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Abstract: Understanding of the spatial connections in rainfall is a challenging and essential
groundwork for reliable modeling of catchment processes. Recent developments in network
theory offer new avenues to understand of the spatial variability of rainfall. The Yellow River
Basin (YRB) in China is spatially extensive, with pronounced environmental gradients driven
primarily by precipitation and air temperature on broad scales. Therefore, it is an ideal region to
examine the availability of network theory. The concepts of clustering coefficient, degree distribution
and small-world network are employed to investigate the spatial connections and architecture of
precipitation networks in the YRB. The results show that (1) the choice of methods has little effect
on the precipitation networks, but correlation thresholds significantly affected vertex degree and
clustering coefficient values of precipitation networks; (2) the spatial distribution of the clustering
coefficient appears to be high–low–high from southeast to northwest and the vertex degree is the
opposite; (3) the precipitation network has small-world properties in the appropriate threshold range.
The findings of this paper could help researchers to understand the spatial rainfall connections of the
YRB and, therefore, become a foundation for developing a hydrological model in further studies.

Keywords: complex networks theory; precipitation; clustering coefficient; small-world network; topology

1. Introduction

The hydrologic cycle is a complex atmospheric and hydrological process. Its temporal and spatial
changes are characterized by strong nonlinear characteristics, deeply influenced by many factors such
as human activity, topography and geomorphology [1]. Precipitation, as an important part of the
water recycling system, forms a key input in numerous climatic and hydrological studies, including
catchment hydrological modeling and drought prediction. However, it has always been a great
challenge to understand the spatial and temporal variability of rainfall completely, as affected by
multiple factors such as climate, topography and land use. Some methods based on mathematical
statistics are currently employed, which focus on the correlation, stationarity, periodicity, mutation and
trends of hydrological time series, such as, Mann–Kendall trend test [2,3], and Wavelet analysis [4–6].
These methods focus on data itself, and pay less attention to the structural characteristics of stations.
Meanwhile, complex network theory provides a new perspective to study the spatial variation of
precipitation [7,8].

Many discoveries of complex networks up to now, such as basic models of network topology,
propagation mechanisms of complex networks, and the synchronization behavior of complex dynamical
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networks, make complex network theory widely used in all fields, including in large power networks,
transportation networks, social networks and spreading networks [9–14]. However, the application
of complex networks in the hydrological field is still in its primary stage and mainly focuses on
the following three aspects. (1) The evolution of extreme events, such as heatwaves or rainfall.
The event synchronization method (ES) is employed to quantify the synchronicity of extreme events.
Network edges are placed between two nodes if the corresponding synchronization values are
significant. Then, the indicators in complex networks, such as degree, clustering coefficient, closeness
centrality and betweenness centrality, are adopted to analyze the spatial or spreading characteristics
of extreme events [15–19]. For example, Boers [20] revealed the global coupling pattern of extreme
rainfall events by applying a complex network methodology to high-resolution satellite data and
introducing a technique that corrects for multiple-comparison bias in functional networks. (2) The
detection of time-series variability, including precipitation or temperature series. The coarse graining
process is employed to convert the data series into character sequences. A string consists of several
characters represent nodes, and network edges are placed between two nodes according to the
time sequence. Then, clustering coefficient, average path length, and the concept of a scale-free or
small-world network is used to reveal climate change [21]. For example, Liu et al. [22] used the coarse
graining process to convert the data series of daily mean temperature and daily precipitation from
1961 to 2011 into symbol sequences and created climate fluctuation networks for understanding the
complexity of climate change. (3) Spatial connections of rainfall or runoff. For the rainfall spatial
connections, linear correlation coefficient (Spearman or Pearson) is used to define edges between
precipitation stations (nodes). Most studies focused on the spatial connections, temporal scale or
network architecture [23–26]. For the connections in streamflow dynamics, except for linear correlation
coefficient [27,28], the horizontal visibility approach is employed to construct the runoff network to
exploit the duality between time series and networks, to investigate the dynamics of river flows, and to
optimize hydrometric monitoring system design [29,30].

As mentioned above, the linear correlation coefficient is a common method to define edges. It is
important to know how the selection of the correlation methods affects the network and which one
is more suitable for the network construction. Halverson and Fleming [27] explored the impacts
of using Spearman rank correlation in place of Pearson linear correlation when they constructed
a streamflow network in British Columbia, Canada. They reported that Spearman correlation
tends to increase the number of edges between stations but does not change the global network
structure. Unfortunately, the conclusion was given in a few words without more details. There are
still few studies on the detailed comparison between networks using different correlation methods.
Correlation threshold (CT) is also crucial to network construction: what is the double influence of
the correlation threshold and the correlation method on the number of edges, clustering coefficient
values and network structure? In addition, it is also worth exploring what the explanation of spatial
distribution of clustering coefficient is and inferring the architecture of a precipitation network.
Therefore, extensive studies on the spatial connection of rainfall using complex networks still need to
continue in many areas, especially some with complicated topography and variable climate, like in the
YRB. This paper might help researchers to understand the spatial rainfall connections of the YRB and
become a foundation for developing a hydrological model in our further studies. This provides the
motivation for this study. Therefore, in the present study, we apply the concept of complex networks to
analyze the spatial connection of rainfall stations using the clustering coefficient and test the influence
of correlation methods and correlation thresholds on the precipitation network. We also study the
characteristics of assertive mixing, including the relationship between vertex degree and clustering
coefficient, and the relationship between stations with different vertex degrees. We then assess the
small-world network characteristics. The rest of this paper is organized as follows. Section 2 presents
a brief description of the small-world network and the procedure for calculation of degree, degree
distribution, clustering coefficient and the average path length used in the present study. Details of
the study area and rainfall data are presented in Section 3. Section 4 presents the details of network
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construction, the impacts of the correlation methods and correlation thresholds on clustering coefficient
values, and the network architecture. Section 5 gives the conclusions of this study.

2. Network Methodology

The study of complex networks has received increasing interest in recent years. As for various
networks, we need an important tool, which is mathematically called a graph, to describe their
structural characteristics. Representing entities and relationships between entities with vertices and
edges respectively, a network can be considered as a set of vertices and edges in graph theory.

The simplest form of network consists of a few identical vertices connected by identical edges.
However, a network may be highly complex in many ways. For instance, a network (1) may have
millions of more than one type of vertices and/or edges; (2) may contain edges that have different
weights and that can be directed; (3) may have various forms of edges, such as multi-edges, self-edges
and hyperedges; and (4) may generate or lose vertices and/or edges over time. Some additional details
about this can be found in B. Sivakumar [28].

Networks in hydrology may be less complex, so the existing methods and measures are competent
enough to analyze the characteristics of networks in hydrology. Degree, degree distribution, local/global
clustering coefficient, average path length and small-world networks are some of the basic and important
concepts. They are described next so that readers can understand the theories of this article.

2.1. Degree and Degree Distribution

We assume that a network is defined by a set of V = 1, . . . , N vertices and a set of E edges{i, j}.
Edges of the network are undirected and no self-edges {i, i} are allowed; that is to say, there can be at
most one edge between two vertices. The adjacency matrix, A:

Aij =

{
0, if

{
i, j

}
< E

1, if
{
i, j

}
∈ E

(1)

A takes into account whether an edge is active or not between vertices i and j. Since the network
is considered undirected and no self-edges are allowed, A is symmetric and Aii = 0.

The degree of a vertex is its most basic structural property, the number of its adjacent edges.
Intuitively, the greater the degree of a vertex means the more important it is in a certain sense.
For instance, a vertex has four edges and its degree is k = 4. The degree distribution, p(k), describes
the distribution of the vertex degree of the network, which gives the probability of a randomly
selected vertex having exactly k edges. As to a random network, whose edges are placed randomly,
the degree distribution is a Poisson distribution. The majority of vertices have approximately
the same degree and are close to the average degree. In recent years, a large number of studies
have shown that the degree distribution of many real networks is obviously different from the
Poisson distribution [31,32]. Some can be described better by a power-law distribution (p(k)∝k − r).
These networks can be called scale-free networks. Similarly, degree distribution can also be exponential
distribution (p(k)∝e – k / k) [33]. In particularly, the power-law distribution corresponds to a straight
line in the logarithmic coordinate system, while the exponential distribution corresponds to a straight
line in the semi-logarithmic coordinate system. Therefore, they can be easily recognized by logarithmic
coordinates and semi-logarithmic coordinates, respectively.

2.2. Clustering Coefficient

The local clustering coefficient of a network is basically a measure of local density. The procedure
for calculation of the local clustering coefficient is as follows. We assume that vertex i in the network
is connected to ki other vertices via ki edges, and the ki vertices can be called neighbors of vertex i.
Obviously, there would be ki(ki − 1) / 2 edges between neighbors. The clustering coefficient of vertex i
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is then given by the ratio between the number Ei of edges that actually exist between these ki vertices
and the total number ki(ki − 1) / 2,

Ci =
2Ei

ki(ki − 1)
(2)

The global clustering coefficient C is the average of the local clustering coefficients of all the
individual vertices (0 ≤ C ≤ 1). The global clustering coefficient of a completely ordered network
equals 1.0, while a global clustering coefficient of 0 indicates a network without any edges. In addition,
the global clustering coefficient of a random graph is C = p (where p is the probability of two vertices
being connected), while for a completely random network, with N vertices, its global clustering
coefficient is C = N −1.

2.3. The Average Path Length

The distance from vertex i to vertex j, dij, is the minimum number of edges that have to be crossed
from vertex i to vertex j. The maximum distance between any two vertices can be called the diameter
of the network (D). The average path length is the average distance between any two vertices:

L =
2

N(N + 1)

∑
i≥j

dij (3)

where N is the number of vertices. For convenient mathematical treatment, Equation (3) contains the
distance from vertex i to itself (of course, dii = 0). The error can be ignored when N is very large.

2.4. Small-World Network

Before introducing small-world network model, we introduce a fundamental network model,
the random network model, which is arguably the most well-developed class of network graph
models, mathematically speaking [34]. The classical theory of random graph models, as established
in a series of seminal papers by Erdős and Rényi [35–37], rests upon a simple model that places an
equal probability on all graphs of a given order and size. Random networks have a small clustering
coefficient and a small average path length. Although they are useful idealizations, they cannot
embody some important features of real networks and they are not often observed in real-world
phenomena. In fact, many real-world networks have a small average shortest path length, but also
a clustering coefficient significantly higher than expected by random chance, such as electric power
grids, metabolite processing networks, networks of brain neurons and social influence networks.

For this reason, D. Watts and S. Strogatz [38] introduced an interesting model called WS small-world
network model, which is explicitly designed to mimic certain observed “real-world” properties.
Small-world networks tend to contain sub-networks, which have connections between almost any
two vertices within them. This follows from the defining property of a high clustering coefficient.
Secondly, most pairs of vertices will be connected by at least one short path, which means the average
path length is small. Network small-worldness is quantified by a small coefficient, σ, calculated by
comparing clustering and path length of a given network to an equivalent random network with the
same degree on average.

σ =
C/Cr

L/Lr
(4)

where Cr and Lr are the clustering coefficient and average path length of the equivalent random
network respectively. If σ > 1(C >> Cr and L ≈ Lr), the network has small-worldness.

3. Study Area and Data

In this study, the Yellow River Basin (YRB) was selected as a case study region to explore the
effectiveness of the complex network theory for identifying spatial connections in precipitation.
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The Yellow River is the sixth longest river in the world at the estimated length of 5,464 km.
Its total drainage area is about 795,000 km2. There are significant differences in the spatial and
seasonal distribution, inter-annual variations of precipitation in the YRB, which lies in that (1) the
YRB is in the north of the East Asian monsoon region, and parts of the region are also affected by the
plateau monsoon. (2) The terrain of the YRB is extremely complex, with a great disparity in height
between the east and west parts. (3) The underlying surface conditions are complex. According to
Chang’s study [39], the mean annual rainfall across the whole basin is about 446.27 mm (1960–2010).
The precipitation decreases from southeast to northwest and increases from upstream to downstream.

In the present study, monthly rainfall data from a network of 379 stations across the YRB are
considered for analysis. Considering the vast area of the YRB and the influence of the YRB’s boundaries,
it is necessary to have a large number of rainfall stations in and around the YRB to analyze spatial
precipitation variability. Limited to the quality of the precipitation data, including its integrity and
reliability, we selected 379 stations from hundreds of rainfall stations in the YRB, whose monthly
precipitation time series were observed for a period of 56 years (1956–2012). The data is obtained
from the China meteorological data service center (CMDC) [40]. The 379 selected stations and their
observed precipitation data exhibit considerable variations in their characteristics: (1) station elevation
ranges from 0 to 6065 meters (see Figure 1). From west to east, the YRB could be roughly divided into
three parts. The highest part is located in the northeast of the Qinghai Tibet Plateau, with an average
elevation of over 4000 meters. The second part lies in the Loess Plateau, and the altitude ranges from
1000 to 2000 meters. The third part is below 100 meters, located in the North China Plain. (2) The
average annual precipitation ranges 200–650 mm, while it is more than 650 mm downstream and less
than 150 mm in the northwest.
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4. Analysis and Results

4.1. Network Construction

How to construct a network? The most fundamental problem is edge definition. For example, in a
traffic network, roads or railways define the edge between cities. However, in the case of hydrology
application, there might not be a straightforward binary relationship between vertices, meaning it
becomes necessary to consider empirical relationships. Malik [15] employed event synchronization
(ES) as a nonlinear correlation to measure the strength of synchronization of rain events between two
different grid points and analyzed summer monsoon rainfall over the Indian peninsula. ES is applicable
to the analysis of spatial connections and propagation of extreme events. A more common method
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to define edges between precipitation observed at different stations is through a cross correlation
analysis. We assign an edge between a pair of stations when their correlation coefficient, r, exceeds
some threshold, rt. In the present study, we employed two methods, the Pearson and Spearman
correlation methods, to define edges. The Pearson correlation evaluates the linear relationship between
two continuous variables. The Spearman correlation evaluates the monotonic relationship between
two continuous or ordinal variables. In a monotonic relationship, the variables tend to change together,
but not necessarily at a constant rate. The Spearman correlation coefficient is based on the ranked
values for each variable rather than the raw data. If edges are defined by a threshold correlation
coefficient, then we naturally consider which threshold to choose and different thresholds’ impacts.
We consider nine different values of correlation threshold (CT): 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9.
Therefore, with two correlation methods (P-network and S-network) and nine correlation thresholds,
there are a total of 18 precipitation networks to conduct the sensitivity test.

4.2. Descriptive Analysis of Network Graph Characteristics

The clustering coefficient (CC) is calculated for each of the above 379 rainfall stations in the
YRB, following the procedure described in Section 2.2. In general, the correlation threshold may
sometimes significantly influence the clustering coefficient, and there is an inverse relationship between
them. Therefore, we choose nine threshold values to assess their influence and interpret the results.
We also attempt to connect the spatial distribution of the clustering coefficient with annual average
precipitation and vertex degree. It is noted that clustering coefficient, in this section, means local
clustering coefficient.

Figure 2, for instance, presents the clustering coefficient values of a P-network for nine threshold
values. It must be said that the clustering coefficient value of NA is completely different from
0, which means that a station has no nearest neighbors; that is to say, the ki in Equation (2) is 0.
However, a clustering coefficient value of 0 indicates that a station has several neighbors but there are
no edges between them.
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As expected before, the clustering coefficient of a station in the network decreases with an
increasing correlation threshold (from 0.5 to 0.9); that is to say, there is an inverse relationship between
them. The clustering coefficients of most stations are greater than 0.7 in the case of small thresholds (as
shown in Figure 2, the threshold values are 0.5, 0.55 and 0.6, respectively). This also means that we
cannot separate the stations to study the spatial connection of the network. However, the clustering
coefficients of most stations are less than 0.7 in the case of high thresholds (as shown in Figure 2,
the threshold values are 0.85 and 0.9, respectively). In particular, at CT = 0.9, over 11% of the stations in
the P-network are completely isolated, which means that the network becomes increasingly fragmented
and less meaningful. It is not hard to understand the inverse relationship. In fact, the higher the value
of the correlation threshold, the fewer stations are “filtered out”. As a measure of local density, the local
clustering coefficient also becomes smaller. Despite this, this simple result helps us to choose a suitable
(strict or loose) standard and get a suitable network.

Table 1 presents the percentage of stations falling under different ranges of clustering coefficient
values (P-network). As shown in Table 1, there is no consistency in the trend of the threshold value for
the number of stations with the same range of clustering coefficient values. For example, there is a
positive correlation between the number of stations and the correlation threshold in the case that the CC
range is 0–0.5 or Na, while there is generally a negative correlation in other cases. Remarkably, for the
clustering coefficient range 0.9–1, the number of stations increases abnormally in the case of CT
greater than 0.85, which is caused by network fragmentation as noted earlier. From the perspective of
network stations, the clustering coefficients of most stations decrease with the increase of the correlation
threshold. Based on the above results, the correlation thresholds have a great impact on the clustering
coefficient, which change edges between stations and their corresponding neighbors. This is obvious,
and most previous similar applications of rainfall analysis with complex network methodologies have
produced the same finding [26,28].

Table 1. Clustering coefficient values for different thresholds (P-network).

CC
Range

Percentage of Stations within Each Clustering Coefficient Range for Different CT (%)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

0–0.5 0 0 0 0 2.37 5.54 7.65 18.21 36.41
0.5–0.6 0 0 0 3.17 13.72 18.73 17.68 25.07 7.39
0.6–0.7 0 0 0 19.00 31.13 31.93 31.66 22.96 8.71
0.7–0.8 0 0 32.19 35.36 32.19 22.16 24.80 15.57 1.58
0.8–0.9 0 44.85 45.91 30.08 13.72 14.78 13.72 6.07 3.17
0.9–1 100 55.15 21.90 12.14 6.60 6.60 3.17 6.33 11.61
Na 0 0 0 0.26 0.26 0.26 1.32 5.80 31.13

We discuss the network built with the Pearson correlation method above. We study the precipitation
network constructed with the Spearman rank correlation method and compare similarities and
differences between the two kinds of networks. Figure 3 and Table 2 present the clustering coefficient
values of the S-network for nine threshold values and count the number of stations within each
clustering coefficient range for different CT. It is obvious that the clustering coefficient values of
the S-network are larger than that of the P network under the same threshold. This is because the
Spearman correlation coefficient is based on the ranked values for each variable rather than the
raw data, which increases the number of edges between stations and allows for more complex (yet
monotonic) relationships. However, the relationship between threshold and number of stations shows
no fundamental change, which is similar to the case of the P-network. Due to the increase in the
number of edges, a higher threshold is applied to understand more details of the network properties.
Compared with the P-network, the S-network has less information in the same threshold range.
Therefore, we recommend the Pearson correlation coefficient method to build the network.
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Table 2. Clustering coefficient values for different thresholds (S-network).

CC
Range

Percentage of Stations within Each Clustering Coefficient Range for Different CT (%)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

0–0.5 0 0 0 0 0 0 0 2.37 10.82
0.5–0.6 0 0 0 0 0 0 6.33 15.83 19.79
0.6–0.7 0 0 0 0 0 0 19.79 29.02 30.61
0.7–0.8 0 0 0 0 0 27.70 34.04 25.59 19.79
0.8–0.9 0 0 0 0 0 41.95 27.97 19.00 10.29
0.9–1 100 100 100 100 99.74 30.08 11.61 7.92 6.33
Na 0 0 0 0 0.26 0.26 0.26 0.26 2.37

It is worth noting that, no matter whether P-network or S-network, the spatial distribution of
clustering coefficient values has no fundamental change. As shown in Figures 2 and 3, although
the clustering coefficients of each point vary over different correlation thresholds, it seems that there
is no fundamental impact on the spatial distribution of clustering coefficient values. For example,
the clustering coefficients of stations in some regions are always higher than those in other regions,
based on visual inspection, and it appears high–low–high from southeast to northwest. Results indicate
that network properties change as a function of correlation threshold. However, something (e.g.,
network structure) has no fundamental change.

We attempt to interpret the relationships of clustering coefficients with station properties (e.g.,
latitude, longitude, and elevation) and precipitation properties, as suggested by Jha [26]. However, there
is no obvious linear relationship between the local clustering coefficient and the selected station
properties. However, we note that the spatial distribution of clustering coefficient values is similar to
the annual average precipitation in the YRB. As mentioned earlier, the annual average precipitation in
the YRB decreases from the southeast to the northwest; see Figure 1. Take the case of the P-network:
each station is drawn on Figure 4 according to the clustering coefficient values and annual average
precipitation. The X-axis represents the average annual precipitation and the Y-axis represents the
clustering coefficient values. As shown in Figures 2 and 4, it is obvious that the P-network is divided
into three parts by the 400 and 600 mm rainfall contours at low correlation thresholds (0.5–0.7), and the
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clustering coefficient values of the two ends are greater than in the middle part. However, as the
threshold increases, this phenomenon gradually disappears, and it is difficult to divide it into three
obvious parts. It is consistent with the cluttered spatial distribution of the clustering coefficient values
at high CT in Figure 2.
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Figure 4. The clustering coefficient values versus annual average precipitation.

Figure 5 presents the spatial distribution of the normalized vertex degree of the P-network.
Different from the distribution of clustering coefficient value, it appears low–high–low from southeast
to northwest, which means that there is an inverse relationship between the spatial distribution of
vertex degree and the clustering coefficient value in the P-network. As mentioned above, the clustering
coefficient value is calculated by CC = 2E / k (k − 1). The greater the vertex degree of a station (i.e.,
the k in the formula), the greater the number of potential edges, that is, the denominator of the formula.
If actual edges can be determined, the inverse relationship between the spatial distribution of vertex
degree and the clustering coefficient value can be explained. Therefore, we need to figure out how the
vertices link with each other. A useful index is the average degree of the neighbors of a given vertex.

We draw five plots of average neighbor degree versus vertex degree at CT = 0.5–0.7 in the
P-network; see Figure 6. For CT = 0.5–0.6, it is obvious that there is a tendency for vertices of higher
degrees to edge with vertices of lower degrees, and vertices of lower degrees tend to edge with
vertices of higher degrees, which means that there is a negative relationship between average neighbor
degree and vertex degree. Therefore, it is easy to explain why stations with small vertex degrees
have high clustering coefficient values. For the case of CT = 0.65 and 0.7, different from the first
three figures, the average neighbor degree has an obviously positive correlation with vertex degree.
Nevertheless, almost all vertices of lower degrees are above the blue line (y = x), and most vertices
of higher degrees are below the blue line, which still supports the conclusion that there is an inverse
relationship between the spatial distribution of vertex degree and clustering coefficient value.
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Notably, selective linking among vertices, according to a certain characteristic or characteristics,
is termed assortative mixing. Generally, this includes two aspects: vertices of lower (higher) degrees
tend to edge with similar or different vertices; vertices of lower (higher) degrees have a higher (lower)
clustering coefficient [41]. In fact, Newman [42,43] found that social networks differ from most
other types of networks, including technological and biological networks, in two important ways.
First, the vertices in the network that have many connections tend to be connected to other vertices
with many connections, and second, they show negative correlations between vertex degree and
clustering coefficient. It is interesting that the P-network has the two opposite characteristics of a social
and nonsocial network at different thresholds. It is preliminarily considered that most stations’ vertex
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degrees are high, and the differences between them are not very large; it can be seen from Figure 6
that most points are concentrated near the blue line. The difference becomes gradually larger as the
correlation threshold increases and the small-world property becomes obvious.

Additionally, we are also interested in which stations are more important for modeling catchment
processes in future studies, which is not very relevant to the topic of this study. The P-network is
divided roughly into three subnetworks by the rainfall contours of 400 mm and 600 mm; see Figure 7.
Interior vertex degree (the number of edges with vertices in the same subnetwork) is useful for
vertex importance evaluation to find important vertices in the subnetworks, which helps to optimize
the precipitation network structure and interpolate the missing station data. We count the number
of occurrences in the top 10% of interior vertex degrees to evaluate the importance of a station.
Stations with over three occurrences are listed in Table 3 (vertices with a circle in Figure 7), which can
be considered as important vertices in the subnetworks.
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Table 3. Important vertices in subnetworks.

Sub-Network 1 Sub-Network 2 Sub-Network 3
Station Frequency Station Frequency Station Frequency

52877 5 53848 4 53970 5
52787 4 53845 3 53975 5
52645 3 53859 3 57077 4
52866 3 53864 3 53978 3
52874 3 53872 3 54904 3
52876 3 53875 3 57071 3
52972 3 53910 3
53543 3 53942 3
53553 3 53946 3

4.3. Network Architecture

Work on the mathematics of networks has been a research hotspot in recent years, and focuses
on finding statistical properties to characterize the structure and behavior of networked systems
and creating models of networks. In recent years, a large number of empirical studies have been
carried out on the topological features of many networks in the real world, and a variety of network
mathematic models have been proposed, such as regular networks [44,45], random networks [46–48],
small world networks and scale-free networks [49–52]. In fact, many networks in the real world,
including hydrological networks and climate networks, meet the definition of a small-world network.
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Tsonis [23] considered global climate as a network of many dynamical systems and found that the
network has properties of small-world networks. Halverson [27] found that daily streamflow data
in Canada displays properties consistent with small-world networks. In this section, we assess the
significance of the small-world properties of precipitation networks in the YRB and try to prove that
the choice of two correlation methods cannot lead to fundamental changes in the network architecture.

A typical approach for evaluating small-world behavior [34] is to compare the clustering coefficient
and average shortest path length in an observed network to what might be observed in an appropriately
calibrated classical random graph. Recalling the two properties of small world networks, we should
expect under such a comparison—if indeed an observed network exhibits small-world behavior—that
the observed clustering coefficient exceeds that of a random graph, while the average path length
remains roughly the same.

Following the proof method above, we begin by computing the degree distribution of the
precipitation networks and the expected degree distribution of random networks that have the same
number of vertices and edges according to the Erdos–Renyi model [36]; see Figure 8.
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Figure 8. Degree distribution of the P-network and random networks.

Blue bars in the figures are discrete representations of the degree distribution of the precipitation
networks, and red curves represent the expected degree distribution of random networks having
the same edges and vertices. The degree distribution undergoes obvious changes when the CT is
varied. For P-networks, the degree distribution of the precipitation network is asymmetrical in the
case of small thresholds (CT = 0.5 / 0.55), which are characterized by a high right wing. As noted
above, small thresholds make most stations’ degree high and it is not surprising that the right wing
is high. Meanwhile, in the case of higher thresholds (CT = 0.85 / 0.9), the degree distribution is
also asymmetrical because of network fragmentation. Barring the two situations above, the degree
distribution is approximately symmetrical with bound and noisy wings. As for the S-network, when
CT ≤ 0.7 or CT = 0.9, the degree distribution is asymmetrical, which is consistent with the result above
that the Spearman correlation method increases the number of edges between stations. From Figure 8,
it is obvious that there is some resemblance between the degree distribution of the precipitation
network and a random network. However, the random network has a narrow and high peak and a
low tail in comparison.

We compute the global clustering coefficient and the average path length for different thresholds
(see Table 4).
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Table 4. The global clustering coefficient and the average path length for the P-network.

CT
P-network

Apath CC

0.5 1.0628 0.9549
0.55 1.1525 0.8976
0.6 1.3079 0.8090
0.65 1.5178 0.7241
0.7 1.8325 0.6468
0.75 2.4349 0.6380
0.8 3.7052 0.6408
0.85 6.6712 0.5826
0.9 8.8586 0.4719

Then, we count the number of vertices and edges in the precipitation network for different
thresholds and generate classical random networks of this same order and size. For each one,
we compute its global clustering coefficient (CC) and average path length (apath). To eliminate some
uncertain factors, the steps required to simulate draws of classical random networks need to be repeated
1000 times. The minimum, maximum and average values of apath and CC for each network are shown
in Table 5.

Table 5. The average path length and the global clustering coefficient for a random network.

CT
P-random Network Apath P-random Network CC

Min Mean Max Min Mean Max

0.5 1.0628 1.0628 1.0628 0.9371 0.9372 0.9373
0.55 1.1525 1.1525 1.1525 0.8473 0.8475 0.8477
0.6 1.3072 1.3072 1.3072 0.6924 0.6928 0.6932

0.65 1.5099 1.5099 1.5099 0.4891 0.49 0.491
0.7 1.7006 1.7006 1.7006 0.298 0.2994 0.3008

0.75 1.8406 1.8407 1.8408 0.1568 0.1594 0.1616
0.8 1.9849 1.9882 1.9923 0.0785 0.0823 0.0862

0.85 2.5963 2.6023 2.6087 0.0284 0.0341 0.0401
0.9 5.0019 5.2504 5.5338 0 0.008 0.0204

In order to facilitate the analysis, Figure 9 is drawn based on the simulation results in Tables 4 and 5,
where apath_random means the average path length of the simulated random network; CC_random
means the global clustering coefficient of the simulated random network. With regard to the
P-network, the clustering coefficient decreases from 0.81 to 0.64 as CT increases from 0.6 to 0.8, which
is always much larger than the average clustering coefficient value of the simulated random network.
Meanwhile, for values of CT < 0.8, the average path length remains only slightly higher than what
would be expected for the simulated random network. It is completely clear that the P-network
has small-world properties for any value of CT between 0.6 and 0.8, which satisfies the criterion
that CC >> CC_random and apath ≥ apath_random. For values of CT < 0.6, the threshold is too
small to outstand each station’s feature. The overwhelmed and distorted network is similar to a
random network, where stations have the same edges. For values of CT > 0.8, the fragmented and
meaningless network excludes many important edges. In summary, we suggest that the precipitation
network in the YRB has the architecture of a small-world network in the appropriate threshold
range. Moreover, the perturbations of the correlation methods used for edge definition do not bring a
fundamental change in network topology.
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Figure 9. Comparison between the precipitation network and a random network.

5. Conclusions

The present study applies the concept of the complex network to examine the spatial connections
and network architecture of a precipitation network in the YRB. Sensitivity tests, including correlation
thresholds and correlation methods, provide some interesting results about the precipitation network.
The results indicate that choice of the correlation threshold significantly influences the local clustering
coefficient in an inverse correlative relation. The clustering coefficient of a station in the network
decreases with the increasing correlation threshold. The network becomes increasingly fragmented
and less meaningful at a high correlation threshold. The choice of the correlation method has no
obvious influence on the precipitation network, but the fact that the S-network allows more edges
between stations convinces us that the Pearson correlation coefficient method is more suitable for
network construction. We also find that the spatial distribution of the clustering coefficient appears
high–low–high from southeast to northwest; however, by contrast, the spatial distribution of the vertex
degree appears low–high–low. In addition, there is an inverse relationship between average neighbor
degree and vertex degree at low CT, and a positive correlation at high CT. Some important vertices
are also found by interior vertex degree in the three sub-networks. Furthermore, we studied the
precipitation network architecture and found the small-world properties in the appropriate threshold
range (CT ∈ (0.6, 0.8)).

Although this study is still preliminary, it offers another perspective to study the connections
between stations. Since the correlations between stations are independent of geographical distance, it is
important and necessary to combine the concepts of complex networks with traditional interpolation
and extrapolation methods to develop a more reliable model. Therefore, we attempt to interpret the
relationships of clustering coefficients with physical properties, but the result is not satisfactory, which
is also an urgent problem to be solved. We hope to report the details of these studies in the near future.
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37. Erdős, P.; Rényi, A. On the strength of connectedness of a random graph. Acta Math. Acad. Sci. Hung. 1964,

12, 261–267. [CrossRef]
38. Watts, D.J.; Strogatz, S.H. Collective dynamics of small-world networks. Nature 1998, 393, 440. [CrossRef]
39. Chang, J. Characteristics of Climate Change of Precipitation and Rain Days in the Yellow River Basin during

Recent 50 Years. Plateau Meterol. 2014, 33, 43–54.
40. China Meteorological Data Service Center. Available online: http://data.cma.cn (accessed on 2 January 2020).
41. Liu, T.; Chen, Z.; Chen, X.R. A Brief Review of Complex Networks and Its Application. Syst. Eng. 2005, 6.
42. Newman, M.E. Assortative mixing in networks. Phys. Rev. Lett. 2002, 89, 208701. [CrossRef]
43. Newman, M.E.J.; Park, J. Why social networks are different from other types of networks. Phys. Rev. E Stat.

Nonlinear Soft Matter Phys. 2003, 68, 036122. [CrossRef]
44. De, N.S.; Leoncini, X. Critical behavior of the XY-rotor model on regular and small-world networks. Phys. Rev.

E Stat. Nonlinear Soft Matter Phys. 2013, 88, 012131. [CrossRef]
45. Zhang, Z.; Zhou, S.; Wang, Z.; Shen, Z. A geometric growth model interpolating between regular and

small-world networks. J. Phys. A Math. Theor. 2007, 40, 11863–11876. [CrossRef]
46. Juher, D.; Kiss, I.Z.; Saldaña, J. Analysis of an epidemic model with awareness decay on regular random

networks. J. Theor. Biol. 2014, 365, 457–468. [CrossRef]
47. Watts, D.J. A Simple Model of Global Cascades on Random Networks. In Proceedings of the National

Academy of Sciences of the United States of America, Washington, DC, USA, 30 April 2002; Volume 99,
pp. 5766–5771. [CrossRef]

48. Whitney, D.E. Dynamic Model of Cascades on Random Networks with a Threshold Rule. In Proceedings of
the Zoological Society of London, London, UK, 8 December 2009; Volume 20, pp. 103–160. [CrossRef]

49. Guan, J.; Wu, Y.; Zhang, Z.; Zhou, S.; Wu, Y. A unified model for Sierpinski networks with scale-free scaling
and small-world effect. Phys. A Stat. Mech. Its Appl. 2009, 388, 2571–2578. [CrossRef]

50. Klemm, K.; Eguíluz, V.M. Growing scale-free networks with small-world behavior. Phys. Rev. E Stat.
Nonlinear Soft Matter Phys. 2002, 65, 057102. [CrossRef]

http://dx.doi.org/10.1016/j.physa.2003.10.045
http://dx.doi.org/10.1371/journal.pone.0071129
http://dx.doi.org/10.1016/j.envsoft.2015.02.020
http://dx.doi.org/10.1016/j.jhydrol.2015.04.035
http://dx.doi.org/10.5194/hess-19-3301-2015
http://dx.doi.org/10.5194/hess-18-4565-2014
http://dx.doi.org/10.1016/j.physa.2015.10.102
http://dx.doi.org/10.1016/j.physa.2016.01.043
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1109/ICMIT.2010.5492834
http://dx.doi.org/10.1175/BAMS-87-5-585
http://dx.doi.org/10.1007/978-1-4939-0983-4_5
http://dx.doi.org/10.1007/BF02066689
http://dx.doi.org/10.1038/30918
http://data.cma.cn
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://dx.doi.org/10.1103/PhysRevE.68.036122
http://dx.doi.org/10.1103/PhysRevE.88.012131
http://dx.doi.org/10.1088/1751-8113/40/39/011
http://dx.doi.org/10.1016/j.jtbi.2014.10.013
http://dx.doi.org/10.1073/PNAS.082090499
http://dx.doi.org/10.1103/PhysRevE.82.066110
http://dx.doi.org/10.1016/j.physa.2009.03.005
http://dx.doi.org/10.1103/PhysRevE.65.057102


Water 2020, 12, 1739 17 of 17

51. Sallaberry, A.; Zaidi, F.; Melançon, G. Model for generating artificial social networks having community
structures with small-world and scale-free properties. Soc. Netw. Anal. Min. 2013, 3, 597–609. [CrossRef]

52. Wang, L.; Du, F.; Dai, H.P.; Sun, Y.X. Random pseudofractal scale-free networks with small-world effect.
Eur. Phys. J. B Condens. Matter Complex. Syst. 2006, 53, 361–366. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s13278-013-0105-0
http://dx.doi.org/10.1140/epjb/e2006-00389-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Network Methodology 
	Degree and Degree Distribution 
	Clustering Coefficient 
	The Average Path Length 
	Small-World Network 

	Study Area and Data 
	Analysis and Results 
	Network Construction 
	Descriptive Analysis of Network Graph Characteristics 
	Network Architecture 

	Conclusions 
	References

