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Abstract: Streamflow measurements during high floods is a challenge for which the World 
Meteorological Organization fosters the development of innovative technologies for 
achieving an accurate estimation of the discharge. The use of non-contact sensors for 
monitoring surface flow velocities is of interest to turn these observed values into a 
cross-sectional mean flow velocity, and subsequently, into discharge if bathymetry is given. 
In this context, several techniques are available for the estimation of mean flow velocity, 
starting from observed surface velocities. Among them, the entropy-based methodology for 
river discharge assessment is often applied by leveraging the theoretical entropic principles 
of Shannon and Tsallis, both of which link the maximum flow velocity measured at a vertical 
of the flow area, named the y-axis, and the cross-sectional mean flow velocity at a river site. 
This study investigates the performance of the two different entropic approaches in 
estimating the mean flow velocity, starting from the maximum surface flow velocity sampled 
at the y-axis. A velocity dataset consisting of 70 events of measurements collected at two 
gauged stations with different geometric and hydraulic characteristics on the Po and Tiber 
Rivers in Italy was used for the analysis. The comparative evaluation of the velocity 
distribution observed at the y-axis of all 70 events of measurement was closely reproduced 
using both the Shannon and Tsallis entropy approaches. Accurate values in terms of the 
cross-sectional mean flow velocity and discharge were obtained with average errors not 
exceeding 10%, demonstrating that the Shannon and Tsallis entropy concepts were equally 
efficient for discharge estimation in any flow conditions. 

Keywords: entropy; mean velocity; maximum velocity; discharge; rating curve; surface 
velocity; dip; secondary current; POME 

 

1. Introduction:  

In open-channel hydraulics, the cross-sectional mean flow velocity 𝑈𝑈𝑚𝑚 is defined as the 
ratio of discharge Q to the area A of the flow. The cross-sectional mean flow velocity can be 
estimated in several ways. Conventionally, it is estimated using the velocity–area method, 
which is still followed in many countries [1]. This method has certain disadvantages, such as 
limited accuracy, and in some stations, its use may not be safe for the observer, especially 
during velocity observations of high flood conditions. Furthermore, the field practices of the 
area–velocity method is a time-consuming process. The most common instrument used for 
velocity measurement is the current meter, which is employed either from cableways or from 
bridges across the river, and the propeller vane of the current meter is placed at the desired 
depth level of a vertical to measure the point velocity. However, the use of a current meter is 
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hampered during high flood conditions due to the difficulty in sampling point velocities in the 
lower part of the cross-sectional flow area. 

An acoustic Doppler current profilers (ADCP) can also be used for the velocity 
measurement during high flow conditions, though many limitations exist. Furthermore, high 
flow conditions characterized by high turbulence may affect flow depth conditions due to 
rolling and pitching motions of the boat [2]. To overcome these difficulties, non-contact 
measurement techniques have been developed that use equipment, such as large-scale particle 
image velocimetry (LSPIV) [3,4] and surface velocity radar (SVR) [5,6]. However, these 
non-contact techniques also have some limitations: the radar technology may be affected 
during low flow when the backscatter of the beam can be swamped by high noise, while the 
LSPIV might not be suitable for measurements during scarce seeding, illumination conditions, 
and/or overnight floods [7]. Even so, the use of both SVR and LSPIV is suitable for monitoring 
high flows by overcoming the limitations of conventional contact-based techniques, as well as 
avoiding the unsafe conditions faced by the operators during high flows.  

Chiu [8–10] introduced the application of Shannon entropy theory [11] in hydraulic 
engineering by linking the probability distribution of the velocity and the physical space in 
terms of curvilinear coordinates. Using this entropy theory, the cross-sectional mean velocity 
is estimated by sampling the maximum flow velocity occurring at a flow depth vertical called 
the y-axis and linking it with the cross-sectional mean flow velocity, which is subsequently 
used for estimating the flow discharge. Chiu estimated the velocity distribution equation 
based on the principle of maximum entropy (POME) [12] and established a linear relationship 
between the cross-sectional mean flow velocity and the maximum flow velocity using an 
entropic parameter Ω(M) [13]. Later on, Moramarco’s [14] work based on Chiu’s approach 
expressed the simplified form of the entropy-based velocity distribution equation, where by 
starting from the measure of the maximum velocity and knowing the bathymetry, the 2D 
velocity distribution can be established. The maximum flow velocity generally occurs at the 
water’s surface; however, due to the presence of secondary currents [15], it may occur below 
the water’s surface, which is known as the dip-phenomenon linked to the concept of aspect 
ratio and it is a characteristic of both narrow and wide channels [16,17]. The maximum flow 
velocity can be easily sampled using any measuring instrument, such as a current meter, 
ADCP, LSPIV, and SVR. However, the non-contact discharge estimation concept is based on 
the estimation of the maximum flow velocity, which is inferred by measuring the surface flow 
velocity across the river site using, e.g., LSPIV or SVR techniques [18,19], and applying 
Shannon’s entropy-based approach, such as that proposed by, e.g., Chiu [8] or Moramarco 
[14].  

Tsallis entropy is a special case of Shannon entropy [20]. Singh [21] introduced the Tsallis 
entropy concept in hydraulic engineering by presenting the one-dimensional velocity 
distribution equation, as well as the two-dimensional velocity distribution, and found that the 
Tsallis entropy-based concept is either superior or comparable with the Shannon 
entropy-based concept [22–24]. However, from a practical point of view, it would be 
interesting to explore the performance of the two different entropy-based approaches by 
leveraging only the velocity observations at the y-axis, for which many SVR pieces of 
equipment are employed for monitoring the discharge. In this context, this study aimed to 
present a comparison between Tsallis’ entropy-based approach and that of Shannon’s entropy 
for discharge estimation at river stations with different geometric and hydraulic 
characteristics. Unlike other studies [14,19], the analysis undertaken in this study to estimate 
the discharge only addresses the measurement of the maximum surface flow velocity at the 
y-axis and the observed dip.  

Velocity datasets collected at the Pontelagoscuro station (Po River) and Ponte Nuovo 
station (Tiber River), both in Italy, were considered for the analysis. This paper is organized as 
follows: Section 2 provides the theoretical background of the non-contact discharge estimation 
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using both Shannon and Tsallis entropies. Section 3 describes the details of the river gauge 
stations in this study. Section 4 describes the results achieved using these approaches and the 
comparative evaluation of flows estimated using both methods. Lastly, Section 5 presents the 
conclusion of the study. 

2. Method 

2.1. Tsallis Entropy-Based Non-Contact Discharge Estimation.  

Singh [21] expressed the velocity distribution equation based on Tsallis entropy theory as: 

𝑈𝑈
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚
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where U is the point velocity in the longitudinal direction, 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum velocity of 
the channel section, G is the entropic parameter, h is the dip (depth of 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 below the 
water’s surface), D is the depth of the flow, and y is the distance of the measuring point from 
the bottom of the channel. In the above equation, the y-axis is selected in such a way that it 
passes through the point of maximum velocity that generally occurs at the deepest vertical. 
However, the location of the y-axis can be identified using the historical record of streamflow 
measurements at channel sections. The entropic parameter (G) is characteristic of the channel 
section and it can be easily estimated through the pairs of cross-sectional mean flow and 
maximum velocity using a linear entropic relationship. The relation between the mean and 
maximum velocities based on Tsallis entropy follows a linear distribution, which is expressed 
as [21,23]: 

𝑈𝑈𝑚𝑚  
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where 𝑈𝑈𝑚𝑚 is the cross-sectional mean flow velocity and 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 occurs at the deepest vertical 
flow depth of the flow section. Ω(G) is the state equilibrium constant (dimensionless 
parameter). The maximum flow velocity can be estimated using the surface flow velocity 
through Equation (1) based on Tsallis entropy as follows: 
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where 𝑈𝑈𝑠𝑠 is the surface flow velocity for the y-axis and h is the location of the maximum 
velocity below the free surface of the water. If h = 0, then 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑈𝑈𝑠𝑠. This approach requires 
the identification of the deepest vertical established at the cross-section of interest and all 
velocity measurement points, i.e., the surface water velocity and velocity at different points 
on this vertical must be collected. Additionally, it requires that the ratio of the mean flow 
velocity 𝑈𝑈𝑚𝑚 to the maximum velocity  𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 is unique for the cross-section of interest. 

2.2. Shannon Entropy-Based Non-Contact Discharge Estimation 
Fulton [18] gave the non-contact discharge concept and developed a relationship between 

the surface flow velocity and the maximum flow velocity based on Shannon entropy theory. 
The Shannon entropy-based velocity distribution was derived by Chiu [8–10] and simplified 
by Moramarco [14]. It is expressed as:  

𝑈𝑈 =
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚
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where U is the longitudinal point velocity at any location on the y-axis; 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum 
flow velocity; M is Shannon’s entropy parameter, which is a property of a section [14]; D is 
the depth of flow; and y is the location of the velocity measuring point measured from the 
bottom of the channel. 

The entropy parameter or constant M can be estimated using Equation (5): 

𝑈𝑈𝑚𝑚
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚

=  
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The maximum flow velocity of a given vertical line can be estimated using Equation (6) 
by starting from the surface flow velocity measured at the same vertical and using Shannon 
entropy theory, as follows: 

   𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚=
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2.3. Cross-Sectional Mean Flow Velocity and Discharge Estimation 
To compute the cross-sectional mean flow velocity and the corresponding discharge 

passing through the flow section using a non-contact technique based on the Tsallis and 
Shannon entropy concepts, the following step-by-step procedure was used: 

1. Identify the location of the y-axis (vertical where the maximum velocity is recorded) 
through historical records. 

2. Measure multiple point velocities along this vertical, including the surface water velocity 
on this identified y-axis.  

3. Tabulate the pairs of cross-sectional mean and maximum velocities for different flood 
events. 

4. Estimate Tsallis’ G value using Equation (2) and Shannon’s M value using Equation (5). 
5. Determine the water depth D of the y-axis along with the dip [19].  
6. Estimate the maximum velocity from the surface flow velocity measurements using 

Equation (3) for Tsallis’ theory and Equation (6) for Shannon’s theory, and compare these 
with the observed maximum velocity of that event.  

7. Estimate the cross-sectional mean velocity using Equation (2) for Tsallis’ theory and 
Equation (5) for Shannon’s theory. 

8. Determine the cross-sectional flow area corresponding to the recorded water surface 
level. 

9. Estimate the discharge using the estimated cross-sectional mean velocity obtained in step 
(8) and the cross-sectional area using Q = AV. 

3. Study Area 

To demonstrate the acceptability of the proposed flow estimation approach at a gauge 
station, two gauge sections, one each for the Po and Tiber Rivers in Italy, were considered. 
Flow data from the Ponte Nuovo station of the Tiber river (Italy) and Pontelagoscuro station of 
the Po river (Italy) were used to test the acceptability of the proposed non-contact discharge 
estimation based on the Tsallis entropy theory. The data sets consisted of multipoint velocity 
measurements made at a vertical of the flow section of an event using the current meter from 
the cableway. The number of velocity points sampled along the verticals was sufficient (more 
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than ten for some verticals) to reconstruct the vertical velocity profiles and to identify the dip, 
even in the presence of secondary currents. Table 1 presents the details of such measurements 
made at the two stations at the Po and Tiber Rivers.  

Table 1. Flow data set details: 𝑁𝑁𝑒𝑒—number of events considered, 𝑁𝑁𝑣𝑣—total number of 
verticals (from the 𝑁𝑁𝑒𝑒 events), Q—measured discharge, D—depth, A—area. 

River Station 𝑵𝑵𝒆𝒆 𝑵𝑵𝒗𝒗 Q (m3/s) D (m) A (m2) Period 
Po Pontelagoscuro 48 595 316–5026 5.41–15.46 913–2833 1984–1992 

Tiber Ponte Nuovo 22 186 2.65–506 0.91–6.07 25.48–278.16 1985–2000 

4. Results and Discussion  

4.1. Non-Contact Discharge Assessment Using Tsallis Entropy  

To evaluate the above-discussed procedure for discharge estimation using the Tsallis 
entropy theory, a total of 48 events of the Po River (from 1984 to 1992) and 22 events of the 
Tiber River (1985–2000) were considered. The velocity dataset was provided by the Agenzia 
Interregionale per il Fiume Po for the Po River and the Department of Environment, Planning, 
and Infrastructure of the Umbria Region for the Tiber River. For each of the selected 
measurements, the data refer to the (1) velocity points sampled along verticals in terms of the 
elevation above the bed and the corresponding measured value, (2) location of the vertical 
from the left sidewall, (3) hydrometric level, (4) mean flow velocity, and (5) discharge. For 
each event, 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 was computed by starting from the surface velocity and the dip observed at 
the y-axis and using Equations (3) and (6) for Tsallis and Shannon entropy, respectively. 

The state equilibrium constants Ω(M) for the Shannon entropy and Ω(G) for the Tsallis 
entropy, as well as the correlation coefficients 𝑅𝑅2,  were estimated using the pairs of 
maximum and mean velocities collected at the Pontelagoscuro and Ponte Nuovo stations of 
the Po and Tiber Rivers, respectively. The estimated values of the state equilibrium constants 
and correlation coefficients are indicated in Figure 1 using the velocity dataset of the two 
considered gauge stations. 

 
Figure 1. The relation between the cross-sectional mean flow velocity Um and the maximum 
velocity Umax for (a) Pontelagoscuro station and (b) Ponte Nuovo station. 

It can be seen from Figure 1 that the linear relationship established for Pontelagoscuro 
and Ponte Nuovo stations are Equations (7) and (8), respectively:  

 𝑈𝑈𝑚𝑚 = 0.668𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚, (7) 

 𝑈𝑈𝑚𝑚 = 0.647𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚. (8) 

The estimate of state equilibrium constant Ω(G) for the Pontelagoscuro station was 
found to be 0.668 and the corresponding Tsallis entropic constant was G = 4.02. Similarly, the 
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equilibrium estimates of Ω(G) and G for the Ponte Nuovo site of the Tiber River were 
estimated to be 0.647 and 3.52, respectively.  

Ω(G) and G could be assumed to be constant within the river reach [13]. Once the 
cross-sectional mean flow velocity was estimated by Equations (7) and (8), the discharge 
could easily be estimated as the product of  𝑈𝑈𝑚𝑚  and the cross-sectional flow area 
corresponding to the water level observed during the measurement. 

The discharge estimation based on the use of Equation (3) could be verified using the 
values Ω(G) and G separately for both stations. Using Equation (3), one can estimate the 
maximum flow velocity of a vertical by only measuring the surface flow velocity. 

Figure 2a,b compares the estimated maximum velocity based on Tsallis entropy with the 
corresponding observed maximum velocity for all the events of both the considered gauge 
stations of the Po and Tiber Rivers using Equation (3). It can be inferred from Figure 2a,b that 
the values of maximum velocity estimated using Equation (3) closely reproduced the 
corresponding observed maximum velocity. All velocity estimates were highly correlated (R2 
= 0.98 for both the gauge stations) with the observed values. Therefore, the maximum flow 
velocities estimated by Equation (3) for all the events of both gauge stations were used to 
assess the cross-sectional mean flow velocity using the Tsallis entropy-based linear 
relationship in Equation (2).  

It can be inferred from Figure 2c,d that the estimated cross-sectional mean flow velocity 
𝑈𝑈𝑚𝑚 for all the events of both gauge stations were highly correlated with the corresponding 
observed values estimated using the velocity–area method [1]. The high 𝑅𝑅2 values shown in 
Figure 2c,d imply the acceptability of Equation (3) based on Tsallis entropy theory. Therefore, 
the cross-sectional mean flow velocity was estimated using Equations (7) and (8), and the 
discharge was estimated at each of the flow sections by multiplying it with the corresponding 
cross-sectional flow area.  

The discharge values estimated for both gauge stations using the Tsallis entropy-based 
procedure were highly correlated with the respective station’s observed discharge values, as 
shown in Figure 2e,f. 
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Figure 2. Comparison of pertinent estimated variables with the corresponding observed ones 
using Tsallis entropy for Ponteslagscuro station (a,c,e) and Ponte Nuovo (b,d,f). 
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estimation using entropy theories. Likewise, the discharge estimates using Tsallis entropy 
were nearly the same as the discharge estimated using Shannon entropy, and both these 
estimated discharges closely estimated the discharges obtained using the velocity–area 
method, with a difference of less than 1% for both the investigated river stations. These 
inferences demonstrate that both the Shannon and Tsallis entropies can be employed for 
discharge estimation as alternative methods. 
 

  
Figure 4. The relative percentage error in estimating the cross-sectional mean velocity using 
Tsallis and Shannon entropies: (a) Pontelagscuro and (b) Ponte Nuovo. 

Table 2. Estimated percentage of errors in estimating the mean flow velocity using Tsallis and 
Shannon entropy and using only the observed surface velocities. 

Metrics 
Pontelagscuro Ponte Nuovo 

Tsallis Shannon Tsallis Shannon 

Mean (%) 5.59 5.59 7.55 7.58 

Standard Deviation (%) 6.95 6.95 8.79 8.49 

NSE* 0.99 0.99 0.99 0.99 
𝑅𝑅2 0.98 0.98 0.99 0.99 

* NSE: Nash–Sutcliffe efficiency. 

As the study of interest lay with the estimation of the maximum velocity of the vertical 
velocity profile recorded on the pre-defined points of the y-axis, which in turn is generally 
located somewhere at the mid-portion of the flow section, where the maximum flow usually 
passes in a flow section, the y-axis was identified at the observed maximum surface velocity 
point and subsequently, the dip was observed at this vertical for its use in estimating Umax 
using Equation (3). The vertical velocity profile at any location of the flow section of a flow 
event can be estimated using Equation (1) by using the estimated value of 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 instead of the 
observed value of 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚, such as that depicted by Equation (3) by leveraging the observed 
surface velocity and the dip. The estimated entropy constants were G = 4.02 for the 
Pontelagsucro station of the Po River and 3.52 for the Ponte Nuovo station of the Tiber River. 

Figure 5 shows the accuracy of the estimated velocity profiles with the observed velocity 
points for both gauge stations. Similar reproductions were obtained for the other events at 
both gauge stations. We also generated vertical velocity profiles using Shannon entropy. Our 
main purpose regarding the vertical velocity profile generation was to compare the generated 
vertical velocity profiles of both approaches with the corresponding observed vertical profiles. 
As can be seen from Figure 5 depicting the velocity profiles, there were no significant 
differences between the performances of the Tsallis and Shannon entropy approaches when 
estimating the point velocities. 
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Figure 5. Typical velocity profiles estimated using Tsallis and Shannon entropies, and a 
comparison with the observed velocity points (depth (y-axis) represents the vertical where 
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 occurs) for the gauging stations at (a) Pontelagscuro and (b) Ponte Nuovo. 

5. Conclusions 

Based on the results obtained, the following conclusions can be drawn: 
- Non-contact monitoring techniques based on the use of surface flow velocity 

measurements at river gauge stations by employing surface velocity radar (SVR) and 
large scale particle image velocimetry (LSPIV) are a valuable alternative approach to the 
traditional discharge estimation methods. These approaches eliminate the drawbacks of 
using the traditional methods for monitoring high flow conditions, which prove to be 
inefficient and subject to accuracy problems, as well as pose safety problems for the 
operators during high flow conditions. By sampling the maximum surface flow velocity 
at the y-axis and applying entropy theory, one can accurately estimate the river 
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discharge, which makes the non-contact technology highly appealing for river 
monitoring. It is worth noting that the uncertainty analysis of entropy-based methods 
using velocity measurements provide a variation on estimates that, as shown by Alvisi 
[25], does not exceed 10% on average for high flows. It is also worth noting that recent 
studies showed that entropy-based models can be applied for any flow conditions using 
both ground measurements [26,27] and satellite observations [28], and this is of 
considerable interest for new satellite missions, such as SWOT (Surface Water and Ocean 
Topography- NASA) and Sentinel (European Space Agency). 

- Tsallis entropy theory provided similar performance to the one based on Shannon 
entropy theory when estimating the cross-sectional mean flow velocity and the velocity 
profile distribution at the y-axis. 

- It was shown that the measure of the surface flow velocity along the y-axis allowed us to 
efficiently estimate the maximum velocity for which the mean flow velocity can be 
accurately assessed, regardless of the type of entropy approach applied. The proposed 
method can be easily replicable for any river site and this finding provides a 
considerable benefit when using the non-contact techniques for monitoring discharge 
during any flow conditions, and in particular, during high flow. This is linked to the fact 
that the key variable  𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 can be easily monitored during high flow and the entropy 
parameter characterizing the slope of the linear entropy relationship does not depend on 
the hydraulic gradient, which influences the dynamics of flooding. Indeed, as shown by 
Moramarco and Singh [29], the entropy parameter is linked to the ratio between the 
geometric and hydraulic characteristics of a river site, which remains constant during a 
flood. 

- Finally, the analysis of velocity profiles at the y-axis showed that by using the observed 
dip values, both Tsallis and Shannon entropy theories could be used to study the 
secondary currents when dip phenomena occur. This aspect will be investigated in detail 
in terms of a two-dimensional velocity distribution when secondary currents occur by 
using the velocity dataset referring to the gauged river stations with different geometric 
and hydraulic characteristics and including Indian rivers. 
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