.3.
For Hr > Φ∗, flow reverses, and there is no seepage face either at the left nor at the right boundary

of P.3, i.e., h(0) = Hr and h(b) = Φ̃(b) = Φ∗. Then, total flow, Equation (44) can be evaluated from two

integrals of Equation (48) -
∫ ds

0 Φs(0, z) dz and
∫ Hr

ds
Φs(0, z) dz, as

Qbank =
ks

2b

{
H2

r − [Φ
∗]2 −

Hr −Φ∗

b + ds
d2

s

}
(50)
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After moving back to the original global of coordinates (yo = 0, zo = 0), Equations (49) and (50)
can be shortly written as:

Qbank =
ks

2b

{
(Hr −Da)

2
− (φ∗ −Da)

2
−

Hr −φ∗

b + ds
d2

s

}
(51)

When ds = 0, Equation (51) reduces to the Dupuit formula Qbank = ks
2b {(Hr −Da)

2
−

[Φ∗]2(φ∗ −Da)
2
}.

Ultimately, through adding formulae of outflow/inflow from/to riparian aquifer to/from a river
through its bottom— Equation (37) or (38)—and bank— Equation (51)—the total one side river recharge
per 1 m of the river segment can be calculated as follows:

Qtotal = Qbottom + Qbank, (m3/s/m) (52)

2.3. The SEEP2D Model–Numerical Approximation of Water Seepage in the River–Aquifer System

River–aquifer water exchange calculated with the AHF analytical model can be compared with
the corresponding water flows approximated by SEEP2D software suitable for modelling a variety of
problems involving seepage. The SEEP2D is a 2D finite element, steady state, flow model successfully
applied in cross-section (profile) models representing a vertical slice through a flow system such as
earth dams or levees. The SEEP2D model is based on the Equation (53) [33].

∂
∂y

(
Kyy

∂h
∂y

+ Kyz
∂h
∂z

)
+
∂
∂z

(
Kzz

∂h
∂z

+ Kzy
∂h
∂y

)
= 0 (53)

where h is the total head (elevation head plus pressure head), K is the hydraulic conductivity tensor.
SEEP2D permits modelling for the following conditions: isotropic and anisotropic soil properties;

confined and unconfined flow for cross-section models; saturated/unsaturated flow for unconfined
cross-section models; flow simulation in saturated and unsaturated zones; heterogeneous soil
conditions. In the model, the Laplace Equation (53) is solved by means of the finite element method
(FEM), and the flow domain is represented by a finite element mesh consisting of triangular and
quadrilateral elements. In unconfined problems, where the position of the free surface of water is
unknown, SEEP2D allows for modelling of either the deformation of the mesh to the phreatic surface,
or simulation of flow in both saturated and unsaturated zones. In the first approach, flow occurs only in
the saturated zone, and is iteratively finding the location of the phreatic surface. The mesh is deformed
or truncated for the upper boundary of the mesh to match the phreatic surface. When unsaturated
flow is simulated, hydraulic conductivity is modified using either the linear frontal method or the
Van Genuchten method [34]. The following boundary conditions can be used in the model at the
node in the mesh: constant head (Dirichlet boundary condition), head equals the elevation (exit face),
flow rate. Known flux rate is used as a boundary condition along a sequence of element edges on the
perimeter of the flow domain. Exit face boundary conditions are used when simulating unconfined flow
problems, and should be added along the face where the free surface is likely to exit the flow domain.
The SEEP2D program calculates the head, flow, discharge (Darcian) velocity, and pore pressure at
every node in the mesh. In the example of water seepage considered in this article, the flow domain-2D
cross-section-a vertical slice through a flow system, (Figure 3) and flow condition–unconfined flow in
the saturated zone, permit applying the SEEP2D model with the deforming mesh option.

3. Simulation Results and Discussion

Six scenarios of the difference in the mutual position of the water table in the aquifer and river
were selected for analysis. The initial scenario, considered the most common, is scenario 3 and 4
(0.5 m difference between Φ* and Hr for the gaining/losing type of river). Such differences are
observed for small and deep lowland rivers (e.g., the Upper Biebrza River in Poland). During the
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drainage period, the difference between Φ* and Hr is approximately 0.5 m during infiltration periods,
the difference reaches maximum 2 m. Other scenarios were selected to test models in a wide range of
differences between Hr and Φ* both when the river is of draining and infiltrating type.

Parameter values presented in Table 1 were used for calculating water exchange flows by means
of the AHF and SEEP2D models for the exemplary river–aquifer system. These parameters were
estimated based on of the real river–aquifer system of the Upper Biebrza River in Poland.

Table 1. Parameters of river sediments, riverbed, and riparian aquifer in the exemplary system.

Variable Values

Da 20 m
ka 0.000116 m/s

Wrs 16 m
Wr 4 m
ds 5 m
ks 0.00001 m/s
Hr 25.5–28.5 m
Φ* 27 m

Performing the simulation with the AHF model requires acquiring the variables listed in Table 1.
In addition to the knowledge of the hydraulic parameters, the application of SEEP2D software
for calculations requires the development of a 2D finite element mesh for the flow domain. In the
calculation example, a finite element mesh representing the river–aquifer system flow domain (Figure 3)
was generated with mesh generation tools provided in GMS Groundwater Modelling System.
In the model, the “no-flow” boundary was applied to the bottom of the aquifer system. Constant head
boundary conditions are in locations where the head and river water table are known. The fixed value
of groundwater table in the riparian aquifer Φ* (Figure 3) along the left and right perimeter of the flow
domain (where nodes elevation is not greater then Φ*), and fixed value of river table along the wetted
perimeter in the banks and bottom of the river. When river is of the gaining type (Hr < 27 m) exit face
boundary conditions are placed along the river perimeter (left and right river bank above the water
table). When the river is of the losing type (Hr > Φ*), exit face boundary conditions are placed along
the left and right perimeter of the flow domain in nodes with an elevation greater than Φ*. In the
remaining part of the perimeter of the flow domain, the “no-flow” boundary conditions are assumed.

In calculations where SEEP2D reflected the simplifying assumptions made in the AHF model,
the boundary conditions are implemented by placing constant head boundary conditions in locations
where the head and river water are known, and “no-flow” boundary conditions on the remaining
part of the perimeter of the flow domain (the same boundary conditions were applied as in the
AHF model). The assumption of no flow between P.3 and P.4 as well as between P.1 and P.3 (Figure 3)
was implemented in SEEP2D software by creating a discontinuity in the mesh—an impermeable flow
barrier with a width of 0.05 m—and placing “no-flow” boundary conditions in nodes along the outer
perimeter of this barrier.

In the case of exit face boundary conditions, if the head at a node on the boundary becomes
greater than the node elevation during the iteration process, the head at the node is fixed at the nodal
elevation and the node acts as a specified head boundary. In the calculation, the SEEP2D software
was used with the deforming mesh option (unconfined flow in the saturated zone). In this case, the
boundary conditions are implemented by placing constant head boundary conditions in locations
where the head and river water table are known, and iteratively is finding the location of the phreatic
surface, and the mesh is deformed or truncated so that the upper boundary of the mesh matches the
phreatic surface, placing exit face boundary conditions along the boundary where the phreatic surface
is assumed to exit.

The basic finite element mesh in the SEEP2D model consist of 1185 nodes and 2127 triangle
elements. It was refined in an area of sediment close to river banks and bottom, with high flow
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or high gradient in head. The mesh element size along the river cross-section is ∆x = 0.25 m.
To ensure a suitable mesh size, test calculations were performed for a twice denser mesh (4564 nodes
and 8508 elements, ∆x = 0.125 m). A test with decreasing density of the mesh (522 nodes, 944
elements, ∆x = 0.5 m) was also performed. Calculation was done for all scenarios presented in Table 2.
The estimated differences in calculated flow across the river bottom and banks for the base, refine,
and decrease finite element mesh are in a range from 0.27% to 0.57%. These test results show that the
base finite element mesh in SEEP2D model has a suitable mesh size.

Table 2. Impact of finite element mesh size on calculated river recharge/discharge through groundwater
seepage (A, 1185 nodes; B, 4564 nodes; C, 522 nodes).

Scenario No.
Qtot [×10−6 m3/s/m]

B/A C/AMESH

A B C

1 −39.7 −39.5 −39.8 0.9951 1.0027
2 −27.4 −27.3 −27.6 0.9955 1.0057
3 −14.2 −14.1 −14.2 0.9956 1.0026
4 14.9 14.8 15.0 0.9949 1.0026
5 30.3 30.2 30.5 0.9967 1.0050
6 46.4 46.2 46.6 0.9961 1.0041

The results of the analytical AHF model in terms of Qbank, Qbott, and Qtot are listed in Table 3 with
the corresponding numerical results of SEEP2D (with assumption of no flow between P.3 and P.4 as
well as between P.1 and P.3).

Table 3. One side Qbank, Qbott, and Qtot assessed by means of the analytical (AHF) and numerical
(SEEP2D) models (with assumption of no flow between P.3–P.4 and P.1–P.3).

Scenario No. Φ*[m] Hr[m]

Qbank, Qbott, Qtot [×10−6 m3/s/m] 1

AHF SEEP2D

Qbank Qbott Qtot Qbank Qbott Qtot

1 27.0 25.5 −6.89 −10.76 −17.65 −5.39 −10.56 −15.95
2 27.0 26.0 −4.80 −7.17 −11.97 −3.94 −7.04 −10.98
3 27.0 26.5 −2.51 −3.58 −6.09 −2.13 −3.52 −5.65
4 27.0 27.5 2.71 3.58 6.29 2.40 3.52 5.92
5 27.0 28.0 5.64 7.17 12.81 5.02 7.04 12.06
6 27.0 28.5 8.77 10.76 19.53 7.87 10.56 18.43

1 negative values indicate the river is recharged by riparian aquifer groundwater through river sediments and positive
values indicate the infiltration of river water into river sediments (riparian aquifer is recharged from the river).

Flow across the river bank (Qbank) estimated with the AHF model varies from 28% to 11% with
respect to the numerical solution. The error can be explained by the application of an approximate
method for assessing flow in subregion P.3. The flow across the river bottom calculated with the AHF
model (Qbott) in all scenarios does not differ from the numerical solution by more than 2%. Such good
accuracy can be explained by presenting the exact analytical solution, Equation (25) to flow equations
in the form of an infinite series expressed in terms of two infinite series—(Ak), k = 1,2, . . . and (λk),

k = 1,2, . . . Qbott—has been approximated with a finite series, Equation (38) of length N+1,
(
Q(N)

bott

)
,

in which (Ak), k = 1,2, . . . , N+1 were calculated from a system of linear algebraic equations, Equation (36).
Elements of series (λk), k = 1, 2, . . . , N + 1 solutions to algebraic Equation (22) were calculated by
means of the Newton method using parameters presented in Table 1. Values of the first elements in
series (λk), k = 1, 2, . . . = are as follows (0.02777; 0.162368; 0.3168768; 0.473060; 0.6296871; 0.7864939;
0.9433914; 1.1003407; 1.2573226; 1.4143261; 1.5713448, . . . .). The convergence of the finite series
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(
Q(N)

bott

)
was checked for increasing N. Figure 4 shows how N affects Q(N)

bott . It was proven through

repetitive calculation of formula (38) that Q(N)

bott , converges to the SEEP2D solution already for N = 200,
and later, from N = 200 to N = 3000, this convergence holds. The differences between the models for
the number N greater than 200, for some scenarios, can be explained by the fact that the numerical
solution obtained using the SEEP2D model, although very accurate, is an approximate solution.
Qbott differences between the two models depend on the number N and range from 0.04 × 10−6 m3/s/m
(for N = 400, scenarios 3 and 4) to 0.2 × 10−6 m3/s/m (for N = 3000, scenarios 1 and 6). The discrepancy
range is from 0.14% to 2% respectively, and does not significantly affect further considerations.

Figure 4. Convergence of finite series Q(N)
bott for six scenarios (Φ*–Hr).

The AHF model also allows for assessing specific discharge and hydraulic head in flow subregions
P.1, P.2, P.3, and P.4. (Figure 5).

Components of specific discharge were calculated by means of Darcy Law and formulae for
y- and z-derivatives of piezometric head: Equations (8) and (9) in P.1, Equations (18) and (19) in P.2,
and Equation (19) in P.4 (assuming flow continuity across top horizontal boundary of P.2).
Notice (Figure 5) that the AHF model accurately reflects the specific discharge field in subdomains P.1,
P.2, and P.4. Due to the generalisation of Equations (48) and (49) of the method proposed by Czarny [23]
for approximating total flow, and Dupuit formula for height of free water table, only an approximate
value of the horizontal component of specific discharge can be determined in subdomain P.3. This,
however, does not significantly affect the total flow in this subdomain.

The AHF model described in this article was also compared with the numerical model SEEP2D
describing a real flow system, i.e., where simplifying assumptions (of no flow between P.3–P.4
and P.1–P.3) are rejected. The results obtained using a simple model based on the Darcy formula
(DM model) were also analysed. Table 4 and Figure 6 present the results of the analytical AHF model,
Qtot, in comparison with the corresponding results from the SEEP2D model, calculated for the entire
domain (for both sides of the river), and Darcy’s law (DM)—Equation (1).

In further analyses, simulation results obtained with the application of the SEEP2D numerical
model without simplifying assumptions were assumed as the reference solution.

The results obtained from this SEEP2D model indicate that the assumption in the analytical model
of no flow between P.3–P.4 and P.1–P.3 generates errors from 24% for scenario 1 to 26% for scenario 6.
The assumption of no flow between P.3–P.4 and P.1–P.3 reduces the actual flow through the river bottom
and river bank. In all calculation scenarios with of the SEEP2D model, water does not leave the model
along the exit face on river banks.
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Figure 5. Specific discharge fields and hydraulic head distribution in the river–aquifer system calculated
for Hr = 28.5 m and Φ∗ = 27.0 m with (a) AHF and (b) SEEP2D models (both with the assumption of no
flow between subregions P.3–P.4 and P.1–P.3).

Table 4. Calculated river recharge/discharge through groundwater seepage.

Scenario No. Hr [m]
River Recharge/Discharge through Groundwater Seepage

Qtot [× 10−6 m3/s/m] 2

AHF SEEP2D DM

1 25.5 −35.3 −39.7 −24.0
2 26.0 −23.9 −27.4 −16.0
3 26.5 −12.2 −14.2 −8.00
4 27.5 12.6 14.9 8.00
5 28.0 25.6 30.3 16.0
6 28.5 39.1 46.4 24.0

2 negative values indicate the river recharge by seepage from river sediments, while positive values indicate the
infiltration of river water to river sediments.

Figure 6. River recharge/discharge by groundwater seepage for different scenarios and models.
Negative values of the river seepage indicate that the river is of water-gaining type; positive values
occur when the river is of water-losing-type.
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For all scenarios, the analytical model and estimation based on Equation (1) underestimate the
values of water flow in the hyporheic zone (Figure 7). AHF model errors range from 11% to 16%.
Error values in river seepage estimated by means of Darcy’s law are much larger and reach values in a
range of 40–48%.

Figure 7. Errors of river recharge calculated with the AHF analytical model and estimated with the
Darcy’s law model (DM) related to the values calculated by the SEEP2D model.

In comparison to the DM model, the AHF model describes seepage through river sediments in
more detail, because as it not only considers external variables–Hr, Φ*, but also permits calculation of
both components of the specific discharge (qy and qz) in subdomain P.2 located under the river bottom.

It is worth emphasising that, in contrast to the SEEP2D model, bottom recharge calculated by
means of the AHF and DM models does not change as to its in absolute value when the river changes
its type from draining into the infiltrating one (Figure 8).

Figure 8. River bottom seepage for different scenarios and models.

Differences in the SEEP2D numerical solutions for a drainage and infiltrating river seen in Figure 9
can be explained by changing the position of free water table, and hence the flow domain shape in
both cases. In this situation, the absolute Qbott value decreases by 7% from 29.5 × 10−6 m3/s/m for a
drainage river to 27.5 × 10−6 m3/s/m for an infiltrating river.

The AHF model inaccuracy is associated with the adopted simplifications and assumptions.
Although the “method of fragments” enabled derivation of consistent analytical solutions to
groundwater flow equations for the river–aquifer system, assumptions of no water exchange between
flow subdomains P.1 and P.3, and between P.3 and P.4 (Figure 3) have an unavoidable impact on the
analytical description of the resultant flow.

Considering seepage through the river bank in the calculations permits a satisfactory
approximation of water flow through river sediments in the case of small riverbeds close to a
rectangular shape and significant water depths.
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Figure 9. SEEP2D calculated free groundwater table, piezometric head contours, and flow lines for
(a) Hr = 28,5 m and Φ* = 27 m and (b) Hr = 25,5 m and Φ* = 27 m.

In the case of rivers where water depth is comparable to river width, the share of flow through the
river bank is a considerable part of total water exchange between the river and sediment layer. In the
analysed case, for a depth of 3.5 m, in both AHF and SEEP2D models, Qbank accounts for approximately
40% of total flow (Figure 10).

Figure 10. Two sided Qbank seepage contribution to total river flow Qtot (calculated with the SEEP2D
and AHF models) as a function of the ratio of water depth (Hr–Da–ds) to river width (2Wr).

Therefore, the application of a formula-based model resulting from Darcy’s law (DM model)
leads to major errors in this case. In particular for a water depth of 3.5 m, the error of the DM model
is 48%.

This type of approach (DM model), implemented e.g., in the MODFLOW, MODBRANCH,
MIKE-SHE, and HEC-RAS models, is very efficient in terms of preprocessing (introducing boundary
conditions in numerical models) and computing time. Our analyses show, however, that in the
case of small and deep rivers with a rectangular cross-sectional shape, linear formula, Equation (1),
can generate large errors in calculating river seepage, consequently falsifying simulation outcomes
and their interpretations.

The base of a numerical model of seepage is two-dimensional finite element mesh (composed of
nodes and elements) representing the modelled region. The accuracy of the solution depends on
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mesh resolution. Equation (53) is solved in each mesh node as a result of a numerical solution of
a system of algebraic equations containing a coefficient matrix with a wide bandwidth of non-zero
elements (the form of the bandwidth depends on the numbering of nodes and element mesh structure).
Next, river–aquifer water fluxes are calculated numerically based on the derivatives of the simulated
nodal total head. In the AHF model, river seepage calculation does not require construction of a
spatial grid. The aquifer water flux is calculated directly as a solution of Laplace equation in separated
sub-flow domains based on the data set listed in Table 1. On the other hand, the analytical model was
elaborated based on a number of simplifying assumptions, in relation to the geometry of the riverbed,
continuity of the flow area (assumption of no flow between P.3 and P.4 as well as between P.1 and P.3),
soil layers configuration (sediment, aquifer) as well as hydraulic soil properties (only isotropic).
The numerical model is free of the aforementioned limitations. It should be emphasised, however,
that the application of the AHF model requires calculation of seepage through the streambed (Qbott)

that is approximated with a finite series, Equation (38) of length N + 1,
(
Q(N)

bott

)
, in which (Ak),

k = 1,2, . . . , N + 1 is calculated from a system of 2N + 2 linear algebraic equations, Equation (36).
Elements of series (λk), k = 1, . . . can be calculated from non-linear algebraic Equation (22) for instance

by means of the Newton method. The convergence of the finite series
(
Q(N)

bott

)
should be verified

for increasing N. Any computing environment (allowing for solving a system of linear equations
and non-linear algebraic equation), for example MATLAB software, can be used to implement the
AHF model. Considering the computational complexity of the analysed models, the DM model
based on Equation (1) has a zero run time, and the AHF and SEEP2D models have comparable
calculation times. The advantage of the AHF model is the elimination of the time-consuming
construction of the computational grid, mapping the flow domain, and ensuring acceptable assessment
of river–aquifer seepage.

4. Conclusions

The simulations conducted for the exemplary river–aquifer system permitted drawing the
following conclusions:

Water exchange assessed with the AHF analytical model assuming a number of simplifications
can be considered the first approximation of volumetric water exchange within the exemplary
river–aquifer system. When compared to the Darcy-like model DM used in many hydrogeological
applications—Equation (1)—it still proves to be much more accurate.

1. The AHF model is convenient because of the simple set of data needed to solve the problem and
simplicity of implementation in any computing environment.

2. The AHF model errors (estimated as a difference in total flow Qtot calculated with the AHF and
SEEP2D models) depend on the “depth to width” ratio of water in the riverbed, and on the
exchange flow direction-drainage or infiltration to/from the riverbed. They are in a, range of
11 to 16%, and are significantly lower compared to the DM model based on Equation (1) in which
the errors are in a range of 40 to 48%.

3. A limitation of the AHF model applicability is its geometry—a rectangular-shaped riverbed
cross-section followed by the same shape of the sediment layer under its bottom and alongside its
bank. Overestimation of Qtot (AHF) over Qtot (SEEP2D) can be explained by restrictive assumption
of horizontal flow in P.3 assumed in the AHF model.

4. For small and deep rivers, neglect of flow through the banks (as in the DM model) leads to
significant errors in the total flow estimate.

Further work on the development of the AHF model will be aimed at the elimination its most
restrictive assumptions.
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