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Abstract: The review aims to report the state-of-the-art constructed wetlands (CW) in the Latin 
America and Caribbean (LAC) region not limited to national and local conditions. The aim is with 
a broader view, to bring updated and sufficient information, to facilitate the use of the CW 
technology in the different countries of LAC. Thus, 520 experiences extracted from the 169 reviewed 
documents in 20 countries were analyzed. According to the data, horizontal subsurface flow 
wetlands are the most reported CW in the region (62%), the second most common CW technology 
in the region is free water surface CW (17%), then vertical flow systems (9%), followed by intensified 
constructed wetlands (8%), and finally French systems (4%). The performance for nutrient removal 
is analyzed, finding that the mean of Chemical Oxygen Demand (COD), Total Nitrogen (TN), and 
Total Phosphorous (TP) removal efficiencies varies from 65% to 83%, 55% to 72%, and 30% to 84%, 
respectively. The results suggest a generally good performance for COD and TN removal, but a low 
performance for TP removal. Regarding plant species used for CWs, 114 different plant species were 
reported, being until now the most extensive report about plant species used in CWs in the LAC 
region. 

Keywords: constructed wetlands; Latin America and Caribbean; nature-based solutions; 
wastewater treatment; state-of-the-art. 

 

1. Introduction 

1.1. Latin American and Caribbean Wastewater Context 

The term Latin America and the Caribbean region (LAC) refers to 48 countries; 14 in continental 
South America, 8 in Central America, and 26 islands in the Caribbean [1] located in the American 
Continent. The region has a surface of approx. 21,111,500 km2 (~14% of the world surface), with an 
estimated population of 650 million inhabitants and is the most urbanized region in the world, 
producing in more than 30 km3 of wastewater each year the urban settlements [2]. UNEP (2016) [3] 
estimates the pollution in rivers and freshwater in the region has increased, and since 1990, up to one-
third of the rivers, and one-seventh of the length of them are receiving untreated wastewater. 

In the region, social status and wealth correlate with sanitization level and wastewater treatment 
coverage. The coverage numbers vary from different authors. The OMS/UNICEF (2016) [4] has 
estimated that the level of enhanced sanitization in the region reaches 88% in the urban areas and 
64% in the rural areas (enhanced sanitization systems are defined as no human contact with human 
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excreta, i.e., toilet connected to the sewage system or septic tank, or a latrine, are examples of such 
systems); with some countries such as Nicaragua, El Salvador, Panama, Bolivia, and Haiti, having 
only 25% of enhanced sanitization coverage [5]. The FAO (2017) [2] estimates that during the last two 
decades, due to the population in the region growing by 160% while wastewater treatment coverage 
has not expanded at the same rate, around 60% of the wastewater is discharged to nature without 
receiving any previous treatment. For other authors like Hernández-Padilla et al. (2017) [6], only 20% 
of the municipal wastewater of the LAC region receives treatment before being discharged. 
Nonetheless, all the authors agree about the fact that there is low coverage for wastewater treatment 
and sanitization in the LAC region. 

Some of the LAC region’s countries reported high coverage of wastewater treatment, however, 
in many cases the systems do not work correctly, or they are not working at all, mostly as a 
consequence of the high operational and maintenance cost. For example, Mexico reported one of the 
most extensive wastewater coverages and one of the largest wastewater treatment infrastructures in 
the LAC region with around 3500 systems; nonetheless, around 700 of these wastewater treatment 
plants of the country (21%) have been reported as “not operational” [7]. 

1.2. Context of Constructed Wetlands Technology in the LAC Region 

Constructed wetlands (CW) technology is a nature-based solution, where natural processes are 
optimized to improve water quality. CWs are characterized by relatively low establishment costs, 
robustness, easily operated and maintained, and a high potential for application in developing 
countries, particularly by small rural communities [8]. Rural communities are defined as those 
agglomerations having less than 2500 inhabitants, primarily dispersed in the territory, a distance of 
at least five kilometers from cities, but in some cases isolated and being more than 2.5 km from the 
nearest road [9]. Furthermore, the existing environmental conditions in some of the LAC region 
(warm temperatures, extensive light radiation periods, and available land) can enhance CWs 
performance [10]. Additionally, according to Arias et al. (2009) [11], CWs are considered the best 
investment in regards to performance for (i.e., treatment indicators), and value return (i.e., energy to 
lifetime price). Moreover, CWs are also an attractive choice for mitigating climate change and 
resource consumption associated with wastewater treatment [12]. Thus, CW technology seems to be 
an adequate, affordable and sustainable solution for the wastewater treatment needs in LAC 
considering that the CW technology is known for its capacity for removing a wide range of pollutants 
from waters and produce effluents that can meet the most stringent discharge standards and 
satisfactory treatment, if correctly designed and operated [13–16]. 

However, in the LAC region, there seems to be a gap between the current use of the CW 
technology and other wastewater treatment technologies. CW solutions seem to be trailing behind 
compared to other technologies [17]. Noyola et al. (2012) [18], estimated that CW in LAC are only 
used to treat 0.22% of the total wastewater flow in the region, while stabilization ponds, activated 
sludge, and the up-flow anaerobic sludge blanket (UASB) reactors, provide treatment to around 81% 
of the total flow. This suggests that the use of CW technology, in the LAC region has been slow and 
not widespread. 

According to García-García et al. (2016) [19], the lack of use of CW technology lies in the fact that 
most of the published documents dealing with LAC CW experiences available are experimental and 
there is a shortage of local design guidelines, combined with the lack of training and knowledge of 
stakeholders and decision-makers. Furthermore, nature-based solutions are not the focus of 
engineering schools in the region [20]. 

This review aims to bring an updated inventory and a state-of-the-art report of CW in the region, 
not only limited to national and local conditions, but with a broader view, and providing information 
regarding location, characteristics and performance of the system so the information becomes a 
reference tool in the use of the technology for stakeholders in the region. 
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2. Materials and Methods 

2.1. Selected Countries for the Study 

The selected countries for the review are those considered by the United Nations (2018) [1] as 
part of the Caribbean and Central- and South-American region: 

Anguilla, Belize, Argentina, Antigua and Barbuda, Costa Rica, Bolivia, Aruba, El Salvador, 
Brazil, Bahamas, Guatemala, Chile, Barbados, Honduras, Colombia, British Virgin Islands, Mexico, 
Ecuador, Caribbean Netherlands, Nicaragua, Falkland Islands (Malvinas), Cayman Islands, Panama, 
French Guiana, Cuba, Guyana, Curacao, Paraguay, Dominica, Peru, Dominican Republic, Suriname, 
Grenada, Uruguay, Guadeloupe, Venezuela (Bolivarian Rep. of), Haiti, Jamaica, Martinique, 
Montserrat, Puerto Rico, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Saint 
Maarten (Dutch part), Trinidad and Tobago, Turks and Caicos Islands, and the United States Virgin 
Islands. 

2.2. Bibliometric Report 

The bibliometric data analyzed aim to present an overview of the scientific productivity in LAC, 
establishing a standardized criterion to build a database to produce reliable information regarding 
scientific activity in the region. However, the bibliometric report cannot be assumed as an absolute 
report of productivity for each country or region reported because the search was done based on 
peer-reviewed scientific literature that can be limited by factors such as language, reach, and costs. 
The report is based on the results provided by the Scopus® database, through the web page 
www.scopus.com using keywords “constructed,” “wetlands,” “reed bed,” “bio-garden”, 
“humedales construidos,” “root method,” and “phytoremediation” combined with the “name” of 
each country, and limited to publications between 2009 and 2019. Using a peer-reviewed database 
can guarantee the quality of the research. 

2.3. Paper Review Report 

This section aims to describe and evaluate the “state-of-the-art” constructed wetlands in the 
region. Nevertheless, the review is not a census and does not pretend to report 100% of the scientific 
production in the LAC region (not all the experiences are peer-reviewed published). However, the 
CWs’ information available was analyzed including local reports and non-published information 
obtained directly from the scientific community in the LAC’s members of the Pan-American CW 
Network (HUPANAM). 

A total of 169 documents were found and analyzed, including scientific papers, books, and local 
reports, found in media, such as internet, databases, and direct contact with local researchers. To 
present the performance of systems, the gathered and processed information includes: 

• Location; 
• Design capacity of the whole system; 
• Operational status; 
• Type of technology; 
• Location; 
• Surface area; 
• Organic Loading Rate (based on BOD5 or COD); 
• Chemical Oxygen Demand (COD) concentration in the influent and the effluent; 
• Total Nitrogen (TN) concentration in the influent and the effluent; 
• Total Phosphorus (TP) concentration in the influent and the effluent; 
• Plant species used. 

The criteria used to identify and evaluate the experiences from the 169 documents was based on 
the following statements: 
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• If the performance was evaluated during different seasons or periods, the review considered one 
different experience per each season or period; 

• If the performance was evaluated under different operational conditions, the review considered 
one different experience per operational condition; 

• If the reviewed document considered replicates to evaluate the performance of a CW, this review 
was considered only as one experience. The mean between the values reported for the 
experiment and replicates was adopted as the value for the experience; 

• If the reviewed document evaluated the performance of a CW using different plants for the same 
system, each experiment with different plant species was considered as one; 

• If the reviewed document was considered to evaluate the performance of non-planted 
experiments (without vegetation), they are not wetlands and were not considered in this review. 

2.3.1. Description of the CW Classification in the Reviewed Experiences 

Kadlec and Wallace (2009) [21] have classified CW in three main categories: 

1. Free Water Surface Constructed Wetland (FWS): shallow open waters, where plants are rooted 
in a soil layer on the bottom; 

2. Horizontal Subsurface Flow Constructed Wetlands (HSSFW) are shallow watertight beds, filled 
with porous media. The media has high hydraulic conductivity that should guarantee the 
possibility of the development of the attached biofilm. Plants are rooted in the water-saturated 
beds, and water is loaded in the inlet of the bed, flows below the surface in a horizontal pattern, 
in contact with the media and the plant roots, and is collected at the other end of the bed. 

3. Vertical Flow Constructed Wetlands (VF): Typically unsaturated, with a one-meter deep bed 
filled with a porous media (sand, gravel, etc.) and planted, water is treated as it trickles down 
through the media and in contact with the plant roots. The water is distributed homogeneously 
through a pressurized pipe network on the surface of the bed, trickles down, and is collected at 
the bottom of the bed by perforated drainage pipes. 

However, as technology developed, this classification seems to be insufficient. Fonder and 
Headley (2008) [22] published a taxonomic classification of CW that includes all the different 
classifications that could apply to any CW. In the present document, two additional denominations 
will be used: 

4. Intensified Constructed Wetlands (ICW): are systems modified to improve performance by 
increasing energy input, using reactive media, modifying the operation schemes, combining CW 
types (VF + HSSFW, VF + FWS, FES + HSSFW), or even using specific bacteria. Among the 
intensification methods are: draw in air to maintain high oxygen transfer rates, the use of 
reactive media to improve performance, modifying the operation by loading schemes, or the use 
of electroactive bacteria (METlands). 

5. French system: is a variation of the VF technology designed to treat raw wastewater directly. 
According to Millot et al. (2016) [23], the classical “French CW systems” typically consist of two 
vertical-flow constructed wetland (VFs) stages, with at least three initial VF beds, that are fed 
sequentially and with resting periods of 3.5 to 7 days, in between each bed loadings followed by 
a second stage where the number of beds and type can change. 

2.3.2. Description of the CW Size in the Reviewed Experiences 

The size of the systems varied according to the scale of the experiment, established as follows:   

1. Laboratory-scale: regardless of the nature of the influent wastewaters, experiments developed 
in the laboratory with less than 0.2 m2 of surface area. 

2. Mesocosm-scale: regardless of influent water origin, experiments carried out in the laboratory 
or a greenhouse, with an effective surface area of 0.2 to 2.0 m2. 
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3. Pilot-scale: regardless of the size, experiments settled on the site where wastewater is produced, 
receiving real wastewater to determine the system’s performance. 

4. Full-scale: experiments that are developed on-site, where the wastewater is generated, and 
treats, at least, part of the influent water on the site. The surface area ranges from 2.0 m2 to 
unlimited surface. 

3. Results 

Figure 1a shows the number of scientific articles available in the Scopus database related to 
scientific articles dealing with constructed wetlands (or the other given names). The figure shows the 
comparison between CW publications among LAC and other countries between 2009 and 2019. The 
research activity does not show considerable growth in the region during the last decade, reporting 
a production between 18 to 23 articles per year since 2009. 

According to the data gathered, scientific production dealing with CW seems to be stable in the 
analyzed countries (only Germany shows a growing tendency). However, this tendency is different 
from the global tendency (Figure 1b), due to the research published from countries that are not 
considered in Figure 1a. 

3.1. Bibliometric Report 

 
Figure 1. (a) CW publications comparison among LAC and selected countries between 2009 and 2019, 
(b) global tendency of scientific production related to CW from 2009 to 2019. (Data modified from 
Scopus® [24]). 

3.2. Results of the paper review 

From the 169 reviewed documents it was possible to extract 520 experiences reported in the 
region. Around 80% of the reviewed documents refer to experiences in four countries: namely Brazil 
37%), Argentina (19%), Mexico (13%), and Colombia (12%). Nonetheless, another 20 of the countries 
in the region (40%) reported at least one experience. Table 1 summarizes the publications by country, 
Figure 2 shows a map related with the number of publication by country. 
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Table 1. Shows the different documents found with the corresponding references for each country for 
the analyzed period. 

Country Reviewed Documents  
(Titles can be found in the reference list) 

Argentina [25–59] 
Bahamas [60] 
Bolivia [61,62] 
Brazil [10,63–115]  
Chile [12,116–125] 

Colombia [14,126–143] 
Costa Rica [144–150] 

Cuba [151–153] 
El Salvador [154] 
Guatemala [155]  

French Guyana [156,157] 
Honduras [158] 

Jamaica [159] 
Mexico [19,160–181]  

Nicaragua [182,183] 
Peru [178] 

Puerto Rico [60] 
Surinam [184] 
Uruguay [185] 

 

 
Figure 2. The number of reviewed documents per country. 
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3.2.1. Most Productive in Terms of Publications Regarding CWs Countries in the LAC Region 

Brazil: 

According to the results of this review Brazilian scientists are the most prolific authors within 
the region, with around 32% of the total production in the region and a contribution of 53 documents 
to this review. The information produced by Brazilian scientists dealing with CW covers a wide 
spectrum of topics, including papers describing the state-of-the-art constructed wetlands in the 
country [10,110], life-cycle analysis contributions [63], hydraulics [112], removal of recalcitrant 
pollutants [115], and other topics related to the performance of CWs operating under different 
conditions. Brazil is the only country that has reported research on the five different technologies 
analyzed. The largest system reported in the country is a 3144 m2 VF system, and it is located in the 
city of Palhoça, in the Santa Catarina state. 

Argentina: 

Argentina is the country with the second-highest scientific publication production. The results 
of some of the Argentinian research have been important for the LAC region, and have been 
considered in global reports [186] as representative of the work done in the region, specifically related 
to the industrial wastewater management. One of the studied systems, located in the city of Santa Fe, 
has been reported in 12 of the 33 reviewed papers for the country (36% of the experiences in the 
country), becoming one of the most studied systems in the region. Regarding the studied 
technologies, Argentina’s CWs are mainly FWS. Only one full-size system was reported dealing with 
HSSFW technology [47], and two documents analyzed Hybrid Systems [39,41]. VF technology was 
analyzed in one document [40]. Regarding ICW, Argentinian scientists have studied the new electro-
active bacteria-based technology, METland technology [58]. No French system technology report was 
found in Argentina. 

Mexico: 

Out of the scientific experiences reviewed, including the evaluation of the performance of CW 
in many different conditions, two documents published by the Mexican Government are relevant: (1) 
The National Inventory of Municipal potabilization and wastewater treatment plants [7]. The first 
governmental document in the LAC region that reports the number and the operational status of 
wastewater treatment plants based on the CW technology for the whole country. From the 3517 
wastewater treatment systems installed in Mexico (including all the technologies and systems 
reported for the country), 209 use CW technology. From all the wastewater systems reported, 735 
(21%) had the “not active” status. At the same time, only 21 (10%) of the 209 CW-based systems have 
this status. The hydraulic-load installed capacity reported for the CW-based systems is 1.7 m3/s that 
represents 0.4% of the wastewater produced in Mexico—Mexico produces around 443 m3/s of 
wastewater [187]. The largest CW-based system treats 700 Lps (60,480 m3/d); nonetheless, 13 of the 
reported systems had a capacity bigger than 10 Lps (864 m3/d). The State (province) with the larger 
number of wastewater treatment systems based on CW in Mexico is Sinaloa with 112 systems; (2) the 
national guidelines for designing wastewater treatment plants based on CW [188]. The only 
governmental official guidelines for the CW design available in the LAC region. The book is based 
on the HSSFW and FWS technologies and includes specific recommendations in the Mexican context, 
including local building materials and plant species to be used. 

Colombia: 

Colombia is the fourth most prolific country in CW research in the LAC region. The Colombian 
scientific work has focused mainly on HSFFW and VF technology, being the country in the region 
with the highest percentage of research systems using VF technology (around 22% of the reviewed 
systems). In Colombia, the CW technology has been tested, besides domestic and industrial 
wastewaters, for the treatment of water polluted with pesticides drained from agricultural land [127], 
heavy metal coming from mining activities [133], and landfill leachate [136,138]. The largest system 
reported in Colombia found in the review is a 6000 m2 HSSFW operating in the city of Rionegro, 
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Antioquia, treating wastewater from a chocolate producing factory [134]. Colombia published 
national technical regulations in 2017 [189] including the “artificial wetland” technology, however, 
the document does not go in to technical details, and could be considered wrong or obsolete from the 
described reference parameters and assumptions. 

3.2.2. CW Technologies Reviewed 

The total number of reported experiences in the LAC region for the review was 520, however, 
the 209 systems reported in the National Inventory of Municipal potabilization and wastewater 
treatment plants of Mexico [7] were not taken into consideration because the documents do not 
provide sufficient data (performance information, layout of the systems such as influent and effluent, 
nutrient concentration, hydraulic retention time, surface area, plant species, organic load rate, 
nutrient and pollutant removal efficiencies) to compare with the other 311 experiences extracted from 
the rest of the reviewed documents. Table 2 shows the number of experiences reported per each 
technology in the LAC region.  

Table 2. CWs technologies reported in the LAC region. 

Type of Technology Number of Experiences Reported (n) Percentage 
HSSFW 193 62% 

FWS 54 17% 
VF 27 9% 

ICW 24 8% 
French System 13 4% 

From the 311 analyzed experiences, 193 were HSSFW (62%); the most reported and studied CW 
technology in the LAC region. The second most common CW technology in the region was FWS with 
54 experiences (17%). VF systems reported 27 experiences (9%), ICW reported 24 experiences (8%), 
and the French system reported 13 experiences (4%). 

HSSFW 

HSSFW technology is, by far, the most studied technology in the LAC region. The performance 
of the technology has been evaluated under different conditions and for different pollutants. The 
HSSFW has been evaluated regarding the performance for sewage and domestic wastewater, but also 
for other kinds of wastewater like that from swine [78,100,119,181], the coffee [67] and chocolate 
industry [134], landfill leachate [42,138], rejection of reverse osmosis processes [59], and greywater 
[104,146]. The influence of the plants in the general performance of the CWs has been evaluated in 
many of the studies, but also the use of the plants as an ornamental element [122]. The role of the 
filling media and its capacity for phosphorus removal [116], and the removal of elements [165] has 
been reported. Some of the studies tackle hydraulics [71,111,128], clogging phenomena [112], kinetics 
for nutrient removal [47] and flow patterns [143]. Some studies deal with climatic effects, including 
systems in super-arid areas [125], and in tropical regions [14,130,140,144]. Some studies have focused 
on the effect and performance of HSSFW combined with other wastewater technologies, which have 
also been reported [85,107,108]. Finally, life cycle analysis [63] and economic performance was 
assessed. All in all, the HSSFW has been broadly researched and the results are available. 

FWS 

FWSs are probably the oldest CW technology that has been tested and used around the world 
[190]—Brix [191] states that the first system was studied during the nineteen seventies decade. This 
CW technology is the most spread full-scale CW technology in the LAC region, being studied to 
evaluate the potential of retention of heavy metals [54], light metals [38], and organic pollutants [175]. 
Their role is valuable in the restoration of ecosystem processes [155], but problems related to a high 
nutrient release, hosting breeding grounds to vectors such mosquitos, and the potential for algae 
growth hinders the use for wastewater treatment [158]. 
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VF 

VF technology is widespread in European countries; nonetheless, in the LAC region, it does not 
seem to be widespread with a lack of implementation when compared with the HSSFW or the FWS 
technology. From the 168 reviewed documents, only Argentina, Brazil, Colombia, Costa Rica, Cuba, 
and Mexico produced VF references. The technology has been evaluated for nutrient removal 
[102,132], and emergent contaminants removal efficiency [115]. The VF technology has been tested to 
treat wastewater coming from swine [78,105], mariculture (marine shrimp post larvae culture) [69], 
dairy [101], gray water [104], and different cases of domestic effluents. The effect of the hydraulics 
[83] and loading patterns [80] have been reported, and some results regarding with the hydraulics 
have been modeled [135]. In the economic context, the life cycle [147] of the VF has been assessed, 
and also some approach to the role of the VF in the landscape function. 

ICW  

Some of these technologies are relatively new and have been used to treat highly loaded waters 
where a high oxygen demand is necessary, e.g., run-off from anti-icing fluids in airports [192], waters 
from food production [193], and petroleum industry discharges [194]. ICW also included in this 
review shows the use of hybrid systems in different configurations and operational schemes in the 
region; e.g., recirculation of HSSFW and VF systems [39,88], hybrid systems (combining HSSFW and 
VF systems) [41,140,161] aerated systems [67,103,121], using algae turf filters [89] and microalgae 
ponds [98], evapotranspirative systems [114], and the use electroactive bacteria-based constructed 
wetlands (METland) [58] in the region. The ICW has been used to treat wastewater from domestic 
sewage [89,114,121], coffee production [67,103], swine [161], and landfill leachate [88]. The 24 ICW 
systems are established in five countries: Argentina, Brazil. Chile, Colombia, and Mexico. 

French System 

The French system CW is the least spread technology in the LAC region. Only two countries 
(Brazil and French Guyana) have reported 13 experiences. Nine of the thirteen experiences were 
developed directly by a French research group, Irstea, in 2010 and planted with Phragmites australis 
in the overseas territories of France in the Caribbean (Martinique Island and Bois d’Opale), without 
the participation of local researches. The other four reported experiences were established in Belo 
Horizonte, Brazil, and developed by local researchers. All the experiences with French systems were 
developed at full-scale for treating domestic swage. 

3.2.3. Size of the Experiences 

The review provided data from CWs varying in size. The surface of the systems varied from lab-
scale experiences to full-scale, to operational systems treating actual polluted waters. Figure 3 
presents all the analyzed experiences according to size. The graph is presented in log scale to stress 
the difference in size. 
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Figure 3. Cumulative distribution size of the studied CW experiences in the LAC region. 

Figure 3 shows that, while the FWS lab and mesocosm scale systems (>2 m2) represent around 
15% of the experiments, the other four technologies represent 50% in the case of HSSFW to around 
75% in the case of the VF and ICW. On the contrary, 100% of the analyzed French systems, around 
85% of the FWS, 50% of the HSSFW, and less than 20% of the VF and ICW are full-scale systems. 
Table 2 shows the information regarding the size of reviewed experiences in the LAC region. 

Table 3. Highlighted information regarding the size of reviewed experiences in the LAC region (only 
systems with data available are included). 

Type 
Number of 
Experiences  

Largest System 
(m2) 

Smallest 
System (m2) 

Median Size 
Reported (m2) 

Average Surface 
(m2) 

HSSFW 180 6000 0.0078 4.2 62 
FWS 41 2000 0.1 733 1010 
VF 27 3144 0.0176 1 125 

ICW 24 24 0.0775 1 6.1 
French 
System 10 700 240 240 386 

The most extensive CW system reported in the region is established in the city of Rionegro, 
Antioquia, Colombia [134]; a 6000 m2 HSSFW is part of a treatment that receives secondary treated 
combined wastewater from the production from a chocolate factory and domestic sewage. The 
systems receive a flow of 173 m3/d and a daily BOD5 and COD load of 1354 and 1889 mg/L, 
respectively. The system has been in operation since 2008 [Maria Solange Sánchez, Pers. Comm.] and 
has gone through a refurbishing process due to mistakes in the design. After the intervention, the 
reported loading is of 5.8 g/m2d with BOD5 and COD removal of 98% and 94%, respectively. The 
largest FWS system is reported in Argentina with a surface of 2000 m2 [26] that treats industrial 
wastewater, and it receives a flow of around 100 m3/d, with an average of BOD5 and COD load of 80 
and 206 mg/L, respectively, reporting removal efficiencies around 70% for BOD5 and COD. The 
largest VF system was estabæished in the city of Palhoça, Santa Catarina, Brazil with a surface of 3144 
m2 receiving domestic wastewater [195], and a flow of 18 m3/d with a COD load of 154 mg/L, 
reporting a removal efficiency for COD of 88%. The biggest full-scale ICW was developed in Mexico; 
a 24 m2 hybrid (FWS + HSSFW) CW that treats wastewater from a pig-farm [161], receiving an inflow 
between 0.5 to 1 m3/d, and a COD load around 600 mg/L, the reported COD removal efficiency was 
around 80%. Concerning the French system technology, the most extensive system is located in 
Martinique Island, in the French Overseas Territories, with an effective area of 720 m2 treating from 
12 to 60 m3/d of domestic wastewater [156], with a BOD5 and COD load of 512 and 1000 mg/L, 
respectively, reporting a BOD5 and COD removal rate of 94% and 90%. 
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3.2.4. Organic Matter and Nutrient Removal 

Table 4 shows all the information available from all the reviewed experiences, classified 
according to the scale (lab, mesocosms, pilot, or full) established for this review. It is possible to 
observe that HSSFW is the technology with the largest amount of information, not only about size 
and location, but also for TN and TP removal. FWS present information mainly for the full scale 
experiences, VF and ICW present a lack of information regarding TN and TP. The mean COD, TN, 
and TP removal efficiencies vary from 65% to 83%, 55% to 72%, and 30% to 84%, respectively. The 
results suggest a generally good performance for COD and TN removal and a bad performance for 
TP removal. 

Organic Load Rate 

Organic Load Rate (OLR) is a design and operational parameter inherent to the wastewater 
technology and provides information regarding the organic pollutant loaded per area unit. Figure 4 
compares the cumulative OLR loaded of all the reviewed systems. Reference lines are related to the 
maximum OLR recommended for the design of full-scale systems for FWS, HSSFW, VF, and French 
system. Fifty percent of the experiments regarding HSSFW, were performed with an OLR higher than 
8 g/m2d, maximum OLR recommended for full scale systems [196]. Thirty-five percent of the FWS 
experiences were operated with a higher loading than the OLR recommended for full-scale systems: 
2–4 g/m2d [21]. VF experiences 65% of the cases operated with OLR higher than the recommended of 
20 g/m2d [190]. The OLR for the French system ranges from 8 to 45 g/m2d. The range is lower than 
the reported by the French designers where the design OLR limit is up to 150 g/m2d [197]. Figure 4 
shows that the highest OLRs were reported for the ICW and VF; as a consequence of the better 
performance capacity for the removal for organic matter. The HSSFW experiences reported OLR in 
the entire range of magnitude, from 0.01 to around 200 g/m2d. 

 

Figure 4. Cumulative distribution of OLR of the studied CW experiences in the LAC region. 
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Chemical Oxygen Demand (COD) 

COD is a parameter used to evaluate the organic matter load and a common parameter to 
describe the performance of a wastewater treatment, the concentration for COD influent and effluent 
is reported for almost all the reviewed experiences. Figure 5a,b presents the cumulative distribution 
of the COD concentration in the influent and the effluent of the studied systems. Figure 5a shows that 
ICW and the French system are the technologies that receive the highest loading. Figure 5b shows 
that the VF and French systems are the technologies that reported the lowest effluent COD 
concentration. From Figure 5a,b, it is possible to observe FWS received, in around 80% of the cases, 
an influent COD concentration lower than 200 mg/L, considered as a light COD load according to 
Kadlec and Wallace [21]. Nonetheless, the effluent COD concentration for 80% of the cases was lower 
than 40 mg/L. 

 

Figure 5. Cumulative distribution of COD influent (a) and effluent (b) in the studied CW experiences 
in the LAC region. 

Total Nitrogen (TN) 

TN is the parameter that combines all the nitrogen species in the wastewater. TN removal in CW 
is mostly done via a biological path. Following ammonification, nitrification, and denitrification. 
Therefore, TN removal is affected by the type of CW established. In spite of the importance of the 
parameter, it is not always evaluated in the studies in the LAC region maybe due to the fact that 
nutrient removal is not yet a discharge requirement in most of the LAC countries. Figure 6a,b shows 
that when influent and effluent are compared, there is a clear lack of data reported, being the most 
evident case is the FWS. In general, TN is effectively removed, for all the technologies, Table 4 shows 
average removal efficiencies in a range from 47% to 78%. The comparison shows that the influent TN 
concentrations reported are relatively high and even reaching concentrations above 8000 mg/L. 

 

Figure 6. Cumulative distribution of TN influent (a) and effluent (b) in the studied CW experiences 
in the LAC region. 

Total Phosphorous (TP) 

Phosphorous is an essential element for controlling environmental pollution associated with the 
eutrophication of receiving waters. CW’s aim to remove this nutrient from wastewaters to improve 
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environmental quality. The TP parameter also presents a lack of information in the CW experiments, 
reporting results about influent and effluent TP concentration in only 10% of the reviewed 
experiences. VF and ICW are the technologies with less information available. From the available 
information showed in Figure 7a,b, it is possible to observe that the range of values between the TP 
inflow concentration and the TP effluent concentration is almost the same for all the evaluated 
technologies, furthermore, Table 4 shows low efficiency for all the scales and technologies for TP 
removal, with average removal efficiencies for almost all the technologies lower than 50%. 

 

Figure 7. Cumulative distribution of TP influent (a) and effluent (b) in the studied CW experiences in 
the LAC region. 
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Table 4. Nutrient removal and size for CW in the LAC region. 

Technology HSSFW FWS VF ICW French System 
Scale+ +L +M +P +F +L +M +P +F +L +M +P +F +L +M +P +F +L +M +P +F 

Size 
n 33 53 25 69 6 ND 1 34 3 13 ND 6 1 12 5 6 ND ND ND 13 

𝑋𝑋�Size 
(m2) 0.08 ± 0.06 1.1 ± 0.6 4.9 ± 1.6 160 ± 733 

0.25 ± 
0.20 ND 5 1218 ± 910 0.06 ± 0.08 0.64 ± 0.37 ND 561 ± 1266 0.08 0.66 ± 0.35 2.7 ± 0.7 24 ± 0 ND ND ND 304 ± 247 

COD 

n 32 31 21 31 ND ND 1 26 ND 8 ND 6 ND 11 5 6 ND ND ND 10 
𝑋𝑋�Influent 
(mg/L) 468 ± 507 1762 ± 1984 470 ± 566 439 ± 354 ND ND 81 203 ± 186 ND 411 ± 257 ND 1461 ± 2660 ND 1728 ± 1921 211 ± 271 794 ± 335 ND ND ND 821 ± 812 

𝑋𝑋�effluent 
(mg/L) 187 ± 269 599 ± 941 221 ± 326 144 ± 126 ND ND 42 50 ± 43 ND 95 ± 92 ND 125 ± 155 ND 148 ± 150 ND 225 ± 174 ND ND ND 122 ± 131 

𝑋𝑋�removal 
(%) 65 ± 13 61 ± 24 57 ± 19 65 ± 31 ND ND ND 70 ± 14 ND 80 ± 19 ND 80 ± 21 ND 74 ± 24 ND 74 ± 12 ND ND ND 82 ± 8 

TN 

n 16 16 12 25 ND ND ND 3 ND 8 ND 6 ND 9 ND 6 ND ND ND 4 
𝑋𝑋�Influent 
(mg/L) 97 ± 30 328 ± 307 48 ± 38 79 ± 89 ND ND ND 28 ± 3 ND 162 ± 129 ND 211 ± 401 ND 116 ± 37 ND 81 ± 39 ND ND ND 98 ± 7 

𝑋𝑋�effluent 
(mg/L) 34 ± 16 135 ± 97 28 ± 27 46 ± 63 ND ND ND 6 ± 1 ND 79 ± 137 ND 25 ± 33 ND 76 ± 73 ND 41 ± 32 ND ND ND 27 ± 8 

𝑋𝑋�removal 
(%) 68 ± 20 56 ± 30 47 ± 29 47 ± 30 ND ND ND 78 ± 7 ND 56 ± 19 ND 72 ± 35 ND 47 ± 36 ND 55 ± 18 ND ND ND 72 ± 7 

TP 

n 13 19 8 21 4 ND ND 30 ND ND ND 3 ND 5 ND 6 ND ND ND 9 
𝑋𝑋�Influent 
(mg/L) 13 ± 5 39 ± 37 19 ± 17 15 ± 37 52 ± 99 ND ND 2 ± 3 ND ND ND 20 ± 42 ND 13 ± 3 ND 20 ± 9 ND ND ND 5 ± 4 

𝑋𝑋�effluent 
(mg/L) 6 ± 4 21 ± 18 15 ± 12 6 ± 9 ND ND ND 1 ± 1 ND ND ND 1 ± 1 ND 6 ± 2 ND 9 ± 8 ND ND ND 7 ± 1 

𝑋𝑋�removal 
(%) 46 ± 31 38 ± 27 23 ± 21 41 ± 28 ND ND ND 49 ± 27 ND ND ND 84 ± 13 ND 42 ± 15 ND 64 ± 22 ND ND ND 30 ± 9 

+ The size of the experiments is described as follow: L, laboratory scale; M, mesocosms scale; P, pilot scale; F, full-scale. ND: Not data reported. 𝑋𝑋�: Refers to the mean of the available values (size, influent, effluent, and removal) for each parameter (Size, 

COD, TN, and TP) in the evaluated scale (L, M, P, and F) for each technology (HSSFW, FWS, VF, ICW, and French system). 
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3.2.5. Plants Used in CW Experiences. 

The LAC region lies in the tropical and semitropical area and therefore the variety of plants that 
can be used is broader than in temperate zones. Plants are not affected by cold winters, and they do 
not present latency periods, being able to grow during the entire year, and therefore participating 
actively during the treatment process in the CW throughout the year. This section presents the result 
of the reviewed information, regarding the plant species reported as being used for the evaluated 
period and reports in the region. 

From the reviewed documents, it was possible to obtain a list of 112 different plant species used 
in diverse conditions and experiments in CWs in LAC. Some studies evaluate the differences in the 
performance between the use of two or more species, the capacity of certain species to remove specific 
pollutants, the differences between environmental conditions associated with plant response and 
biomass production. The most commonly used plant was the Typha domingensis, reported in 54 
experiences, but also other species, namely Eichhornia crassipes (40 experiences), Typha latifolia (36), 
Cyperus papyrus (34), Phragmites australis (33), Heliconia psittacorum (30) and Pistia stratiotes (27), were 
commonly used. On the other hand, some species were reported only in one case, for example, Cocos 
nucifera (coconut), Carica papaya (papaya), and Aloe vera.  

Some of the reported plant species are interesting because they have never been reported before 
as plants used for CW. Table 5 shows all the reported species and the frequency of each one in the 
experiences reviewed. 

Table 5. Plant species reported in CW in the LAC region. 

No. Scientific Name n  Reference 

1 Typha domingensis 54 

[25–37,39–46,49–
52,54–

57,4,73,74,81,82,84,
85,87,101,158,169,1

80]. 

2 Eichhornia crassipes 40 
[25–

32,39,44,60,73,74,8
2,87,115,122,162] 

3 Typha latifolia 36 

[47,48,61,62,66,67,
70,78,83,86,91,96,1

06–
109,118,135,139,16

6,174,181]. 

4 Cyperus papyrus 34 
[62,64,88,99,105,12
2,140,144,149,156,1

4,166,167,139] 

5 Phragmites australis 33 
[36,60,117,123,126,
141,143,154,166,17

4,180] 

6 Heliconia psittacorum 30 
[14,88,90,127,132,1
36,138,144,156,160,
169]. 

7 Pistia stratiotes 27 
[25–

33,49,50,53,55,60] 

8 Cyperus alternifolius 23 
[25–

32,153,154,156] 
9 Thalia geniculata 20 [25–32,154,164]. 

10 Pontederia cordata 17 [25–32,73,82,87]. 
11 Salvinia herzogii 15 [25–32,49,53]. 
12 Eryngium eburneum 13 [25–32] 
13 Iris pseudacorus 13 [37,122]. 
14 Panicum elephantipes 13 [25–32]. 

No. Scientific Name n  Reference 

15 
Polygonum 
punctatum 

13 
[25–32] 

16 
Pontederia 
rotundifolia 

13 
[25–32] 

17 Scirpus californicus 13 
[37,60,106,118,119,

123,124] 
18 Typha angustifolia 13 [119,154,157] 
19 Gynerium sagittatum 12 [136,138,159] 
20 Tulbaghia violacea 12 [122] 
21 Colocasia esculenta 10 [136,138] 

22 
Schoenoplectus 

californicus 
10 

[61,116,117,121,19
8] 

23 Typha sp 9 [161,168] 
24 Canna indica 7 [60,104,112–114]. 

25 Cynodon dactylon 7 
[68,76,78,79,92,93,

100,102]. 
26 Arundo donax 6 [157]. 
27 Brachiaria mutica 6 [154]. 
28 Cyperus giganteus 6 [73,74,82,87]. 

29 
Hedychium 
coronarium 

6 
[160,199]. 

30 Scirpus sp 6 [161] 
31 Alocasia sp 5 [160,200,168]. 
32 Zantedechia aetiopica 5 [160,200,199]. 
33 Avena strigosa 4 [77] 

34 
Cortaderia 

atacamensis 
4 

[125] 

35 Festuca Orthopylla 4 [125] 

36 
Hymenachne 

grumosa 
4 

[65,89,94,98]. 

37 Iris japonica 4 [160,200]. 
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No. Scientific Name n  Reference 
38 Lolium multiflorum 4 [103] 

39 
Schoenoplectus 

americanus 
4 

[125] 

40 
Spathiphyllum 

wallisii 
4 

[160,200]. 

41 Strelitzia reginae 4 [160,200] 
42 Canna flacida 3 [60,160] 
43 Costus spiralis 3 [156]. 
44 Cyperus ligularis 3 [130,168] 

45 
Eleocharis 

interstincta 
3 

[181] 

46 Eleocharis mutata 3 [142,184]. 
47 Eriochloa aristata 3 [91,142]. 
48 Heliconia sp 3 [200]. 
49 Heliconia stricta 3 [160,169] 
50 Lemna minor 3 [33,60] 
51 Musa cavendishii 3 [104,114] 

52 
Xanthosoma 
sagittifolium 

3 
[104,114]. 

53 Azolla caroliniana 2 [60]. 
54 Canna edulis 2 [60]. 

55 
Chrysalidocarpus 

lutescens 
2 

[168]. 

56 Cordia sebestena 2 [168]. 
57 Echinocloa colona 2 [130]. 
58 Epipremnum aureum 2 [168]. 
59 Heliconia rostrata 2 [95,115] 

60 
Hymenocallis 

littoralis 
2 

[168] 

61 Ipomea aquatica 2 [60] 
62 Ixora spp 2 [168] 
63 Sagittaria falcata 2 [60] 

64 
Sagittaria 

montevidensis 
2 

[60] 

65 Spirodela polyrhiza 2 [60] 
66 Wolffia sp. 2 [60] 
67 Acalypha wilkesiana 1 [168] 

68 
Acrostichum 
danaeifolium 

1 
[168] 

69 Aloe vera 1 [168] 
70 Alpinia perpurata 1 [160] 
71 Anemopsis californica 1 [160] 

72 
Anthurium 
andreanum 

1 
[160] 

73 Brachiaria humidicola 1 [108] 
74 Calla Ethiopia 1 [61] 

No. Scientific Name n  Reference 
75 Canna generalis 1 [199] 
76 Canna hybrids 1 [160] 
77 Canna spp 2 [110,168] 
78 Carica papaya 1 [168] 
79 Cassia spp 1 [168] 
80 Cestrum nocturnum 1 [168] 

81 
Chamaedorea 

chuspata 
1 

[168] 

82 Cocos nucifera 1 [168] 
83 Cortadeira selloana 1 [44] 
84 Crinum sp 1 [168] 
85 Cyperus articulatus 1 [131] 

86 
Dieffenbachia 
Caladium spp 

1 
[168] 

87 Dracaena spp 1 [168] 

88 
Eleocharis 

macrostachya 
1 

[173] 

89 Ficus spp. 1 [168] 
90 Gladiolus spp 1 [160] 
91 Hedera helix 1 [168] 
92 Heliconia Cassia 1 [168] 

93 
Hemerocallis 
Dumortieri 

1 
[160] 

94 Iris sibirica 1 [160] 
95 Lilium sp 1 [160] 
96 Limnocharis flava 1 [133] 
97 Ludwigia inucta 1 [199] 
98 Musa spp 1 [168] 
99 Nerium spp 1 [168] 
100 Nymphaea amazonum 1 [184] 

101 
Paspalum 

paniculatum 
1 

[164] 

102 Oryza sativa 1 [75] 
103 Philodendron spp 1 [168] 

104 
Ravenala 

madagascariensis 
1 

[168] 

105 S. intermedia 1 [33] 

106 
Sansivieria Hibiscus 

spp 
1 

[168] 

107 Scirpus americanus 1 [185] 
108 Spartina alterniflora 1 [69] 
109 Thrinax radiat 1 [168] 
110 Tradescantia sp 1 [168] 
111 Vetiveria zizanioides 1 [72] 
112 Vinca rosea 1 [168] 
n: Number of experiences reporting the use of the specie.

4. Discussion 

The LAC region is the longest geographical region in the world; it starts in the austral circle in 
Argentina–Chile, close to Antarctica in the south and extends all the way to the southern border of 
the USA in Mexico, passing through the equator. Weather and environmental conditions vary, and 
since CW are affected among others by temperature, light incidence, type of wastewater and type of 
plants, then a generalized assumption regarding how CW are related to the geographic or climatic 
conditions cannot be made. To do so, it could only be by selecting systems established in different 
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countries but under similar conditions but on the other hand, wastewater quality would be an issue. 
Based on the performance reported for more than 300 experiences, it is possible to state that, due to 
the different efficiencies, most of the systems reach a satisfactory pollutant removal efficiency (see 
Table 4), which means that the designing parameters and the type of system are appropriate. 

However, the social, political, and cultural similarities seem to be a common factor in the LAC 
region, making it possible to assume some generalities regarding how the government structure and 
public policies are related to technology development in the region. Then, it is possible to state, that 
the lack of use in the LAC region of the CW technology lies in a possible lack of communication 
between the local scientific communities and governments that delays the adoption of the technology. 

The positive effect of adopting the CW technology in the official policies and regulations can be 
observed in the Mexican case, where the government has adopted the CW technology in their local 
guidelines for wastewater treatment [188]. This fact could confirm that, because of different reported 
advantages related to CW, they tend to be more robust, more resilient, and require less maintenance 
than technical systems, an issue that is responsible for most of the failures of wastewater treatments 
in developing countries. 

It is relevant that the same research group produces most of the publications in each country. 
For instance, in Argentina in the last decade, although it is one of the most productive countries 
publication wise, the same groups produces the majority of the publications. Similar situations occur 
in Mexico, Colombia, and Brazil, where no more than three research groups in their countries are 
responsible for the core of the publications. The number of scientists and their capacity to produce in 
terms of both time and funding hinders scientific production. 

However, if CWs are to be used more frequently, it is important to improve and raise the 
dissemination activities and communication among the actors, namely scientists, stakeholders, 
decision-makers, etc. Another factor affecting the “popularity” of CWs is the lack of knowledge from 
engineers, contractors, and biologists. In a study by Vera et al. [201], the group analyzed engineering 
education taught in developing countries and the results showed that nature-based solutions are not 
a priority and very seldom taught. Technical systems are preferred by the universities, which are not 
tackling the actual needs of the countries. A common characteristic of the LAC region countries is the 
lack of resources for construction and posterior operating and maintaining technical wastewater 
systems, and then, those systems are often neglected and stop functioning. Nature-based solutions 
like CWs, offer a relatively low cost and demand low maintenance. Universities and technical schools 
should realize that innovation also means to use systems that fit to the national needs, and then, 
should adopt nature-based solutions as appropriate technology. Universities and technical schools 
should realize that innovation is using systems that fit to the national needs and adopt the nature-
based solutions as appropriate technology. 

Another obstacle for spreading information and consequently reducing the implementation of 
the CW in the LAC context seems to be the language barrier. Even though most of the important CW 
research groups in the LAC region have been able to produce reports and documents for international 
journals, it seems that many local experiences have not been published because of the language 
differences and when published in English the information does not reach the final users. It is possible 
to observe the language barrier even in the Spanish edited bibliography where two books were edited 
and published as open access during 2018. These books only include general guidelines and 
references for the design and construction of HSSFW and VF. The production of two books and the 
lack of information regarding the “new CW” technologies suggest a 10-year knowledge gap, which 
has also affected the implementation of CW in the LAC region. 

Additionally, communication among scientists are limited due to resource scarcity and 
bureaucratic requirements, limiting the chance of attending expert meetings and international 
conferences. Thus, much of the research and data produced by LAC scientists is either never 
published or is only disseminated at a local level. 

As it has been shown in this document, around 80% of the information developed in the LAC 
region deals with the performance of CW based on the HSSFW and FWS technology. HSSFW 
technology is well studied and pros and cons for the technology are well known and have been 
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described by many authors around the world. The study also shows that the LAC region is not the 
exception and, the performance of the HSSFW and FWS have been studied under different 
conditions, such as a wide range of OLR, nitrogen and phosphorous removal. The results point to the 
fact that the HSSFW and FWS reduce their efficiencies for nutrient removal when the organic charge 
is high (higher than the recommended guidelines, as shown in the COD accumulative graph (Figure 
5). 

The experiences related to FWS systems point to the fact that this technology, considered the 
simplest, has a reduced capacity to treat highly polluted wastewater, however, it is the technology 
with the highest percentage (~80%) of full-scale experiences in the region, used successfully to treat 
low polluted wastewater. 

VFs are starting to be more common but are still not well distributed among the countries. VF 
CWs have a higher capacity than HSSFW and FWS for treating organic matter and nitrifying. 
Through interviews with local builders, it was clear that the lack of knowledge and the fact that the 
systems require pressurized distribution systems seem to limit the use of it. 

On the other hand, results and performance related to novel intensified CW technologies, like 
aerated, hybrid, French or METland systems should be adopted by local researchers in order to 
enhance and reinforce the results of this document that suggest a greater capacity of those systems to 
remove COD, TN, and TP. The available information related to this kind of technology is limited, 
reaching less than 20% of all the reviewed experiences. 

Regarding TP removal capacity, the analyzed experiences seem to indicate a weak capacity from 
all the studied technologies to remove phosphorus. Then, the possibility to enhance the performance 
of CW using pre or post-treatment to remove TP seems to be the best option for water pollution 
control. 

The role of the plants has been described in many reports related to the effect of improving or 
participating in the pollutant removal process. Plants are an important component of CW, but the 
role of them has been under debate during the last decades. Vegetation plays an important role in 
CW among others providing a surface for microorganism development, a source of carbon, oxygen 
to the root zone [202], and an aerobic habitat for microorganisms within the reduced soil. Also, in 
FWS they provide conditions to enhance the treatment via physical phenomena, reducing current 
velocity, and allowing solids to settle out of the water column [203]. In addition, plants also take up 
nutrients from wastewater [204,205]. Plants can provide a habitat for wildlife [206], could enhance 
the ecosystem services [207], can make the wastewater treatment systems aesthetically pleasing and 
increasing social acceptance, and the plants can even be a new source of income for the surrounding 
communities through the production of commercial flowers [208]. Plants also may serve as 
bioindicators of toxicity in the wastewater, which otherwise would not be measurable in 
toxicity/chemical tests for a single contaminant [209]. 

However, the role of the plants in CW should be reconsidered and evaluated according to the 
new perspective of the CW technology in the context of nature-based solutions for cities. The current 
state of the technology and the environmental challenges demands a new approach to identify new 
roles of the plants in the CWs. As the review has shown, the variety of plants used in the region is 
large and according to the review, plants are considered either as an accessory of the systems or a 
performance element. Nonetheless, CWs need to be reconsidered from the circular economy 
perspective, and as an instrument to realize the Millennium Development Goals [210]. Massi et al. 
(2017) [211], states that the worldwide research related to “circular economy and resource-oriented” 
is the least studied field regarding CW. If CW has the potential to produce a synergistic positive 
impact in the general conditions of the place where they are settled, then the technology should be 
re-considered as a source of multiple targets besides water treatment. Production of biomass for 
biofuels [212], plant-based products (plastics, chemicals [213], textiles, and pharmaceutical products), 
fertilizers, cut flower production, and the whole system as a provider of urban green areas that can 
enhance the biodiversity and the landscape [214], are just some examples. 

This study presents a list of reported plants used for CW, settling a reference start point for the 
role of the plants in CW in the new perspective of sustainability. Additionally, the database can 
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provide information to urbanists and landscape architects on new possibilities for designing and 
restoring urban spaces. Then, the LAC region, due to the wide diversity of used plants for CW and 
the potential from all those plant species to have an improved value for further uses, and due to the 
great environmental challenges in the region, could lead to a new generation of CW studies in the 
circular economy and sustainable cities context. 

5. Conclusion 

The LAC region is a heterogeneous territory, with a wide variety of environmental conditions 
that interact in many different ways with CWs. However, CWs seem to be an adequate solution for 
the wastewater challenges of the region, since the technology seems to face and solve the specific 
requirements of the region. CW technology is a proven and robust method that can better deal with 
different types of wastewaters and if properly maintained can be operational longer than 
conventional technologies. 

The scientific information in the LAC region has been developed under a wide range of climatic 
conditions, and with different CW technologies like HSSFW and FWS. From the revised literature, it 
is possible to state that the efficiency of removing organic matter, TN, and TP does not differ between 
different conditions, maintaining similar removal yields. Although, HSSFW and FWS systems that 
seem to perform badly is due to overloading or improper design. 

FWS systems seem to be an adequate solution for low-polluted wastewater or tertiary treatment, 
due to the design and building simplicity. 

ICW and French systems showed, from the reviewed information, an improved capacity to deal 
with highly-polluted wastewater; however, the assumption should be substantiated with more 
studies in the region, since the actual information comes from less than 20% of the evaluated systems. 

TN is effectively removed from wastewater by the five different types of technologies reviewed. 
On the contrary, TP was hardly removed from the effluents, and the results seem to have the same 
tendency independent of the evaluated technology, but it is not different from in other regions of the 
world where P removal is still often lacking a good solution. 

The large number of plant species reported in the LAC region is a precedent for further studies, 
where the plants could take other roles in the CW besides the effects in the treatment performance. 
The study shows that the tendencies in the performance of the different technologies are not 
significantly affected by the plant species, but the plant species can influence the interest or the impact 
of the technology either by beautification or integration in the place of establishment. 

The study stresses the need for integration among the water field actors to include and accept 
the use of CW technology in public policies. It would be beneficial for the countries with less 
experience to get support from the scientific community of the countries with more experience in the 
region to share information and enhance dissemination and collaboration with local governments 
and to neighboring countries by transferring results. 
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