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Abstract: Wave overtopping is an important design criterion for coastal structures such as dikes,
breakwaters and promenades. Hence, the prediction of the expected wave overtopping discharge
is an important research topic. Existing prediction tools consist of empirical overtopping formulae,
machine learning techniques like neural networks, and numerical models. In this paper, an innovative
machine learning method—gradient boosting decision trees—is applied to the prediction of mean
wave overtopping discharges. This new machine learning model is trained using the CLASH wave
overtopping database. Optimizations to its performance are realized by using feature engineering
and hyperparameter tuning. The model is shown to outperform an existing neural network model by
reducing the error on the prediction of the CLASH database by a factor of 2.8. The model predictions
follow physically realistic trends for variations of important features, and behave regularly in regions
of the input parameter space with little or no data coverage.

Keywords: machine learning; artificial intelligence; wave overtopping; physical model tests; gradient
boosting; neural network

1. Introduction

Wave overtopping is traditionally an important criterion in the design of coastal structures.
Overtopping waves can lead to flooding of the hinterland at coastal dikes, undesirable wave
transmission at breakwaters or the risk of physical harm at promenades. Hence, depending on
the purpose of a coastal structure, a maximum amount of allowable wave overtopping is specified.

To predict the amount of expected wave overtopping for a given structure configuration,
various tools are available. Firstly, a series of empirical overtopping formulae have been developed
of which a selection is mentioned in the EurOtop manual and its predecessors [1-3]. These formulae
provide a relatively quick and easy means to obtain a first indication of the expected mean wave
overtopping discharge, 4. They are derived based on data from physical model tests, collected in the
CLASH database [4]. Besides the derivation of formulae, Van Gent et al. [5] have used the CLASH
database to train a neural network (NN) to predict mean wave overtopping discharge. In addition to the
expected value, this neural network provides a measure of uncertainty of its prediction. Recent efforts
have extended this neural network application to also predict wave transmission and reflection [6].
Next to the above mentioned data driven methods, Jensen et al. [7] show that advanced current
generation numerical models are also able to reproduce measured wave overtopping discharges
reasonably well. These numerical models could then also be used for predictive modeling, provided
they have been well calibrated and validated on physical model tests.
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Recent renewed interest in data science and machine learning have lead to an active online
data science community and a vast interest in development and application of machine learning
techniques. One of the more promising techniques is the use of gradient boosting decision trees
(GBDT), popular implementations of which [8,9] have won many data science competitions and are a
hotly discussed topic in the data science community [10]. GBDT methods are based on an ensemble
combining a large number of individual decision trees, where each tree tries to minimize the residual
error of its predecessors and all trees contribute to the final prediction. The flexible resolution of
GBDT methods—depending on data density—seems to be specifically useful in the prediction of wave
overtopping discharge. Examples of existing coastal engineering applications of different decision
tree-based methods are the prediction of wave run-up on vertical piles [11] and error correction in
wave modeling [12].

In this work, a GBDT type model is applied to predict wave overtopping discharge. Its results are
extensively verified and validated against synthetic data and existing wave overtopping discharge
prediction methods respectively.

This article is structured as follows. In Section 2 the GBDT method and the training data set
are expanded upon. Section 3 provides details about model training, such as feature engineering
and hyperparameter tuning. The performance of the new GBDT model is shown quantitatively in
Section 4, and qualitatively in Section 5. Section 6 contains a discussion of the results, and in Section 7
conclusions and recommendations are presented.

2. Method Description

2.1. Gradient Boosting Decision Trees

GBDT methods make use of Classification And Regression Trees (CART), which are decision
trees that can be used for either classification or regression. Fundamentally, classification problems are
about predicting a label and regression problems are about predicting a quantity. The application in
this work, the prediction of wave overtopping discharge, requires the use of regression trees.

A decision tree is a graph consisting of decision and leaf nodes, examples of which are depicted
in Figure 1. Every decision node (Dj;) contains a split based on a condition pertaining to one of
the features of the training data (e.g., is the angle of wave attack > 5°?). From a decision node,
tree branches emerge for both possible answers. Each of these branches may be connected to either
another decision node or a leaf node. A leaf node (L;;) is an end node that contains the prediction
of either a class (classification trees) or a value (regression trees). A single decision tree consists of
many splits on different features, where the number of subsequent splits is called the depth of the
tree. Note that a single decision tree is often not sufficient to provide accurate predictions for highly
complex classification or regression problems.

Decisiontree 1 Decisiontree 2 Decisiontree 3

Figure 1. Schematic depiction of an ensemble of decision trees with decision (D;;) and leaf nodes (L;)).
An example prediction for one combination of input parameters is shown in green.
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Instead of one single decision tree, GBDT methods use an ensemble of many decision trees that
result in a communal prediction. An example of an ensemble of decision trees with a maximum depth
of 3 is shown in Figure 1. The underlying principle is that combining large numbers of weak predictors
can make for a strong predictor. Subsequent trees are iteratively added to the ensemble, trying to
correct for prediction errors of previous trees. The final answer of the ensemble of trees is the sum of
all predictions of the individual trees (the green leaf nodes in Figure 1), accounting for the learning rate
(see Section 3.1). The total number of trees within the ensemble can either be set at the start of training,
or use can be made of an ‘early stopping’ algorithm, which is explained in more depth in Section 3.
In this paper, the GBDT implementation used is XGBoost [8] (XGB) as a package in Python [13].

2.2. Training Data Set

The CLASH database [4] contains the results of more than 10,000 data records of physical model
experiments on wave overtopping. The resulting mean wave overtopping discharge, the test setup
and the hydraulic loading conditions are represented by 31 parameters in the database.

Zanuttigh et al. [6] have collected additional wave overtopping data as an extension of the original
database [4], and added data on wave transmission and reflection. Note that in this paper, a comparison
is made with the NN by Van Gent et al. [5], since the present research is focused on wave overtopping
and the NN by Zanuttigh et al. [6] does not improve on the NN by Van Gent et al. [5]. Hence, the same
database [4] as applied by Van Gent et al. [5] is used here. Neither of the NN models use all available
parameters from the database. To get to a training data set, features (i.e., model input parameters) to
train on are selected, unreliable or unsuitable data is removed, a weight factor is determined for each
data record and scaling is applied. These selection, cleaning, and pre-processing steps are expanded
upon below.

Only a selection of all available features in the database is used to train the model. The features
used in the XGB and NN models are listed in Table 1 and illustrated in Figure 2, which also contains the
features resulting from feature engineering, as discussed in Section 3.2. Note that the complexity (CF)
and reliability factors (RF) are only used for weighting the different records in the training data set with
a weight factor (WF). The weighting formula from Van Gent et al. [5] is used: WF = (4 — RF)(4 — CF).
This way, the most reliable and least complex data has the highest weight factor. This also means that
the data records with either unreliable (RF = 4) or very complex data (CF = 4) are not included in
the training data set. Besides the reliability factor and complexity factor scores for each data record,
Van Gent et al. [5] also argue that data records with a very small mean overtopping discharge (before
Froude scaling) are less accurate due to potential scale effects, while the relevance for practical
applications of these very small discharges (smaller than 0.001 1/s/m) is relatively low. Hence, in line
with Van Gent et al. [5], records with g < 10~®m3/s/m are treated as WF = 1, irrespective of their
actual RF and CF scores. Additionally, the data records in the database that contain the remark ‘do not
use for neural network” have also been excluded from the training data set. In the end, the training
database contains 8372 records.
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Figure 2. Feature definitions, adapted from Van Gent et al. [5].
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Table 1. Overview of target variable and the features used in model training in the NN by
Van Gent et al. [5] and the new XGB model. Froude scaling of features is indicated in the last column.

Name Symbol Unit NN XGB FrScaled
Mean wave overtopping discharge q m3/s/m v v v
Water depth, toe h m v v v
Spectral significant wave height, toe H 10, t0e v v -
Spectral wave period, toe T—1,0,t0e S v v v
Angle of wave attack B ° v v -
Roughness factor of the structure Yy - v v -
Cotangent of the lower slope cotwy - v v -
Cotangent of the upper slope cotay - v v -
Crest freeboard R. m v v v
Armour crest freeboard A m v - Ve
Difference between crest and armour crest freeboard dA. m - v v
Crest width Ge m v v v
Width of the berm B m v v v
Water depth above the berm hy m v v v
Tangent of berm slope tanap - v v -
Water depth above the toe structure hy m v - v
Thickness of the toe structure t m - v v
Width of the toe structure B; m v v v
Complexity factor CF v v -
Reliability factor RF - v v -

Identical to Van Gent et al. [5], all features in the training data set are scaled to Hy0,:, = 1 m using
Froude’s similarity law. Note that after scaling, the H,y s, itself is not used as a feature in the model.
In Table 1 the features to which Froude scaling applies are indicated in the last column. Additionally,
the same target value is used, namely the log,, of the Froude scaled mean wave overtopping discharge.

3. Model Training and Tuning

For the training of the XGB model and assessing its performance, functionalities from the
scikit-learn package [14] in Python have been used. The model performance is optimized by tuning the
model settings—its hyperparameters (Section 3.1)—and performing feature engineering (Section 3.2).
The model is derived from a training data set, whose composition is discussed in Section 2.2. Note that,
compared to the approach of Van Gent et al. [5], some features of the training data set are adapted,
following the outcome of the feature engineering.

3.1. Hyperparameter Tuning

The architecture and complexity of a single decision tree can be tuned by changing the depth of
the tree and the number of leaf nodes allowed in a tree. Without any restrictions and with a sufficiently
large ensemble of trees, GBDT methods are expected to overfit the training data set, in extreme cases
creating very deep trees with in the limit a leaf node for every data point in the training data set.
An overfitted model fits its training data very well, but does not have generic predictive capabilities
on previously unseen data.

Within the XGB implementation, various hyperparameters to prevent overfitting are available
and have been used in this work. Hyperparameters is an often used term in machine learning for
the run control parameters of a method such as XGB. Firstly, the maximum depth of individual trees
(max_depth) has been limited to at most the amount of features used to train the model. The number
of leaf nodes per tree are not directly limited, but every leaf node needs to contain a minimum
number of data points in the training data set (min_child_weight). In this case, single data point leaves
are prohibited to prevent overfitting. Additionally, the values of the leaf nodes are multiplied by
a learning rate (learning_rate), which also helps prevent overfitting. This is at the cost of a slower
convergence, in that a larger number of trees are required in the ensemble. In machine learning,
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learning rate are commonly <0.1. A range of learning rate values adhering to this has been selected.
High complexity of individual trees is undesirable, as it can be a source for overfitting. Tree complexity
is therefore penalized with a regularization term which promotes smaller absolute values in the leaf
nodes (reg_lambda). This regularization term is minimized in combination with the loss function
(which represents the error w.r.t. the training data) in the training process. The selected values for
reg_lambda ensure it is a relatively strictly enforced regularization. Finally, when adding a single
new tree to the ensemble, only a portion of the records in the training data set is used to fit that tree
(subsample). This subsample is randomized for every added tree, thus counteracting overfitting on
the level of individual trees. A range of values where subsample is active (0.0 < subsample < 1.0)
is explored.

For the hyperparameter tuning of the XGB model, a grid search method is used, combined with
K-fold cross-validation (using K = 5). The hyperparameters considered for tuning and the
combinations examined are listed in Table 2. All combinations of these hyperparameter values
are used to train five different models, each with a different subsample (or fold) of the training data.
Best hyperparameter values (indicated in blue) are selected based on the averaged best performance
on the validation data set over all folds. The resulting optimal hyperparameter values favor deeper
trees, in combination with fairly stringent overfitting prevention measures, consisting of significant
regularization, a small learning rate, and a small data subsample to train each tree.

Table 2. XGB hyperparameter combinations used in the K-fold cross-validation, optimal values in blue.

Hyperparameter Name Values

Maximum tree depth max_depth 6;7;8;10;12; 14

Minimum number of data points in aleaf ~ min_child_weight  3;5;7;10; 12

Learning rate learning_rate 0.005; 0.0075; 0.01; 0.02; 0.05
L2 regularization parameter reg_lambda 2;3;4

Subsampled fraction of training data subsample 0.25; 0.50; 0.75

3.2. Feature Engineering and Feature Importance

A common practice in the improvement of the predictive capabilities of machine learning models
is feature engineering. Features are those parameters selected from all available data to form the
training data set. The term feature engineering describes the derivation of new parameters that provide
either an addition to, or replacement of, existing features in the the training data set. The goal is to
obtain new features that better describe the dependency (or sensitivity) of the target variable on the
input parameters, improving the performance of machine learning models.

A useful tool to gain more insight into the different features in a machine learning model is feature
importance analysis. For each individual feature, this provides an indication of its influence on the
prediction of the target variable 4. One way to perform this analysis is by looking at permutation
importance [15,16]. In this work, the ELI5 [17] Python implementation of permutation importance has
been used. This technique scrambles the values of one feature in the test data set. When scrambling all
the data of an important feature, the predicted g should significantly change. Conversely, scrambling
an unimportant feature will hardly affect the predicted 4. The random scrambling of the data is
repeated five times for each feature, and the whole process is applied to each feature individually,
while keeping all other features unchanged.

Results of the permutation importance analysis before and after feature engineering performed
below, are listed in Table 3. The results before feature engineering show that structure properties
Rc and 1y are the most important features by far. Of the wave properties, the T;, 10 1, is the most
important. Note that all features have been Froude scaled to a wave height of H,0,tp = 1.0 m, so the
Hi0,t0¢ itself no longer shows up in the analysis. Surprisingly, the results also suggest that A, is a
reasonably important feature, more important than for instance the berm width. This is misleading,
however, and a direct result of the way some of the features are defined.
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Table 3.

6 of 13

Overview of permutation importance results before and after feature engineering.

Weight changes >10% indicated in green (increase) and red (decrease). Changes in rank are indicated
with arrows and green (increase) or red (decrease) numbers.

Before After
Rank  Feature Weight Feature Weight
1 R, 0.6666 + 0.0204 - R, + 0.0369
2 Vf 0.5992 £+ 0.0437 - Vf 0.6063 £ 0.0456
3 Ty_i0pe 01979400194 - Ty 10 0.2000 & 0.0199
4 G¢ 0.1354 £ 0.0085 - Gc 0.1318 £ 0.0093
5 cot oy, 0.0935 + 0.0097 - cot oy, 0.0915 + 0.0092
6 Ac 0.0765 + 0.0034 T h + 0.0029
7 cotay 0.0604 = 0.0042 - cotay 0.0614 £ 0.0040
8 B 0.0575 + 0.0044 - B 0.0608 + 0.0045
9 B 0.0544 + 0.0038 - B 0.0544 + 0.0040
10 h 0.0453 £ 0.0019 0 b + 0.0040
11 By 0.0389 +£0.0043 5 dA:* 0.0340 + 0.0046
12 hy 0.0312 £0.0040 1 By 0.0237 + 0.0029
13 hy, 0.0085 = 0.0014 - hy 0.0091 =+ 0.0010
14 tanag 0.0016 £ 0.0003 - tanag 0.0016 + 0.0003

* hy and A, are replaced by the uncorrelated features ¢; and d A, respectively.

In the CLASH database features used in the NN, two features are strongly correlated to others:
the armour crest freeboard (A;) and the water depth above the toe structure (/;). The A, is defined as
the distance between armour crest and still water level. When no armour is present, A, is taken to be
equal to the crest freeboard (R.). Hence, the A, is by definition strongly correlated to R.. Similarly,
the h; is equal to the water level at the toe () when no toe structure is present. This induces a strong
correlation between the features h; and h.

The chosen way of defining these features makes it difficult to distinguish between the importance
of correlated features. To gauge the actual importance of the armour crest freeboard and the toe
dimensions for the prediction of g, the features need to be made uncorrelated. By replacing the armour
crest freeboard with: dA. = A. — R, i.e., the distance between the crest and the armour crest freeboard
(which is 0 when no armour layer is present), dA. becomes uncorrelated to R.. Analogously, h; is
replaced by the thickness of the toe structure: t; = h — h; (which is 0 when no toe structure is present),
where t; is uncorrelated to i. Both dA. and t; are also illustrated in Figure 2.

On the right side of Table 3, the permutation importance after replacement of A, and h; with dA,
and t; respectively is shown. The changes larger then 10% are indicated by colours. The decrease of
importance of dA; and B; is shown in red, whereas the increase of importance in R, i and t; is shown
in green. Evidently, the correlated definitions of the features influence the perceived importance of the
correlated features. The crest freeboard is now even more important, while the armour crest freeboard
is less important for the prediction of the wave overtopping discharge. Interestingly, the importance of
both the water level and the thickness of the toe structure has increased. Parallel to that, the importance
of By has decreased. Presumably, the water depth has gained in importance, where the importance
of both the presence of a toe structure and its dimensions is now redistributed between the B; and
t; features. Finally, the changes suggested not only remove correlation between different features,
but also improve model quality resulting in a reduced error, see Table 4 and Section 4.

3.3. Bootstrap Resampling and Prediction Errors

In this work, the bootstrap resampling technique presented by Van Gent et al. [5] is also applied
to obtain estimates for the uncertainties in the model’s predictions. This approach is summarized as
follows. From the total training data 500 bootstrap resamples are generated. Each bootstrap resample
forms the training set for a new model and contains a different randomized selection from the total
data set. In that training, the data points not selected in the resample serve as the validation data
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set. This validation set is used for ‘early stopping’, which stops the training of a single model after
1000 consecutive additional trees fail to improve the model performance on the validation data set.
The data in the validation set also changes with each resample. In the end, this gives an ensemble
of 500 retrained (‘resampled’) models, where all suitable data is utilized while no single model is
trained on the entire data set. All 500 models are run and the mean of all outcomes is used as the final
prediction. Additionally, a confidence interval can also be determined from the large number of model
predictions.

When applying the same technique with the XGB model, it is found that in this case the median of
the 500 models is a better predictor than the mean (see Table 4). It seems that the tails of the distribution
of the bootstrapped model predictions are not symmetrical, with the extremes tending to skew towards
higher overtopping discharges. This is reflected in the mean, while is does not significantly affect the
median. Thus, going forward, the median is used as prediction. Another surprising observation is
that the confidence interval derived with the bootstrap resampling method becomes very small for the
XGB model compared to the NN model, as can be seen in the example in Figure 3. This decrease is so
significant that it cannot be satisfactorily explained as of yet. In fact, the way resampling must be used
for GBDT-based models must be reconsidered since in the present approach the model architecture
is not completely fixed due to randomness-inducing hyperparameters and can be different for each
resample. For the moment, this is an issue for further investigation. Hence, in the rest of this work,
the confidence interval based on bootstrap resampling is not used.

1072

—— NN

------ NN uncertainty bands
10-3 4 —— XGB

------ XGB uncertainty bands

10—5 4

3,
Qpredicted [m>/s/m]

015 016 017 018 019 020 021 022

Ac [m]
Figure 3. Wave overtopping predictions from the NN [5] (blue) and XGB (orange) models versus
armour crest freeboard, including 90% confidence interval from bootstrap resampling (dotted lines).

4. Model Validation

To validate the trained XGB model, its performance is compared to that of the NN by
Van Gent et al. [5], which can be accessed through the NN-Overtopping web application [18]. The NN
is of the type Multi-Layer Perceptron, and contains a single hidden layer with 20 nodes, and is trained
on the same training data set as the XGB model. The performance for both methods is quantified
by predicting the records of the original CLASH database [4] and subsequently determining the
root-mean-square-error (RMSE) identical to the method by Van Gent et al. [5]. The RMSE is determined
for the target variable, namely the log,, of the Froude scaled mean wave overtopping discharge.
These errors are weighted using the WF also used in the model training, as described in Section 2.2.

The resulting errors for the different models are shown in Table 4. It can be seen that the
XGB model yields a large improvement of the existing NN, reducing the RMSE with a factor of 2.8.
The switch in machine learning method from NN to XGB is responsible for the majority of the reduction
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in error (from 0.29 to 0.168). Additional error reduction is accomplished by the redefinition of features
detailed in Section 3.2 and using the median instead of the mean as prediction.

Table 4. Performance of different overtopping prediction tools.

Tool RMSE
NN Overtopping Van Gent et al. [5] (mean) 0.29
XGB without feature engineering (mean) 0.168
XGB without feature engineering (median) 0.130
XGB with feature engineering (mean) 0.149
XGB with feature engineering (median) 0.104

The measurements from the database and the predictions thereof by the NN and the XGB model
(median) are mutually compared through scatter plots, see Figure 4. The smaller RMSE for the
XGB model can be recognized from the smaller spread in the red points around the diagonal (i.e.,
better predictions) than the spread in the blue points. The red points belonging to q,easured < 1070
m3/s/m show noticeably larger deviations from the measurements, which is a reflection of the
lowering of the WF for those points, as described in Section 2.2.
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Figure 4. Predicted versus measured wave overtopping discharge for the CLASH database. Predictions
from the NN by Van Gent et al. [5] (blue) and new XGB model (red).

5. Model Verification

After training the XGB model, the behaviour of the model is qualitatively verified using synthetic
data sets. First, the model is checked for physically realistic behaviour, i.e., a reasonably smooth
behaviour that confirms the expectations following from the understanding of the physics behind wave
overtopping. This is done by varying one feature at a time (Section 5.1). Subsequently, the behaviour of
the model in the data sparse regions of the input parameter space is visualized, by detailed examination
of the space in between clusters of training data points (Section 5.2).

5.1. Physical Realism for Single Feature Variations

To assess the physical realism displayed by the XGB model, the results along one line segment
varying a single feature are plotted versus the log of the wave overtopping discharge. To this end,
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1288 data points for realistic reference situations have been synthesized, two examples of which
are further discussed and shown in Figure 5 with feature values listed in Table 5. For comparison,
the results from the NN are also plotted. Note that both lines show model behaviour, but neither
represents an objective truth.

-4.6 -3.8
— NN

—4.8 4 — XGB —4
S 51 S -42
250 & 44

—5.4 ~4.6 -

—56 T T T T T T T —4.8 T T T T T T T T

0.15 0.16 0.17 0.18 0.19 0.2 021 022 0.23 0 10 20 30 40 50 60 70 80 90
Rc beta
(a) (b)

Figure 5. Predictions from the NN (blue) and XGB (red) for variation in crest freeboard (a) and angle of

wave attack (b).

Table 5. Feature values in physical realism analysis.

Feature R, Case B Case
h 0.225m 0.225m
Hiy10,t0e 0.15m 0.15m
T1—1,0,t0e 2.00s 2.00 s
0 0-90°
Ty 0.5 0.5
cotay 4 4
cot ay, 2.5 25
R, 0.15-0.225m 0.15m
dA. 0.00-0.075m  0.05m
Ge 0.225 m 0.225m
B 045 m 0.075m
hy, 0Om 0Om
tanagp 0 0
t 0Om 0Om
By 0Om 0Om
h/ Hu toe 1.5 1.5
RC/HmO,toe 1-1.5 1
dAc/Hpo toe 0-0.5 0.33
B/ Hpo,t0e 3 0.5

From Figure 2 it is evident that for an increasing crest freeboard (R.), the overtopping discharge is
expected to decrease. Figure 5a shows that this indeed is the general trend. The XGB model, however,
shows non-smooth behaviour that locally causes increases in discharge with increasing freeboard.
Figure 5b shows that, as expected, the wave overtopping discharge decreases with an increasingly
oblique angle of wave attack. However, where the NN is reasonably smooth,the XGB model does not
predict a smooth decrease of the wave overtopping discharge, but rather shows a staircase pattern.
Both the staircase pattern for wave obliquity and the non-smooth behaviour for the freeboard are
inherent traits of GBDT methods. Since the method is based on an ensemble of CARTs, it features many
discrete splits in regression trees. This leads to the discontinuous behaviour seen in Figure 5. The size
and density of the discontinuities in the model’s predictions depend in large amount on both the
number of trees and number of data points along the axis of interest. For instance, there are relatively
few data points with a g > 0° (11.5% of the training data), so given that g4 decreases with increasing
B, this will inevitably result in the discrete staircase behaviour observed in Figure 5b. An abundance
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of data points along the axis of interest allows GBDT methods to distinguish with higher resolution
between different values of a certain feature. Hence, it is a requirement, but not a guarantee for smooth
behaviour. Methods that allow for locally optimized fits—such as GBDT—can result in variations
around a general trend. This is exhibited in Figure 5a. Note that, while non-smooth model behaviour is
in principle not desirable, it might be a worthwhile tradeoff if the model predictions are more accurate
on the whole.

5.2. Regularity of Predictions Throughout the Input Space

Because of their data-driven nature, GBDT models are expected to exhibit relatively good
performance in regions of the input parameter space with a high density of training patterns, since there
is ample information present to fit the model to. This is contrasted by the data sparse regions of the
input parameter space, where relatively very few points from the training data set are available.
The question is whether the model performance in those regions is not completely erratic. To answer
this question, a data cluster analysis is performed to locate the regions in the input space with the
largest density of data points. Subsequently, XGB and NN model predictions are made (13,132 in total)
for the line segments connecting the cluster centres. In this way, large parts of the input space are
covered, including low data density regions.

In a data cluster analysis, a meaningful distance metric must be provided. Since the features of
the training data set have various different units and absolute magnitudes, these features need to be
normalized to be able to measure distances in a meaningful way. To this end, firstly all features are
z-scaled using z = (x — pyx)/0x, where x is the feature in question, i is the mean of feature x and
oy is its standard deviation. Subsequently, a Principle Component Analysis (PCA) is carried out to
determine the principal directions of the data. Finally, the data is redefined using this PCA coordinate
system, resulting in a measure of distance that takes the data coverage per principal direction into
account. In this new coordinate system, K-means clustering is used to find clusters of data points that
are close to each other. Outside of these clusters are the data sparse regions of the input parameter
space. Given this sparsity, it is interesting to see how data-driven models behave in these regions.

In Figure 6 the behaviour of the predictions of the XGB model is shown for two examples: the two
cluster centres closest and most distant from each other. The A is a coordinate for the straight line that
connects one cluster centre to another. The coordinate is defined as 0 in one cluster centre and 1 in the
other. As a reference, the behaviour of the NN is also depicted. Note that on the path between the two
cluster centres, in contract to the analysis in Section 5.1, all of the features are changing simultaneously.
Thus, no expected response can be realistically formulated, and only an inter-model comparison
remains. Figure 6a shows the model response between two cluster centres that are close to each other.
The XGB model behaves less smoothly than the NN, comparable to what was found in Section 5.1.
The general trend does seem somewhat similar between both models, especially given the limited
range on the vertical axis. In contrast, Figure 6b depicts two cluster centres that are distant from each
other. In spite of the large distance, the behaviour of both models is quite similar.

The model response between both the close and distant cluster centres shows that there is
no uncontrolled or erratic model behaviour in the data sparse regions of the input parameter space.
The XGB model can show some non-smooth behaviour but the large-scale general trends are reasonably
similar to those displayed by the NN model.

Note that, while the model verification using synthetic data described above gives insight in model
behaviour, it does not show whether or not the model is overfitted. Though efforts are made to prevent
overfitting (as described in Section 3), they provide no guarantee. Furthermore, the validation method
used, consistent with existing literature [5], does not necessarily preclude overfitting. A definitive
answer to the question of whether or not the model is overfitted should be obtained by validating the
model against new physical model data that are not part of the model training. Good performance on
this unseen data suggests generic applicability of the model, while bad performance is an indication of
an overfitted model.
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Figure 6. Predictions from the NN (blue) and XGB (red) models between cluster centres, where A is the
coordinate on a straight line from one cluster centre to another. (a) Two cluster centres closest to each
other. (b) Two most distant cluster centres.

6. Discussion

The training data set for the new predictive model presented in this work is based on a selection
of data from the CLASH database, similar to earlier efforts in literature [5,6]. Not all data records
from the database—neither the original, nor the extended version—are equally reliable or usable to
train data driven models (see also the considerations in Section 2.2). In addition to the reliability
factor and complexity factor of the data, various other causes may reduce the reliability and thus the
usability of particular data records. Firstly, the database records with small measured g are likely to
be less reliable, given the large relative measurement uncertainty in those situations. Furthermore,
some features in the database records originate from inference or numerical model computations
rather than direct measurements. This introduces additional uncertainties which are currently not
taken into account. Besides data quality, quantity of available training data is also an important factor
in the use of data-driven methods. This is underlined by the data cluster analysis, which shows model
behaviour deviates mostly in regions with low data density. Hence, the training data set should ideally
be continuously expanded with new data points, especially those lying within data sparse regions.

The model verification against synthetic data sets shows that the new XGB model in general
behaves reasonably well, but does show non-smooth behaviour in some situations. This essentially
comes down to small scale oscillations around a larger trend. In the cases investigated in this work,
the trend was similar to the one shown by the NN model. The non-smooth behaviour is inherent to the
discontinuous nature of methods that use decision trees, and thus not entirely avoidable. The observed
non-smooth behaviour is in principle undesirable. However, the large scale trends are captured well
by the XGB model and its predictions are a significant improvement. Hence, we find the non-smooth
behaviour to be a worthwhile tradeoff.

The application of bootstrap resampling results in accurate predictions but a surprisingly small
prediction error, as described in Section 3.3. One of the contributing factors to this might be the effect
of the hyperparameters preventing overfitting (such as subsample, min_child_weight and reg_lambda).
These hyperparameters create a more generalized model, less dependent on the specific data points
included in the data set. This means that the different bootstrap resamples will result in more similar
models and thus smaller prediction errors that do not fully explain the variation in the underlying
training data. Investigation of a conceptual approach to estimate uncertainties for GBDT-based models
is a subject of further research.

In this work and existing research, the performance of machine learning methods is quantified
based on the prediction of different iterations of the CLASH database. However, (parts of) those
databases are also used for model training. An important following step is to test the model
performance on new physical model data as of yet unseen by the model. If the XGB model also
predicts this data accurately, relative to the alternative overtopping prediction methods, the confidence
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in the generic applicability for engineering and design purposes is further solidified. This is especially
true for new data that covers the currently data sparse regions of the input parameter space.

7. Conclusions and Recommendations

In this paper, an innovative machine learning technique called gradient boosting decision trees
has been applied to the prediction of mean wave overtopping discharges. The training and tuning
of the model have been extensively described. A feature engineering analysis shows that redefining
existing features in the CLASH database (without adding new information) can improve the model’s
performance. The new XGBoost model has been shown to outperform the existing neural network
model [5] by reducing the error on the prediction of the CLASH database by a factor of 2.8. Additionally,
the new model shows physically realistic trends along important features, and seems to behave
coherently in the data sparse regions of the input space.

The prediction errors of the XGB model determined by bootstrap resampling are considered to
by surprisingly small, seemingly not fully explaining the variation in underlying the training data.
For future research, it is recommended to investigate in more detail a proper conceptual approach for
the estimation of uncertainties in the predictions of GBDT-based models.

The promising results presented in this work suggest an application of Gradient Boosting
to an extended database as a logical next step. Furthermore, comparison should be made to
other available prediction methods for the wave overtopping discharge, including empirical wave
overtopping formulae.

The confidence in the predictive capabilities and generic applicability of the model in engineering
and design purposes further increases when it also performs well on unseen data. In addition,
good performance on unseen data suggests that the model is not overfitted. Hence, it is strongly
recommended to perform further model validation on new data as of yet unseen by the model.
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