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Abstract: In semi-arid regions, where hydrological resources are very vulnerable and where there are
water shortages in many regions of the world, it is of great importance to assess the vulnerability
that a system is facing or will face to the potential impacts of climatic changes and changes on
the use of land. For that reason, this research focuses on evaluating the global vulnerability of
a hydrological basin, taking into consideration these changes. Being different from the existing
methodologies that assess the vulnerability, our methodology interconnects through a new interface
a distributed hydrological model, global climate models, climate change scenarios, land use change
scenarios and the largest number of system variables calculated with information from official sources.
Another important point of our methodology is that it quantifies the global vulnerability of the
system, taking into consideration hydrological, environmental, economic and social vulnerabilities.
The results obtained show that the proposed methodology may provide a new approach to analyze
vulnerability in semi-arid regions. Moreover, it made it possible to diagnose and establish that the
greatest current and future vulnerabilities of the system are the result of activities in agricultural
areas and urban centers.
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1. Introduction

Vulnerability is a concept that emerges as a necessity for climate science and policies in the face of
the potential impacts of climate change. During the last decade, the efforts to assess vulnerability to the
potential impacts of climate change have contributed to the development of theories and assessment
methodologies that can be found in the reports of the Intergovernmental Panel on Climate Change
(IPCC) [1]. The IPCC defines vulnerability to climate change as a function of a system exposure and
stimuli-response to climate and its ability to adapt to these effects [2]. According to [3], vulnerability
is an indicator of possible future damages. Historically, the term “vulnerability” has been used in
several contexts, such as: food security [4,5], livelihood [6], natural disasters [7] and general risk
management [7,8]. In that same context, climate change has caused global concern due to adverse
effects on the global ecosystem, the economy and society [9]. Therefore, in recent years, the tendency
has been to assess the environmental [10], economic [11] and social vulnerability [10,11]. Other
studies have focused on assessing the world’s hydrological vulnerability to the possible effects of
climate change, such as those carried out by [12,13]. The foregoing is due to considering that inland
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water resources have been identified as one of the most important global change problems [14].
According to [1], assessing vulnerability to the potential impacts of climate change has the objective
of developing policies that reduce the risks associated with climate change. According to [15],
climate change has become a threat by applying greater pressure on already stressed hydrological
systems and resources. Moreover, in the last decades, the impacts of climate change have already been
visible, mainly in the increase of temperatures, and the increase and/or decrease of rainfall in several
regions of the world [16,17]. According to [14], these impacts are of extreme importance, considering
that the hydrological resources are very vulnerable, and that at present, many regions of the world
face water scarcity. Under this reality, it is transcendental to estimate the vulnerability that a system is
currently facing or will face taking into account future changes [18]. It is for that reason that this article
focuses on assessing hydrological, environmental, economic and social vulnerability in a spatially
distributed global context. Global vulnerability combines and distributes at the cell scale the four
types of vulnerability described above, in which hydrological, economic, social and environmental
factors converge.

According to [19], when analyzing different studies, we can observe that the methodology
mostly used to quantify the vulnerability of a system by is using a composite index that includes
a set of indicators. The same authors comment that these indicators represent the vulnerability
of a system and are mathematically combined into a single composite index. A composite index
may be easier to interpret than the tendencies of single indicators [19]. In literature, different
methodologies might be found to quantify the composite indicator, such as: multiple linear
regression models [20], principal components analysis and factor analysis [21], neutralization
of correlation effect [22], distance to targets [23], distance to objects [23], experts opinion [24],
public opinion [25], spatial multi-criteria analysis [26], Analytic Hierarchy Process [27], Bayesian
model [28], Artificial Neural Networks [29], and fuzzy logic techniques [29]. According to [15],
the vulnerability calculated using the existing methodology does not consider all the variables involved
in the system, thus, limiting its accuracy.

In the same context, the methodologies do not introduce land use change in the vulnerability
assessment. According to [30], the impacts of land use change (Urbanization) on a hydrological system
produce an increase in volume and surface runoff rate, causing a decrease in groundwater recharge and
base flow. According to [31,32], the land use change and climate change have been identified as two of
the main factors affecting the ecosystem services. Studies like that of [33] highlight the importance
of using land use change in the environmental assessment. For that reason, the authors consider to
include it in the quantification of the global vulnerability. In addition, we believe that land use change
will have an important effect, because the study area is located in a region where availability studies
accentuate a shortage of water resources and over-exploitation of groundwater. Finally, the hypothesis
of this article is that the vulnerability of a basin to the potential impacts of climate change and land use
change can be evaluated through the connection of mathematical tools that will contribute to decision
making, with the aim of mitigating the impacts and knowing the resilience of the system.

2. Case Study

The study area used in this research is the Turbio river sub-basin (Figure 1). The sub-basin is
located in the Lerma Santiago Hydrological Region, which includes the states of Guanajuato and Jalisco
in Mexico. The sub-basin has an area of 2983 km? and is one of the most important for agricultural
production of the country.
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Figure 1. Location of the Turbio river sub-basin used as a study area.

The sub-basin is located between elevations 1726 and 2872 m. Accumulated average annual
rainfall varies from 560 to 807 mm, with a very marked seasonality of the rainy season and an
occurrence of 90% between the months of June and September. The maximum average temperature
is 25.59 °C and the minimum average temperature is 9.56 °C. The variations in temperatures have a
significant influence on evaporation rates in the study area with rates ranging from 0.25 mm day ' to
12.45 mm day .

In the last three decades, the Turbio river sub-basin has presented problems of over-exploitation
of surface and groundwater. This is due to the population growth and increased agricultural activity,
supplied with surface and groundwater. This over-exploitation has generated great uncertainty among
decision-makers about the future of water availability in the sub-basin, and how it will be affected
by the potential effects of climate change. This scenario makes our methodology more relevant, as it
aims to respond to the concerns, such as the future of water availability from the point of view of
hydrological, environmental, economic and social vulnerability.

3. Methodology

In contrast to the existing methodologies, in this article, a totally different new methodology is
proposed, which combines a distributed hydrological model, global climate models, climate change
scenarios, land use change scenarios and the largest number of system variables calculated on the
basis of information provided from official sources. Another important point of our methodology is
that it quantifies the global vulnerability of the system, taking into consideration the hydrological,
environmental, economic and social vulnerability. It is important to emphasize that nowadays there are
no studies that consider all the vulnerabilities (i.e., hydrological, environmental, economic and social)
in the assessment of global vulnerability, connecting several mathematical models in a hydrological
basin. This makes our methodology new with respect to the existing ones. In addition, the effects of
land use change are included in the evaluation.

The methodology that we propose to carry out this research has included the development
of a Predictive Vulnerability Interface that we have called MPDV1.0. It has been programmed in
Visual Basic® (Microsoft, Washington, DC, USA) language and allows quantifying the hydrological,
environmental, economic, social and global vulnerability of a hydrological basin. MPDV1.0
integrates the distributed hydrological model TETIS [34,35], the Global Climate Models (GCM) of
the Inter-Comparison of Coupled Models-Phase 5 (CMIP5) Project [36], and RCP4.5, RCP6.0 and
RCP8.5 scenarios of the Intergovernmental Panel on Climate Change (IPCC) [37]. The foregoing is
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following the scheme shown in Figure 2. Unlike the methodologies proposed by [38—41], MPDV1.0
calculates vulnerability in a distributed way, including all the processes and storages of the hydrological
cycle through its modeling in TETIS. In addition, the effects of climate change and land use change
are included as well. In the hydrological modeling with TETIS, the future land use changes are
introduced, estimated with the Terrset® software (Clark Labs, Worcester, MA, USA) [42]. This makes
the MPDV1.0 a different and innovative way of estimating vulnerability. Another difference from the
existing methodologies is that it allows quantifying five types of vulnerabilities (i.e., hydrological,

environmental, economic, social and global).

(1) Model construction:
* Calculation of parameters.
* Determination of hydromorphometric
characteristics for basin.

* Inputs.

(2) Calibration and validation:
TETIS model

change: CMIP5-
downscaling
IPCC scenarios:

(3)
The effects of climate Q

~| (5) TETIS modeling M:

(4)
Future land use change
scenarios (Terrset®)

RCP4.5
RCPG.0
RCP&.5

\ :

O

(6) Outputs (raster):
Spatial maps of daily precipitation
Spatial maps of daily percolation

- o

{8) MPDV1.0: (f ]

Current and future Inputs maps (figure 3)

vulnerability

Figure 2. Conceptual scheme of the connection of models, executed in the MPDV1.0.

The MPDV1.0 executes the connected tools and the input maps following the flowchart shown in
Figure 3. The input maps have been processed in ArcGIS® (ESRI, Sacramento, CA, USA), considering
the available information, obtained from different governmental departments. In the research, the error
on the model and calculation of vulnerability is not estimated because the input maps are official
information in Mexico and are carefully validated. These maps are introduced in ascii format in the
MPDV1.0. The MPDV1.0 conducts information cross-checks to obtain hydrological, environmental,
economic, social and global vulnerability.

The MPDV1.0 calculates global vulnerability, based on the IPCC’s conception of vulnerability [43],
which generally explains vulnerability by applying the following equation:

_ HV+EV+SV+ AV
n

GV 1)

where GV is the global vulnerability, HV is the hydrological vulnerability, EV is the economic
vulnerability, SV is the social vulnerability, AV is the environmental vulnerability and # is the number
of vulnerabilities. The vulnerabilities of the Equation (1) are obtained through the indicators shown in
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Table 1. Each vulnerability map will be calculated from the normalized indicators involved and their
corresponding weights with the following equation:

n
HV,EV,SV,AV =Y X;w; )
i=1

where X is the normalized indicators i, w; is the weight of the normalized indicator i and 7 is the
number of indicators for each type of vulnerability. The indicators are normalized to eliminate the
units and to vary the values from 0 to 1. The equations implemented to perform the standardization
are the following:

Xmax—x;

Xi= ———— ®)

Xmax — X¥min
X; = Xi — X*min @)
Xmax — X¥min
where x;, X, and X5y are the minimum and maximum values of the data set x;. If the indicator has
the capacity to adaptation, Equation (3) shall be used; and If the indicator has a degree of exposure or
sensitivity, Equation (4) shall be used. For each normalized indicator, a weight will be obtained using
the following equation:

2
o;

m 2
i=11/ 7

where \/(TT-Z is the standard deviation of the set of the indicator values i, and 7 is the number of
selected indicators.

In this research, the MPDV1.0 has been applied to obtain present and future vulnerability maps
(for the year 2035). The foregoing is with the purpose to assess the potential impacts of climate change
and land use change.

w; =

©)

3.1. Data Sets

The geographic information used in estimating the indicators (Table 1 has been obtained from the
National Institute of Statistics and Geography (INEGI) available on https://www.inegi.org.mx/ and
from the National Water Information System of the National Water Commission (SINA-CONAGUA)
available on http://sina.conagua.gob.mx/sina/. They are governmental departments that allow free
downloading of information at scales of 1:50,000 and 1:250,000.
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Table 1. Equations and sources of information used in the calculation of indicators [44].

Vulnerability Indicator (Equation and Units)

Population density (PD):

PD = Numb:ieoaf(i]?rﬂg’;)itants ; (hab km—Z)

Economically active population (EAP):

__ EAP unemployed | /o
EAP = = rrear (%)

Length of rural roads (LRR):
Economic LRR = Lenght ; (km)

Economic value of agricultural production (EAP):
EAP = Amount ; (thousand of pesos)

Economic value of the cattle industry (ECI):
ECI = Amount ; (thousand of pesos)

Agricultural area for irrigation (AAI):
AAI = Amount ; (ha)

Agriculture area with technified irrigation (ATI):
ATI = Amount ; (ha)

Population without medical services (PWMS):
__ Population with medical services , /o
PWMS = Total population 4 ( /o)

Population in poverty (PP):

__ Population in poverty | /o
PP = Total population  * (/0)

[lliterate population (IP):
__ Illiterate population of the same age , /o
P = Inhabitants of the same age ’ ( /o)

Global

Houses without drinking water (HDW):
__ Houses number without drinking water | /o
HDW = Total number of houses 4 ( /0)
Houses without drainage and no restroom (HDR):
__ Houses number without drainage and no restroom _ /o
HDR = Total number of houses 4 ( /0)
Houses without electricity (HWE):

__ Houses number without electricity | /o
HWE = Total number of houses 4 ( /O)

Social

Houses with land floor (HLF):

__ Houses number with land floor . (o
HLF = Total number of houses 4 ( % 0)

Per capita anual net income (PCI):
__ Gross Domestic Product (dollars) , /o,
PClL = Number of inhabitants 4 ( % 0)

Beneficiaries of the social program: opportunities (BPO):
BPO = Number of beneficiaries . (%)

Number of inhabitants *

Beneficiaries of the social program: Liconsa (BPL):

__ Number of beneficiaries . (o,
BPL = Number of inhabitants * (/0)

Degree of exploitation of the basin (DEB):

__ Annual volumen of surface extractions . : :
DEB = Average annual runoff volume 4 (adlmenswnal)

Degree of exploitation of groundwater (DEG):
__ Annual volume of groundwater extractions . .
DEG = Average annual recharge of the aquifer ~ ~ (adimensional)

Environmental Deforestation (DEF):
__ Deforested area (km?) . /o
DEF = Total area(km?) 4 (/0)
Area affected by forest fires (AFF):
AFF — Burned areas(km?) | (%)

Total area(km?)

Reforested surface (RS):
RS = Amount ; (ha)

Protected natural areas (ANP):
__ Protected vegetation cover area(km?) . /o
ANP = Total area(km?) ’ ( /0)

Degree of exploitation of the basin (DEB):
DEB = Annual volumen of surface extractions

Water Average annual runoff volume ; (adimensional)

Degree of exploitation of groundwater (DEG):
__ Annual volume of groundwater extractions . .
DEG = Average annual recharge of the aquifer  * (adimensional)
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Areas affected by fires b
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Protected vegetation cover Change output variables
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Economically active population * Analysis period
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Value of agricultural production :
: . Select input maps to
Value of livestock production calaulate i
Surface rehabilitated to the irrigation 2l

Technified agricultural area / l

Length of rural roads
Population in conditions of poverty

Select output variables

Population without right to health services ¢
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Total number of dwellings Run simulation
Number of dwellings without piped water
Number of dwellings without drainage l'
Number of dwellings without electricity
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Calculate accumulated percolation
and accumulated direct rainfall maps

Y

Calculate vulnerabilities: hydrological,
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Outp ut maps selected analy5i5 peﬂod.

.

Show output maps within user interface

Figure 3. Flow chart of vulnerability modeling with the MPDV1.0.

Hydrological modeling calibration has been conducted using daily flow data measured at Las
Adjuntas gauge, which is located at the mouth of the sub-basin (Figure 1). These hydrometric data
are also freely downloaded from the website of CONAGUA National Data Bank of Surface Waters
(https:/ /www.imta.gob.mx/bandas). In the case of precipitation data, it was initially tested using
daily data from 20 weather stations. However, the first results showed some inconsistencies in
the interpolation of vulnerability maps, because spatial interpolation of daily rainfall gauge data
using Inverse Distance Weighting in the TETIS model has shown errors of overestimation in rainfall
interpolated in the cells adjacent to the border of the basin. Moreover, the results showed the formation
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of bull’s-eye patterns produced by the spatial location of the weather stations. That is, the isohyets are
circular in the stations without nearby neighbors, denoting a poor spatial distribution of the weather
stations. To support the above, we decided to use the Multi Source Weighted-Ensable Precipitation
(MSWEP) product from Princeton Climate Analytics, available on https://platform.princetonclimate.
com/PCA_Platform/index.html. MSWEP is a precipitation mesh with a spatial resolution of 0.25° and
a temporal resolution of three hours [45-48]. MSWEP data have been correlated with daily rainfall,
observed at weather stations for the period from October 2010 to September 2014. The foregoing is
with the purpose of validating the product data and justifying its use. Figure 4 shows some examples
of the obtained results; in general terms, the correlations from 0.5 to 0.8 were obtained. In the case of
satellite rainfall products, correlation coefficients greater than 0.5 are considered acceptable [9,49].
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Figure 4. Correlations obtained between MSWEP and the daily observed precipitation data.

Despite the overestimates observed in Figure 4, we decided to use the MSWEP, because the
interpolated rainfall from the weather stations presents 13.5% overestimates in cells far from the stations
compared to the MSWEP. We also evaluated in the analysis period the differences in the annual average
accumulated precipitations and we obtained that the observed precipitations are greater than those
of the MSWEP with an average of 175 mm year !. There are other products with precipitation
information, such as: NOAA CPC Morphing Technique (CMORPH), Integrated Multi-satellite
Retrievals for GPM (IMERG) and Climate Hazards Group Infrared Precipitation with Stations
(CHIRPS). Studies such as those carried out by [46,50-52] consider these high-precision products
and have been implemented in various regions, obtaining correlations of 0.65 to 0.8. However,
the information period for these products is limited. Therefore and considering the MSWEP has
a longer reporting period and that similar correlations are obtained, we have decided to use it in
the research.

In the hydrological modeling, 36 cells of the MSWEP product were selected; their centroids have
been named “virtual stations”. By interpolating the precipitations of these stations in the period
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from October 2000 to September 2017, we obtained the distribution of accumulated average annual
precipitations shown in Figure 5a. Figure 5b,c show the distribution of elevations in the sub-basin,
the variation of precipitation in the high areas is due to an effect of latitude.

N Symbology

A I:l Turbio river sub-basin

e MSWEP Grid

Elevations
msnm
2872

. Average annual rainfall (mm) (b) - 1726
1560 - 605
1606 - 628 20 4
629 - 653 2700
I 654 - 683 E oo |
684 - 715 5
B 716 - 743 E 2300
W 744 - 770 2 100
0_ 10_ 20 40 60 80 i 771 -807
1900 -
@ 1700 T T T :
0% 20% 40% 60% 80%  100%
Area
(q)

Figure 5. (a) Accumulated average annual rainfall obtained using Multi Source Weighted-Ensable
Precipitation (MSWEP) product information, (b) Digital Elevation Model and (c) hypsometric curve.

3.2. Automatic Calibration of the TETIS Model

The TETIS model uses nine initial parameters (Table 2), Figure 6 shows the three most important
parameters, calibrated automatically through Correcting Factors (FC). For more information on the
initial parameters of the TETIS model, see for example [34,35,53].

The optimization algorithm used is the Shuffled Complex Evolution (SCE-UA), developed at the
University of Arizona [13,54,55]. The SCE-UA obtains better performances, given that it requires less
iterations to reach optimum and it is more suitable for non-expert users, while Simplex, which is a
more efficient algorithm, needs a step-by-step process supervised by an expert modeler. We decided to
use as an objective function, the Nash-Sutcliffe Efficiency Index (NSE), because it is the most used in
hydrological model calibration [56]. The NSE is calculated using the following equation:

2
NSE — 1 — Z?:l [%bs(i) - qsim(i)}

n - 5 (6)
Zi:l [qobs(i) - qOhS(i)}

where g, is the observed flow, g, the simulated flow and g, is the mean flow observed.
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Figure 6. (a) Static storage (Hu), (b) soil hydraulic conductivity (Ks) and (c) hydraulic conductivity of

rocky extract (Kp).
3.3. Downscaling Climate Model

In this research, we decided to use the CMIP5 GCMs because they are the most used models
from the end of the eighties [57,58]. Moreover, according to [59], the CMIP5 models have a better
performance to represent numerous phenomena include extreme precipitation, diurnal variations
in precipitation and tropical cyclone intensity. Studies such as the one carried out by [60] have
shown that climate models in CMIP5 are better in future projections, because the efforts of CMIP5
are enormous, with a larger number of more complex models run at higher resolution, with more
complete representations of external forcings, more types of scenario and more diagnostics stored.
The projections with the GCMs have been obtained using the Climatic Atlas platform developed by the
Center for Atmospheric Sciences of the National Autonomous University of Mexico and are available
on https:/ /atlasclimatico.unam.mx/AECC/servmapas. This platform was developed exclusively for
Mexico considering the models shown in Table 2. It allows calculating projections using each model
individually and using the 15 models together. We decided to use them together through the Reliability
Ensemble Averaging (REA) conducted by [61]. According to [62], the REA reduces the uncertainty in
the projections by giving greater weight to the GCMs that present the smallest errors and biases with
respect to the variables observed in a given mesh point. According to [61], the weight assigned to each
model is based on two criteria, (1) trend (difference with observations) and (2) convergence (difference
between simulations).

One of the problems of the GCMs is that they have a very large resolution. To solve this problem,
the authors [61] divided Mexico into four regions: Northwest, Northeast, South and Southeast to
compare the results of the REA with the data from the Climate Research Unit (CRU) [63]. The CRU
database is available on http:/ /www.cru.uea.ac.uk/data. In addition to the downscaling performed by
the previous authors, we decided to apply a downscaling to the REA projections for the South region
(specifically in the state of Guanajuato, which is the region where our study sub-basin is located).
Downscaling has been made by combining statistically observed information for the 1971-2000 period,
data from the CRU, REA and RCP4.5, RCP6.0 and RCP8.5 scenarios [64]. The authors [61] obtained
correlations between REA and CRU higher than 0.8 for the South region. Moreover, significant
reductions in the Mean Absolute Error (MAE < 0.9 mm day’l) and Root Mean Square Error (RMSE
< 1.3 mm day!). We obtained for the state of Guanajuato a correlation coefficient of 0.78, MAE


https://atlasclimatico.unam.mx/AECC/servmapas
http://www.cru.uea.ac.uk/data

Water 2020, 12, 1682 11 of 21

< 0.99 mm day ! and RMSE < 1.5 mm day~!. Figure 7 presents the examples of maps with
monthly anomalies obtained with downscaling for the entire state of Guanajuato. These anomalies are
introduced as inputs to the TETIS hydrological model to simulate the effects of climate change.

Table 2. CMIP5 models used for the projection of the precipitation and temperature.

Model Institution Country
BBC-CSM1 Beijing Climate Center, China Meteorological Administration China
MIROC-ESM-CHEM,  Atmosphere and Ocean Research Institute, National Institute for
MIROC-ESM and Environmental Studies and Japan Agency for Marine-Earth Japan
MIROC5 Science and Technology
CanESM2 Canadian Centre for Climate Modelling and Analysis Canada

Centre National de Recherches Météorologiques-Centre Européen
CNRMCMS de Recherche et de Formation Avancée en Calcul Scientifique France
CSIRO-MK3-6 Commonwealth Scientific and Industrial Research Organisation Australia
GFDL_CM3 Geophysical Fluid Dynamics Laboratory USA
CISS-E2-R National Aeror}autlcs and Space Administration Goddard Institute USA
for Space Studies
HADGEM2-Es Met Office Hadley Centre UK
INM-CM4 Mathematical center Russia
MPI-ESM-LR Max Planck Institute for Meteorology Germany
MRI-CGCM3 Meteorological Research Institute Japan
NCC-NorESM1 Bjerknes Ce.ntre for .Chmate Research and Norwegian Norway
Meteorological Institute
IPSL-CMA-LR Institut Pierre-Simon Laplace France
N
Symbology
A [ Turbio river sub-basin
[ ] Guanajuato state )
) 7 March monthly anomalies
January monthly anomalies T =
-10.51--9.829
{ Wl-5.744 - 7,651 [ -0.828--9.116
[1-7.85--7.184
[ -7.183 - -6.462 B 0115 --8.329
B 6,461 - -5.739 I 8.328--7.616
M 5.738 - -5.129 Il 7615- 6.8

0 30 60 120 180 40
Kilometers

June monthly anomalies September monthly anomalies

[ ]-4.867 --3.962
[7]-3.961--3.32

[ ]-7671--5.653
[ -5.652 - -4.707
[ -3.319 - -2.853 [ -4.706 - -3.685
B 2852 - -2.342 I -3.684 - -2.561
B 2.341--1.144 I -2.56 - -1.155

Figure 7. Examples of monthly precipitation anomalies obtained with downscaling for the RCP4.5
scenario in 2035.

3.4. Forecast of Land Use Changes

For the prediction of future changes in land use and vegetation cover, it has been decided to use
the Terrset® software [42]. TerrSet is an integrated geospatial software system for monitoring and
modeling the earth system for sustainable development. We decided to use Terrset® because it uses
Markov Chain analysis to project the expected quantity of change and a competitive land allocation
model to determine scenarios for a specified future date [65,66]. In addition, the class assignment
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is based on the contiguity of elements through multicriteria-multiobjective. Its main advantage is
that it models with a stronger approach than the other models, since it models the suitability for
transition rather than suitability for the ultimate cover class. The technique produced projections
maps with an overall accuracy of more than 90% [67]. More information can be found at the link
https:/ /clarklabs.org/terrset/land-change-modeler/.

The main input information used in the modeling was the land cover and land use maps at a scale
of 1: 250,000, obtained from INEGI. The land use map year 1997 was used in the construction of the
Terrset® model (Figure 8a), and the VI series (year 2016) was used for the validation of the Terrset®
model results (Figure 8b).

N

Simbology
Classes

[ ater and urban built-up
[ Perennial siim-leafed forest

Deciduous slim-leafed forest

I vixed forest

Forest, woods, rainforest
- Wooded meadow
Closed bushes

I Open bushes
( b ) 0 meadow

Farmland

Figure 8. Land use and vegetation cover maps used in the modeling of future scenarios: (a) year 1997
and (b) series VI.

4. Results and Discussion

4.1. Hydrology Model Performance

The TETIS model adequately reproduces the flows observed at Las Adjuntas gauge for the
periods used in calibration (from October 2012 to September 2014) and validation (from October 2005
to September 2008). We decided to use only two hydrological years in the calibration, because there
is little information and since according to [68] there is no direct relationship between the number
of years and the results of the models. Moreover, that computing times are significantly reduced.
Consequently, in the selection of the calibration event, it was necessary to have a wet and a dry year to
obtain robust parameters. In terms of efficiency, the model has achieved an average NSE of 0.67, thus,
simulating a wet year and a dry year (Figure 9). Calibration is acceptable considering that according
to [69], the value of NSE are considered acceptable if it is greater than 0.6 and excellent if it is greater
than 0.8. Table 2 shows the average effective parameters obtained by automatic calibration with the
SCE-UA algorithm. SMITH2013300.

20 (a) =Qobs (b)
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—Qsim
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Figure 9. Efficiencies of hydrological modeling with TETIS in the calibration period: (a) wet year and
(b) dry year (—Qobs=measure discharge and eQsim=simulated discharge).
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Table 3 shows the average effective parameters obtained by automatic calibration with the SCE-UA
algorithm, calibrated by correction factors (FC), which make a global correction of the initial parameters
quantified with the information available [53].

Table 3. Average effective parameters obtained by automatic calibration with the Shuffled Complex
Evolution (SCE-UA) algorithm.

Parameter Correction Factor Parameter Equation  Effective Parameter

Static storage FCy =0.677 H;‘(l.) =FCy-Hy 340.83 (mm)
Vegetation cover index FCy =0.500 A" =FCy- Ay 3.34 (-)
Infiltration capacity FC; =0.814 k;‘(i> =FCjz - ks 0.35 (mm h~1)
Overland flow velocity FC4 =0.850 uZ‘i> =FCy-u 2.64 (ms~1)
Percolation capacity FCs =250.00 k;(i) =FCs-kp 0.16 (mm h™1)
Interflow velocity FCg =0.010 k:s(i) = FC¢ - kss 0.003 (mm h~1)
Deep aquifer permeability FC7 =200.00 k;s i) = FC7 - ks 0.045 (mm h~1)
Connected aquifer permeability FCg =0.001 k:a(i) = FCg - kps 0.003 (mm h~1)
River channel velocity FC9 =0.131 v?t) =FCy - v() 0.187 (mm s~1)

The performance of the model in temporary validation, once again, shows an acceptable behavior
of the TETIS model, with an NSE of 0.63 (Figure 10). The NSE obtained in validation shows an
acceptable capacity of the model to reproduce the flows in another period, which is different from the
one used in the calibration. According to [69], validation is usually considered acceptable if NSE > 0.5
and very good if NSE > 0.7.

70
m(Qobs
60 - Q
—Qsim

wal NSE= 0.6354

40

w)

(4]

£ 30

o

20 -

10 A

07 II‘I T
vn N OO Y Y >~ > I I 0 oo o oo @
g S8 &8 £ 8 & & 95 &£ & 8 & & BT>HE T/ Ay e
o e e o e o e e o o 9 o 9 Q@ 9 © O OO o
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= ¥ = & = ¢ B & = ¥ & & = ¥ = S =
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> © o o © © o o o o o o o o o = o

Time (day)

Figure 10. Efficiencies of hydrological modeling with TETIS in the validation period (—Qobs = measure
discharge and eQsim = simulated discharge).

4.2. Climate Projections and Downscaling

When downscaling the results obtained by the GCM of CMIP5, it was possible to observe a
significant reduction in precipitations of the year 2035 for the three scenarios of IPCC (Figure 11).
The foregoing depends on the control period used in the comparison. This control period has been
generated with historical precipitation data from the MSWEP (period: 1982 to 2014). We have obtained
that the REA-CMIP5 models predict an average decrease in rainfall of 1 mm day~! for the IPCC
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scenarios. The greatest differences between future projections are presented in the months of the rainy
season. The high variability observed in Figure 11 corresponds to the uncertainty calculated for the
three scenarios, which is 2 mm day~!. We find the same trend in evaluating annual projections
(Table 4). The same pattern was observed with annual anomalies, which predict an average decrease
in rainfall of 34.7 mm year’l. The results in Table 4 show that in the near future, the RCP4.5 scenario
represents the most critical conditions with a greater decrease in rainfall. However, the projections of
REA-CMIP5 in the year 2100 show that RCP8.5 is the most critical with an average decrease in rainfall
of 80 mm year~! (period: 2075-2100).

300

250 - W MSWEP W RCP4.5 [ RcP6.0 [IRCP 8.5

200

150+

rainfall ([mm)

1001

50 A ﬁ I
W%wym
Oct Nov Dic Jan

Feb Mar Apr May Jun Jul Ago Sep
Time (month)

Average monthly accumulated

Figure 11. Comparison of the control period and the projected rainfall with monthly anomaly maps in
the near future (year of 2035).

Table 4. Average annual rainfall projected with monthly anomalies and their decrease with respect to
the control period.

IPCC Scenario Period Control Period = Annual Average Accumulated Rainfall Variations

1982-2014 (mm) Rainfall Forecast (mm) (mm)
RCP 4.5 2015-2039 656.4 620.4 —36.1
RCP 6.0 2015-2039 656.4 621.1 —354
RCP 8.5 2015-2039 656.4 623.8 —32.6

The projections show a general increase in maximum temperatures of up to 2 °C (Table 5).
This will have a direct effect on the process of evaporation, evapotranspiration, and consequently,
on hydrological availability. The estimated uncertainty for these projections is around +1 °C for the
three IPCC scenarios. The above uncertainty coincides with the results obtained by [61] for the South
region of the country. As expected, the most critical scenario for the near future has been RCP8.5.

Finally, the REA-CMIP5 project for the year 2100 and the same scenario an increase in temperatures
of 4.1 °C.

Table 5. Increases in the maximum temperatures, obtained with REA-CMIP5 for the IPCC scenarios.

CMIP5-IPCC Projections (Period:2015-2039)
RCP4.5 RCP6.0 RCP8.5
Temperature (°C) 2.5 24 2.6

Variable
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4.3. Future Land Use Change Scenarios Modeling

The validation of land use change projections up to the year 2035 presents 85% of successes, when
comparing the vegetation cover of the VI series (Figure 7) and the Terrset® results. Once the model was
validated, the land use change scenario was generated for the year 2035 (Figure 12). In the projection,
it can be observed that the greater changes are seen in the crop land class (Figure 12). Likewise,
a significant increase is observed in the urban nuclei. The authors decided not to include the distant
future (year 2095) in the research, because we observed inconsistencies in the Terrset® prognosis when
we distanced from the validation period. In the year 2095, Terrset® predicts a decrease in urban areas
of 30% compared to 2035 and the occupation of this area by irrigation agriculture, which is not logical
considering patterns of large cities growth trend over the last years.

Symbology 0.26% 163%
I Turbio river sub-basin

255% 4.27%

Land use 2035

[ Irrigation agriculture
[ ] Temporary agriculture
B Water

I Area without vegetation
B Forest

I Induced grassland
- Natural grassland W Area without vegetation m Water
- Secondary vegetation mForest B Grassland

I Cities W Cities @ Irrigation agriculture
O Temporary agriculture W Secondary vegetation

80
—-—— Kilometers

Figure 12. Projection in Terrset® of land use changes for the near future (2035 year).
4.4. Assessment of Vulnerability

The results obtained with the proposed methodology and the developed MPDV1.0 show that the
Turbio river sub-basin presents high vulnerability for the current conditions (Figure 13). The greatest
vulnerabilities have been obtained in urban centers and agricultural areas. This coincides with what
has been reported in some studies, such as: [70,71]. We decided to analyze more exhaustively the
results of hydrological modeling, and observed that infiltration and percolation processes were reduced
to 34.5% and 50%, respectively, in urban areas. In addition, 83% of groundwater was extracted in
urban centers and urban areas. All this enables us to conclude that the planning and management
of the current hydrological availability is not as equitable and sustainable as it was expected. The
previous results may change in the cells located in the valley of the Turbio river sub-basin, since in
these cells the MSWEP overestimates rainfall by 0.88 mm day~!. That is to say, the overestimations of
rainfall are diminishing the effect of groundwater withdrawals in the formulations of the indicators
involved, possibly reducing the vulnerabilities in the cells of the valley of the sub-basin.

The MPDV1.0 forecasts for the near future a generalized increase in vulnerabilities to the potential
impacts of climate change and future land use changes (Figures 14 and 15). We expected this increase
due to the decrease in rainfall (from 4.97% to 12.32%), predicted by the CMIP5 GCM. There is a
potential effect of climate change on evapotranspiration processes, infiltration and percolation. Other
authors have also detected these effects for other areas of the world (e.g., [72,73]).

By analyzing the vulnerability for each IPCC scenario, we can observe patterns influenced by the
characteristics of the scenarios. In general, the greatest vulnerabilities are presented in the RCP6.0
and RCP8.5 scenarios, which surpasses the rest of the scenarios with 0.1% in the sub-basin area and
with vulnerabilities of more than 0.5. We believe that the reason for this small increase is because by
definition the most drastic scenarios in 2035 have a gradual rise in effects. Likewise, the increase in the
use of urban centers and agricultural zones directly influences on the increase of these vulnerabilities.
Another interesting conclusion is that according to the hydrological vulnerability rate, the worst
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conditions for the system are expected in water availability. In other words, practically 75% of the
system area will be very vulnerable, with the possibility of not being able to meet the demands of
different consumptive uses. The above results are giving indications that there is an urgent need for a
restructuring of the management policies that are currently being implemented.

o 1 o 1
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Figure 13. Vulnerability rate maps obtained with the MPDV1.0 for the current conditions of the Turbio
river sub-basin (vulnerability: (a) Environmental, (b) Economic, (c) Social and (d) Global).

[0] 1 0 T T T -y 1
100 0.9 100 N 0.9
200 0.8 200 0.8
300 07 8 300 078
400 0.6 -% 400 0.6 %
500 0.5 § =00 05 &
0.4 ;5 0.4 _5
600 0.3 < 6oo | 0.3 <
700 0.2 700 0.2
800 . 0.1 800 0.1
900 : ! L L o 900 o
0 200 400 600 800 1000
0 0.9 o)
100 0.8 100
200 0.7 200 0.7
300 0.6 & 300 ‘ E
S 2
400 0.5 400 g
500 0.4 & 500 £
b=l b=l
600 0.3 3 600 ; =2
700 0.2 700
800 - : 0.1 800
900 L ! L L 0 900
0 200 400 600 800 1000 0 200 400 600 800 1000
(c) (d)

Figure 14. Maps of vulnerability rates predicted with MPDV1.0 for the year 2035 and scenario RCP8.5
(vulnerability: (a) Environmental, (b) Economic, (c) Social and (d) Global).
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Figure 15. Global vulnerability occupation area (2035 year): (a) high (0.65 < V < 1), (b) medium
(0.35 < V <0.65) and (c) low (0 < V < 0.35).

5. Conclusions

In this research, we assess the global vulnerability through hydrological, environmental, economic
and social vulnerabilities, taking into consideration the potential impacts of climate change and
land use change. In order to achieve this, a new methodology was designed and a Predictive
Vulnerability Interface was developed. The results obtained in the study sub-basin show that under
current conditions the system is already vulnerable. In the sub-basin, environmental and economic
vulnerability is the most important. The areas with the greatest environmental vulnerability were
urban centers and agricultural areas, as these areas are where the greatest water vulnerability occurs.
This makes evident a restructuring of the management policies that are currently being implemented
in the country. In the near future, the situation shows small changes influenced more by the change
in land use than by the effects of climate change. The foregoing may be due to the fact that the same
degree of exploitation of the sub-basin and the groundwater of the current conditions is considered.
This is a non-conclusive result, which will need improvement and further testing. Furthermore, it is
necessary to evaluate the uncertainty to detect and improve the variables that introduce the errors
in the model. However, if an effect is observed in the sub-basin for each IPCC scenario. This is due
to the fact that the Global Climate Models predict a decrease in rainfall and a significant increase
in temperature. By integrating these effects of climate and land use changes into the Vulnerability
Predictive Interface, there are the combined effects in the flow regimes, producing negative impacts on
water resources; thus, a decrease in water availability in the aquifer is predicted. This gives evidence of
the great importance of having a methodology such as the one proposed for planning and managing
current and future water availability for the region.
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