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Abstract: The primary objective of this study is to explore a water quality database on two Mediterranean
rivers (the Kadisha-Abou Ali and El Jaouz rivers—located in north Lebanon), considering their
physicochemical, microbiological and fluorescence characteristics. Principal Component Analysis
(PCA) was applied to the matrix gathering physicochemical and microbiological data while the
Common Components and Specific Weight Analysis (CCSWA) or ComDim was used for fluorescence
excitation-emission matrices (EEMs). This approach provided complementary and valuable information
regarding water quality in such complex ecosystem. As highlighted by the PCA and ComDim scores,
the Kadisha-Abou Ali River is highly influenced by anthropogenic activities because its watershed
districts are intensively populated. This influence reveals the implication of organic and bacteriological
parameters. To the contrary, the El Jaouz watershed is less inhabited and is characterized by mineral
parameters, which determines its water quality. This work highlighted the relationship between
fluorescence EEMs and major water quality parameters, enabling the selection of reliable water quality
indicators for the studied rivers. The proposed methodology can surely be generalized to the monitoring
of surface water quality in other rivers. Each customized water quality fingerprint should constantly be
inspected in order to account for any emerging pollution.

Keywords: PCA; ComDim; fluorescence EEMs; monitoring; Lebanon; surface water quality; water
mass reference

1. Introduction

Many aquatic ecosystems in the world undergo continuous stress, which might represent a serious
threat for water resources and public health. Many international instances rushed to take actions to
raise awareness towards this serious problem. Among them, the water action decade (2018–2028) is
currently one of the main goals of the United Nations sustainable development goals [1]. To preserve
the integrity of these aquatic ecosystems, water management programs should be established. It is,
however, obvious that no remarkable progress can be achieved in the absence of criteria, which would
uncontestably allow the monitoring of water quality.

Currently, the term “water quality” is a fuzzy concept, which hinders the establishment of reliable
monitoring tools. In fact, before seeking suitable methodologies for its evaluation, it is necessary to
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first define water quality. Although this problem is mentioned frequently in the literature [2–5] at the
present time, it remains an unsettled issue which led to the introduction of the concept of “water mass
reference”. The only solution that seems acceptable is that each type of water should constitute its own
reference. This approach leads to a comprehension of the state of a water body relative to a defined
situation at a defined time and place; this water will then act as its own relative reference [6].

In order to define the water mass reference for a water body, generally, several quality parameters
are measured. These include physico-chemical and microbiological quality variables [6]. Moreover,
some spectroscopic techniques have been developed, enabling fast, simple and non-destructive
characterization of water samples like UV [7] and fluorescence spectroscopy [8–10]. Furthermore,
samples are generally collected at different sampling sites and during multiple time periods.
This spatiotemporal analysis combined with the different quality variables generates complex data
sets enclosing, in some cases, three-dimensional data as in the case of fluorescence excitation-emission
matrices (EEMs) [10,11].

To solve this problem, multivariate approaches are employed. Principal Component Analysis
(PCA) seems preferable [12] in the case of two-dimensional (2D) data matrices, normally gathering
physico-chemical and microbiological parameters [13–15]. However, PCA is too often regarded as a
simple tool of description or reduction of the dimensionality. Nevertheless, when PCA is appropriately
used, it allows the generation of a multivariate fingerprint, defining a water mass reference and thus
enabling the development of an assessment tool for water quality monitoring. Besides unsupervised
tools, predictive modeling is also gaining much attention in this field, like the PLS-PM analysis [16],
enabling to push further the applicability of multivariate approaches towards predicting the ecological
status of aquatic ecosystems in the near future. For three-dimensional (3D) data, such as fluorescence
EEMs, several approaches have been proposed to better understand the organic matter composition of
surface water. The most popular tool remains the parallel factor analysis (PARAFAC), which allows
the decomposition of the fluorescence signal into underlying individual fluorescent phenomena while
respecting the trilinear nature of fluorescence data [8–11]. However, another interesting tool has been
developed for multiblock data analysis, called the Common Components and Specific Weight analysis
(CCSWA) or ComDim, standing for Common Dimensions [17]. ComDim assesses the relationships
between samples and variables within a multiblock setting, where several variables, organized in
blocks, are measured on the same sample [18]. In the case of EEMs, the blocks could be defined
according to emission wavelengths or excitation wavelengths allowing the treatment of such 3D
data [19].

In this study, multivariate methodologies were applied to monitor two rivers in North Lebanon
(Kadisha-Abou Ali and El Jaouz rivers). PCA was implemented to exploit matrices gathering
physico-chemical and microbiological parameters, whereas, ComDim was applied on fluorescence
EEMs. To our knowledge, no published work on the use of ComDim for the evaluation of surface
water fluorescence data has been reported yet. The overall goal of this research is to provide insight
into the relationship between fluorescence EEMs and major water quality indicators, enabling the
selection of reliable water fingerprints to define a river water mass reference.

2. Materials and Methods

2.1. Study Area

In the present study, data was collected from the Kadisha—Abou Ali and El Jaouz rivers, located in
North Lebanon (Figure 1). These two rivers flow westward to reach the Mediterranean Sea. Both river
basins are adjacent and are largely constituted of limestone. These rivers have similar geomorphological
and climatic characteristics but support different human impacts. In fact, human agglomerations and
activities (more industrialized) in the Kadisha-Abou Ali basin are remarkably concentrated and intense
at the riverbank, which is not the case for the El Jaouz River, where human activities are primarily
agricultural, and the human agglomerations are spread all over the basin area. The geomorphological
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variations (drastic changes in topography in only several kilometers from the coast to the mountains),
as well as the climatic variations (rain and snow in winter and dryness in summer), impart to these
Mediterranean system specificities proper to this region. Kadisha-Abou Ali and El Jaouz are perennial
rivers characterized by high water velocity due to an accentuated slope, with maximum flow rates being
recorded in March and April. Minimum flows are typically recorded in September and October [20].
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Figure 1. Map of the Kadisha-Abou Ali and El Jaouz rivers. Red dots refer to the monitoring sites
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The Kadisha-Abou Ali River originates in Kadisha’s cave (1850 meters above the sea level),
flows through the Kadisha Valley and reaches the sea at Tripoli. This river’s length is approximately
45 km, and its average annual flow is 369 Mm3/year (average 15.17 m3/s, max 37.3 m3/s, min 1.6 m3/s),
which constitutes approximately 7 to 12% of the total annual average flow of Lebanese surface water in
general [21,22].

The El Jaouz River, which primarily originates from sources of Jroud Tannourine, runs out
at a distance of 32.3 km with an average annual discharge rate of 76 Mm3/year (average 2.4 m3/s,
max 6.18 m3/s, min 0.4 m3/s) to reach the Mediterranean Sea at Koubba—Batroun [20].

Based on the hydrological and topographic river features, six monitoring stations on the
Kadisha-Abou Ali River (designated from KA1 to KA6) and eight monitoring stations on the El
Jaouz River (designated from J7 to J14) were selected (Figure 1). The monitoring sites were selected
according to their interest for the study (point and/or non-point sources of pollution and human
activities) and based on the accessibility of the site due to the steep slopes of the two river basins.
Supplementary Materials Table S1 describes some geographical characteristics of these sites.

2.2. Sampling and Analytical Procedures

Twenty-six monitoring campaigns were performed, covering a year and a half, extending from July
2003 to December 2004. For the Kadisha-Abou Ali River, another sampling campaign was performed,
7 years after, during the year 2010–2011. Five stations were sampled, corresponding to stations KA1 to
KA5. This data set was already published in Daou et al. [6] and was used in this study for comparison
and validation purposes.
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For physicochemical analyses, the sampled water was transported in two 1-L polyethylene bottles,
previously washed and cleaned with deionized water. For microbiological analyses, the samples were
collected in 500-mL glass bottles, previously washed and sterilized by autoclave. Thirty physicochemical
and microbiological parameters were measured following standard and recommended methods [23]
(Table 1).

Table 1. List of studied parameters and methods applied for measurement.

Parameters Abbreviation Method Parameters Abbreviation Method

Temperature (◦C) T◦ Potentiometer
HORIBA U10

Chemical oxygen
demand (mg O2/L) COD NF T 90-101

pH pH Potentiometer
HORIBA U10 Alkalinity (meq/L) TA NF T 90-036

Conductivity (µS/cm) EC Potentiometer
HORIBA U10

Chloride (mg
Cl−/L) Cl NF T90-014

Dissolved Oxygen (mg O2/L) DO Potentiometer
HORIBA U10

Total count
(CFU/100 mL) TotGerms NF T 90-401

Turbidity (NTU) Turb Potentiometer
HORIBA U10

Total Coliforms
(CFU/100 mL) TotColif NF T 90-414

Redox (mV, H) E Potentiometer WTW
pH 330 i

Fecal Coliforms
(CFU/100 mL) FecColif NF T 90-414

Suspended Solids (mg/L) SS NF T 90-105 Fecal Streptococci
(CFU/100 mL) StrepD NF T 90-416

Orthophosphate (µg P/L) PO4 NF T 90-023 Sodium (mg/L) Na ICP
Total Phosphorus (µg P/L) P NF T 90-023 Calcium (mg/L) Ca ICP

Nitrates (mg NO3
−/L) NO3 NF T 90-045 Potassium (mg/L) K ICP

N ammonia (mg N/L) NH4 NF T 90-015 Magnesium (mg/L) Mg ICP

UV Absorbance at 254 nm Abs254 Spectrophotometry
UV/visible Iron (µg/L) Fe ICP

Sulfates (mg SO4
2−/L) SO4 NF T 90-009 Manganese (µg/L) Mn ICP

Silicates (mg SiO2/L) SiO2 NF T 90-007 Barium (µg/L) Ba ICP
Dissolved organic carbon (mg

C/L) DOC Shimadzu
TOC-VCSH

Aluminum (µg/L) Al ICP

ICP = Inductively Coupled Plasma, Perkin Elmer, Optima 4300 DV, NF = Normes Francaises (French Standards).

Fluorescence 3D spectra were acquired on water samples, previously acidified and filtered, using
a Jobin Yvon HORIBA ISA Spex Fluoromax 2 spectrofluorometer (Jobin Yvon Spex, Edison, NY, USA).
Excitation–emission matrices (EEMs) were recorded as a set of emission spectra between 300 and
550 nm and at excitation wavelengths ranging between 200 and 450 nm, implying 25 excitation and
101 emission wavelength values. All samples were blank corrected using ultra-pure water.

2.3. Multivariate Analyses

First, several descriptive statistics (minimum and maximum values, mean and standard deviation)
were calculated for the data set, and Pearson correlations for the different studied parameters of the
two rivers were also evaluated (SPSS statistics software package version 22, IBM, Armonk, NY, USA).

Second, a PCA was performed on the matrix gathering physico-chemical and bacteriological
parameters using the SPSS statistics software package (version 22), while the ComDim implementation
in the SAISIR toolbox [24] was applied on fluorescence EEMs using MATLAB version R2016a
(The MathWorks, Natick, MA, USA).

2.3.1. Principal Component Analysis (PCA)

PCA is a powerful technique designed to transform the original variables of a data set into
new, uncorrelated variables (orthogonal axes), called the principal components (PC), which are linear
combinations of the original variables [25,26]. The new axes lie along the directions of maximum
variance. This technique starts with a correlation matrix describing the dispersion of the original
variables (measured parameters) and extracting the eigenvalues and eigenvectors. An eigenvector is a
list of coefficients (loadings or weightings) by which the original correlated variables are multiplied to
obtain the principal components. A principal component is the product of the original data and an
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eigenvector; the result of projecting the data onto a new axis is a new variable. There are, as many
PCs as original variables; however, PC provides information on the most meaningful parameters,
which describe the entire dataset, yielding data reduction with minimum loss of original information.
In this study, PCA was applied to a data set including 364 samples (14 sampling locations × 26 sampling
campaigns) × 30 physico-chemical and microbiological variables, after column standardization (mean
centering each variable and dividing the resulting values by the column’s standard deviation).
Various preliminary tests, such as the Kaiser, Meyer and Olkin index (KMO) and Bartlett tests were
performed to examine the appropriateness of the data for PCA analysis.

2.3.2. ComDim Method

ComDim is a particular implementation of the “Common Components and Specific Weights
Analysis” (CCSWA) procedure [27–29]. ComDim determines a common space describing the
dispersion among data sets or blocks through sample scores; each block having a specific weight or
“salience” associated with each dimension in this common space, the Common Components (CCs).
Significant differences in the values of saliences for a given dimension reflect the fact that the dimension
contains different amounts of information from each block. In addition, and for each CC, the ComDim
procedure calculates the loadings of the variables in each block, enabling further interpretation of
the highlighted discriminations [28]. Here, ComDim was applied on the 3D array (173 samples ×
25 excitation wavelengths × 101 emission wavelengths), which was treated as 101 blocks or matrices
corresponding to the emission wavelengths. The 173 samples corresponded to the 14 sampling locations
along Kadisha-Abou Ali and El Jaouz rivers, sampled between July and February, thus covering
14 sampling campaigns.

3. Results and Discussions

The summary of the minima, maxima and mean values, as well as the standard deviations
of the measured variables in both river water samples, for the complete seasons, are attached as
Supplementary Materials Tables S2 and S3. This will provide readers with an overview of the
descriptive database of the two studied rivers.

3.1. Study of Bivariate Correlations

The correlations between parameters’ couples were studied using Pearson coefficient method (R).
Considering 435 sets of coupled variables present in the correlation matrix [(302-30)/2], the frequencies
of the coupled variables with Pearson coefficients higher than 0.5 are presented in Figure 2, for each
site. In fact, these correlation coefficients can be simultaneously affected by spatial and temporal
variations [30]. In this study, a site-variable correlation matrix was selected in order to evaluate
spatial variations of the considered variables. Moreover, we assume that, after the introduction of
any anthropogenic disturbance, the aquatic ecosystem attempts to create or modify the chemical
bonds between the different parameters. In that way, by reestablishing the equilibrium generated by
physicochemical and biological processes, the response to the disturbance is immediate. The number
as well as the intensity of the bivariate correlations must therefore be modified (generally increased) by
any aquatic ecosystem pollution.

Concerning the Kadisha-Abou Ali River, the results presented in Figure 2a show that the number
of correlations having R higher than 0.5 increased for the sites KA2, KA5 and KA6. This finding is
due to the wastewater discharge impact of the Tourza agglomeration at site KA2, and the strongly
anthropogenic disturbance from the Tripoli agglomeration at sites KA5 and KA6. The same trend has
been already described in our previous study on the Kadisha-Abou Ali River [6]. Moreover, Varol [31]
reported a decreasing trend of correlations of certain parameters like TSS, COD, NH4-N, Na and K due
to anthropogenic activities, highlighting the link between anthropogenic disturbances and the number
of correlated variables. Concerning the El Jaouz River (Figure 2b), a higher number of significant
correlations is observed for site J11, a site-variable correlation as described by the same study [31].
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This finding is probably due to the agricultural activities located in the Kfarhelda agricultural area,
which may contribute to the eutrophication process increased by the natural deceleration of the water
mass flow in this highland area. For the El Jaouz River, the results do not follow, as we would
generally expect, an increasing progression in the upstream-downstream direction. If one considers the
dispersion of the human activities along the river basins, slopes and the processes of self-purification,
this observation does not seem abnormal.

Water 2020, 12, x FOR PEER REVIEW 6 of 19 

 

The correlations between parameters’ couples were studied using Pearson coefficient method 
(R). Considering 435 sets of coupled variables present in the correlation matrix [(302-30)/2], the 
frequencies of the coupled variables with Pearson coefficients higher than 0.5 are presented in Figure 
2, for each site. In fact, these correlation coefficients can be simultaneously affected by spatial and 
temporal variations [30]. In this study, a site-variable correlation matrix was selected in order to 
evaluate spatial variations of the considered variables. Moreover, we assume that, after the 
introduction of any anthropogenic disturbance, the aquatic ecosystem attempts to create or modify 
the chemical bonds between the different parameters. In that way, by reestablishing the equilibrium 
generated by physicochemical and biological processes, the response to the disturbance is immediate. 
The number as well as the intensity of the bivariate correlations must therefore be modified (generally 
increased) by any aquatic ecosystem pollution. 

 

 

Figure 2. Number of couples of correlated variables with Pearson coefficient >0.5 for each station of 
the Kadisha Abou Ali (a) and El Jaouz (b) rivers. 

Concerning the Kadisha-Abou Ali River, the results presented in Figure 2a show that the number 
of correlations having R higher than 0.5 increased for the sites KA2, KA5 and KA6. This finding is 
due to the wastewater discharge impact of the Tourza agglomeration at site KA2, and the strongly 
anthropogenic disturbance from the Tripoli agglomeration at sites KA5 and KA6. The same trend has 
been already described in our previous study on the Kadisha-Abou Ali River [6]. Moreover, Varol 
[31] reported a decreasing trend of correlations of certain parameters like TSS, COD, NH4-N, Na and 
K due to anthropogenic activities, highlighting the link between anthropogenic disturbances and the 
number of correlated variables. Concerning the El Jaouz River (Figure 2b), a higher number of 
significant correlations is observed for site J11, a site-variable correlation as described by the same 
study [31]. This finding is probably due to the agricultural activities located in the Kfarhelda 
agricultural area, which may contribute to the eutrophication process increased by the natural 
deceleration of the water mass flow in this highland area. For the El Jaouz River, the results do not 

a)
0

20

40

60

80

100

120

140

KA1 KA2 KA3 KA4 KA5 KA6
Stations

Nu
m

be
r o

f c
ou

pl
es

 o
f 

co
rr

el
at

ed
 v

ar
ia

bl
es

b)

0

20

40

60

80

100

120

140

J7 J8 J9 J10 J11 J12 J13 J14

Stations

Nu
m

be
r o

f c
ou

pl
es

 o
f 

co
rr

el
at

ed
 v

ar
ia

bl
es

Figure 2. Number of couples of correlated variables with Pearson coefficient >0.5 for each station of
the Kadisha Abou Ali (a) and El Jaouz (b) rivers.

3.2. Multivariate Study of Water Characteristics

Two different multivariate techniques are applied here to understand the factors that influence
surface water quality in the two studied watersheds. This approach will provide valuable tools for
interpreting such large dataset and building a multivariate model allowing the definition of the water
mass references for the two studied rivers. First, PCA was used to interpret the interactions between
the physicochemical and/or microbiological parameters [5]. To reduce the dimensionality of our dataset
and to be able to compare the water quality of the different river sites [15], several PCAs were applied
to our database (14 samples × 30 parameters × 26 sampling campaigns). Second, ComDim was applied
to assess organic matter composition through fluorescence properties of these watersheds, since their
characteristics may reflect the water quality in aquatic ecosystems [32].

3.2.1. Spatial Study by PCA—The Two Rivers, all Sites, All Parameters

For this PCA, the preliminary tests were adequate (KMO = 0.847 and significance level = 0),
indicating the presence of significant relationships between the variables [13]. Insofar, as they are
satisfactory, these tests will not be further presented. Supplementary Materials Table S4 shows the
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explained variances for the six extracted components, which explain a relatively significant portion
of the total dataset variance. The variable “loadings” are presented in Table 2. The most significant
correlations are highlighted, i.e., those which contribute the most to the construction of the components.

Table 2. Matrix of the first six components obtained for the general Principal Component Analysis
(PCA) applied to the data matrix including the two rivers, all variables and all sites.

Variable Component

1 2 3 4 5 6
Abs254 0.875 0.088 0.183 0.039 0.032 0.037

NH4 0.786 0.144 0.228 0.263 −0.018 −0.034
DOC 0.759 0.160 0.237 −0.058 0.089 −0.038

K 0.704 0.444 0.357 0.194 0.088 0.097
SS 0.623 0.126 0.104 0.169 0.128 0.128
Mn 0.611 0.186 0.198 0.178 0.488 0.105
Na 0.554 0.509 0.420 0.343 −0.014 0.058
Mg 0.019 0.825 0.032 −0.087 0.103 0.023
Ca 0.255 0.790 0.156 0.206 0.103 −0.036
EC 0.171 0.673 0.269 0.395 −0.017 −0.188
TA 0.316 0.639 −0.047 0.119 −0.186 −0.002
T◦ 0.139 0.638 0.229 0.086 0.063 −0.483

SiO2 0.086 0.628 0.180 0.123 0.024 0.203
SO4 0.383 0.520 −0.023 -0.036 0.013 0.517
Cl 0.456 0.479 0.241 0.466 0.012 −0.050

TotColif 0.151 0.150 0.941 0.104 0.017 0.050
StrepD 0.159 0.084 0.876 0.066 0.042 0.058

FecColif 0.283 0.102 0.820 0.130 −0.008 0.043
TotGerms 0.414 0.117 0.738 0.143 0.045 0.095

Turb 0.108 0.242 0.283 0.240 0.097 −0.001
pH −0.004 0.050 0.040 −0.730 0.066 −0.161

COD 0.136 0.134 0.187 0.685 0.041 0.030
Ba 0.234 0.266 0.179 0.587 -0.077 −0.182
E −0.179 −0.214 −0.135 −0.308 -0.009 0.290
Al 0.048 0.008 −0.014 −0.074 0.963 −0.012
Fe 0.165 0.031 0.044 −0.021 0.961 −0.001

DO −0.031 −0.209 0.030 −0.038 0.049 0.773
NO3 0.123 0.392 0.178 0.356 0.012 0.522

P 0.141 0.146 0.334 0.032 −0.033 0.472
PO4 0.313 0.259 0.328 0.253 −0.053 0.382

According to Table 2, the first component primarily describes the anthropogenic water
characteristics, comprising higher loadings for Abs254, DOC, NH4 and Mn. The second component
describes the mineral water characteristics primarily related to the rock substrate (EC, Na, Ca, Mg and
TA), as well as the climatic conditions (T◦). The characteristics of these first two components have
been already observed in previous studies [13,16,26,33–35]. More precisely, Bouza-Deaño et al. [30]
and Marinović Ruždjak and Ruždjak [36] reported that the first and forth components presented
mineral (geogenic) and anthropogenic characteristics, respectively. The third component exclusively
describes the variables defining the microbiological parameters. A similar result was highlighted
by Razmkhah et al. [33], where the third component in the PCA conducted on their overall database
was described solely by total and fecal coliforms, contributing to the organic pollutions of their
watershed. Component 5 describes minor elements and component 6 is defined by the agricultural
impacts. These findings demonstrate that there are generally few links between the organic and mineral
characteristics of the water. The fact that component 3 only describes the microbiological water quality
also shows the weak links between the physicochemical (specifying by that, the mineral parameters)
and the microbiological parameters. The microbial contamination could be logically more associated
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to organic and nutrient variables originated from municipal and industrial point-source discharges,
agricultural non-point sources, livestock operations and/or domestic sources [13].

For all PC scores, the choice was to represent the barycenter of all the spatiotemporal data, which
differentiates each site. The first PCA shows that the two rivers are well discriminated in the PC1-PC2
plot and, in particular, the sites KA1, KA5 and KA6 of the Kadisha-Abou Ali River (Figure 3a). The other
sites of the same river (KA2, KA3 and KA4) are located close to those of the El Jaouz River, indicating
that their water has relatively similar characteristics. Site KA6 is discriminated by strong organic
characteristics, primarily related to the anthropogenic inputs of Tripoli but also by certain mineral
parameters. These mineral characteristics cannot in this case be only linked to the watershed substrate.
A considerable part comes from the anthropogenic inputs. Site KA5 has strong mineral characteristics
probably also due to anthropogenic origins. This site has less pronounced organic characteristics than
site KA6 but stronger than the other sites. That finding is partly due to the organic and mineral inputs
of the industrial activities of the suburbs of Tripoli.Water 2020, 12, x FOR PEER REVIEW 9 of 19 
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and third components, for the two river sites during the entire study period.

Site KA1 has low mineral characteristics (negative quadrant of PC2), as well as low organic
characteristics (negative quadrant of PC1). One could assign this water as the “water mass reference”
for the studied river, taking into consideration the very low anthropogenic inputs from its location at
the head of the catchment area. The same observation was highlighted by Zheng et al. [37], where they
found that the site located in the headwater of the Nenjiang River in China had an optimal water
quality due to limited human activities. Ustaoğlu et al. [38] reported that the upstream site of the
Turnasuyu stream in Turkey was separated from other stations in the dendrogram obtained from the
cluster analysis. Karakaya and Evrendilek [39] also reported a significant difference between upstream
and downstream stations of the Melen River in Turkey, and variables revealed a significant water
quality degradation along the upstream-to-downstream gradient due to pollution input from point
and non-point sources. In fact, the midstream and downstream of the Melen River were similar to
each other, while the upstream station was different. Once more, these observations show a large
extent of similarities with our study, where an upstream-downstream degradation of water quality
was highlighted for the Kadisha-Abou Ali River. The position of the downstream sites (KA2, KA3 and
KA4) on the PC plot regarding this general approach seems to indicate that their water quality is rather
similar. However, a specific analysis of only these sites will be able to highlight the differences in quality,
which exist between them. Considering the scores plot, specifically PC1-PC3 (Figure 3b), a very clear
discrimination of site KA6 can be noticed based on the bacteriological water quality (position on PC3).
The decrease of physicochemical water quality at this site is accompanied by a drastic degradation of
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the microbiological quality. In a study on the same river [21], it was also reported that Tripoli station
(corresponding to KA6 in our study) is highly polluted mainly due to direct sewage discharge. Thus,
the conditions for bacterial growth were favorite in summer where the water flow is relatively slow
(0.8 m3/s). To the contrary, at the other sites, discrimination from the microbiological point of view does
not appear evident. That finding is due to the “collapsing” effect with respect of the PC plot of site KA6
and, to a certain extent, of site KA5. The characteristics of this water, from its very large anthropogenic
stress are very different from the others, which in comparison appear to be of similar quality.

3.2.2. Spatial Study by PCA—The Two Rivers, All Variables, Excluding Sites KA5 and KA6

To better understand the ambiguity caused by the very disparate water quality of sites KA5
and KA6, a solution could be to perform a new PCA without these two sites. This approach was
already tested in our previous work on the Arka River [14]. Table 3 represents the components matrix,
excluding sites KA5 and KA6. The new calculated loadings reveal that the most descriptive variables
in this PCA are not, which is normal, the same as those in the PCA with all sites (Table 2). In fact, the
variables describing PC1 are no longer those of organic but rather of mineral character (EC, Mg, Ca,
Na, Cl, TA, K and T◦). The temperature is curiously associated with these variables, because, with the
mineral characteristics, it varies inversely with altitude. These variables, and principally the major
elements, are associated with the rock substrate and less probably with anthropogenic activities.

Table 3. Matrix of the first six components obtained for the PCA applied to the data matrix including
the two rivers, all variables and all sites excluding KA5 and KA6.

Variable Component

1 2 3 4 5 6
Mg 0.802 0.092 −0.004 0.023 0.248 0.083
Ca 0.801 0.138 −0.004 0.038 0.036 −0.025
Na 0.798 −0.017 0.341 0.067 −0.212 0.073
EC 0.777 −0.026 −0.123 0.107 −0.197 −0.148
TA 0.740 −0.107 0.111 −0.030 0.084 −0.005
K 0.668 0.221 0.357 0.075 0.297 0.126
Cl 0.647 0.051 −0.092 0.076 0.089 −0.255
T◦ 0.605 0.055 −0.585 0.030 0.176 0.143
E −0.335 0.059 0.002 0.050 0.273 −0.074

Turb 0.317 0.100 0.076 0.194 −0.110 0.074
Fe 0.007 0.951 −0.008 −0.001 −0.028 0.063
Al 0.015 0.931 0.003 0.000 −0.065 0.072
Mn 0.098 0.792 0.004 −0.001 0.130 0.055
DO −0.265 0.072 0.745 −0.076 0.168 −0.167
PO4 0.041 −0.055 0.566 −0.075 0.129 0.094
SO4 0.434 0.049 0.527 0.053 0.318 0.052
NH4 0.087 −0.053 0.496 0.322 −0.202 0.142

SS 0.194 0.261 0.405 0.306 0.031 0.038
FecColif 0.297 −0.121 0.319 0.217 −0.066 0.133
TotColif 0.080 −0.021 0.015 0.935 0.062 0.034
StrepD −0.001 0.010 0.021 0.890 0.107 −0.064

P −0.131 −0.064 0.171 −0.053 0.616 0.085
Ba 0.324 −0.137 0.058 0.162 −0.518 −0.303

NO3 0.226 0.054 0.456 0.057 0.509 −0.291
SiO2 0.408 −0.019 −0.047 0.039 0.500 −0.180

TotGerms 0.110 −0.002 0.046 0.171 0.337 −0.015
pH −0.007 0.074 0.030 0.047 0.005 0.721

DOC 0.125 −0.011 0.001 0.123 0.093 −0.599
COD 0.093 0.152 −0.107 0.055 0.343 0.462

Abs254 0.173 0.012 0.294 0.188 0.004 0.423
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The variables describing PC2 (Fe, Al and Mn) cannot, to the best of our knowledge, be correlated
with any particular anthropogenic activities and are attached to the minor elements. The rock substrate
might have a considerable impact on the characterization of this component. PC3 is, to a certain
extent, describing the anthropogenic activities (DO, PO4, SO4, NH4, SS, FecColif). In this instance,
except for total coliforms and streptococci D, the bacteriological variables do not dominate PC4.
Agricultural impact is, to a high extent, represented by PC5 (P, Ba, NO3, SiO2, TotGerms). Lastly,
organic matter contributes to the construction of PC6 (pH, COD, DOC, Abs254). It would be noted
here that the classification order according to the decreasing “explained variance” of the components
defines a reduction in the processes affecting water quality. This finding, in particular, invokes that the
organic materials for these waters is not essential, while it was the case for sites KA5 and KA6.

The new scores plot defined by the first two components PC1-PC2 (Figure 4) shows that site KA1
can be distinguished from the others and can thus always be assigned as the “water mass reference,”
undergoing only low mineral and anthropogenic activities. The sites of the El Jaouz River are specially
discriminated by PC2 and thus by the minor elements. They evolve with this component, showing a
remarkable sorting in the upstream-downstream direction of the river. However, in this representation,
the positions of sites J7 and J8, as well as sites J9, J10, J11 and J12, are highly similar. Since El Jaouz River
undergoes much less anthropogenic activities than Kadisha-Abou Ali, the similarities in the status
of these sites can be potentially attributed to seasonal dynamics. The results of Ustaoğlu et al. [38]
obtained on Turnasuyu Stream in Turkey, which is relatively preserved, support our latter statement.
They obtained great similarity between the mid-stream and downstream stations on the seasonal basis,
since this stream has an excellent water quality in terms of the water quality index (WQI) calculated in
this study.
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3.2.3. Temporal Study by PCA

In this section, an interesting application of the PCA is proposed. To understand the anthropogenic
impacts on water quality, this application involves the study of scores’ dispersion, for the same site,
during the entire campaign period. In Figure 5, the scores of sites KA1 and KA2 corresponding to the
26 sampling campaigns are represented.

It can be observed that the dispersion on the score plot of the first two components PC1-PC2 for
site KA2 is considerably more important than for site KA1. This dispersion occurs primarily according
to PC2 describing the mineral parameters. According to PC1, which primarily describes the organic
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parameters, a dispersion of site KA2 is also very important compared with site KA1. This dispersion is
probably due to the anthropogenic impacts of the agglomeration of Tourza (Supplementary Materials,
Table S1). In fact, when two relatively close sites are compared in the same geographical area,
the climatic and hydrodynamic factors vary weakly between the sites. As only the anthropogenic
impacts can change, they will thus be considered as the main factors responsible for the difference in the
data value dispersion representative of the two sites. It is thus clear that insofar, as they are regarded
as natural fluctuations, the seasonal fluctuations contribute to reveal the anthropogenic source of the
pollution. Furthermore, for sites KA1 and KA2, the respective positions in the scores plot represent
the scores according to season (labeled: 1 for summer; 2 for autumn; 3 for winter and 4 for spring).
This finding shows that the mineral impacts on water quality depend on seasonal variations (greater in
the autumn and lesser in summer). This result is typical of Mediterranean climatic regimes [35,39].
The same observations on the Mediterranean temporary Vène River were reported by David et al. [40],
highlighting that the geochemical parameters had the greatest influence during high flow periods
whereas anthropogenic variables were clearly the most important parameters during low flows, as little
or no dilution of sewage effluents occurred.Water 2020, 12, x FOR PEER REVIEW 12 of 19 
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3.2.4. Surface Water Monitoring: Use of Multivariate Fingerprints

As stated early on, PCA is a reliable tool for building multivariate models, allowing the definition
of water mass references for aquatic ecosystems. These models constitute a spatiotemporal fingerprint
for the studied ecosystem at the time of sampling. For easier and more reliable monitoring of
water quality over time, an interesting approach would consist in reducing the dimensionality of
the data set, by selecting parameters having the highest loadings thus weighing the most in the
highlighted discriminations. These parameters would then be reevaluated at a predefined frequency
and reincorporated in the calculations. Therefore, a visual follow-up can be performed whether the
water quality improved or degraded over time and due to which parameters. This approach can be
considered as highly reliable, since the watershed constitutes its own reference.

This methodology is tested on the Kadisha-Abou Ali River (sites KA1 to KA5), as it presented
interesting spatiotemporal variations in terms of its water quality. Sixteen parameters were considered,
after variable reduction. PCA was then applied to the matrix including data from 2 sampling campaigns,
the second performed 7 years later. The variable “loadings” presented in Table 4 show a similar
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classification of variables as previously, where PC1 is mainly described by mineral parameters (EC, T,
Cl, TA) and PC2 by anthropogenic ones (TotGerms, FecColif, NH4, Abs254).

Table 4. Matrix of the first six components obtained for the PCA applied to the matrix including selected
variables and sites, for the Kadisha-Abou Ali River, for two sampling campaigns (2003 and 2010).

Variable Component

1 2 3 4 5 6
EC 0.832 0.146 0.206 0.208 0.077 0.008
T◦ 0.794 0.114 −0.186 0.059 −0.259 0.327
Cl 0.77 0.255 0.225 0.153 −0.136 −0.242
TA 0.702 0.171 0.381 0.052 0.249 0.152

TotGerms 0.022 0.867 0.017 0.202 0.192 −0.019
FecColif 0.184 0.79 0.082 0.342 0.223 −0.159

NH4 0.23 0.78 0.151 0.139 −0.101 −0.031
Abs254 0.186 0.756 0.157 −0.038 −0.361 0.021

Turb 0.023 0.104 0.866 0.129 0.038 0.079
SO4 0.327 0.21 0.686 −0.004 0.253 0.123
NO3 0.223 0.037 0.551 0.428 0.252 −0.282

StrepD 0.11 0.178 0.104 0.921 0.061 −0.067
TotColif 0.212 0.453 0.137 0.766 0.176 −0.067

SiO2 0.226 0.086 0.256 0.227 0.839 0.007
Ca 0.46 0.09 −0.121 −0.034 −0.791 0.182
pH 0.116 −0.11 0.116 −0.116 −0.081 0.933

However, what is mostly important in this methodology resides in the scores plot (Figure 6),
acting as the water quality fingerprint. A similar spatial distribution of samples is clearly noticed for
the two sampling campaigns, where stations KA1 are well discriminated according to PC1 and stations
KA5 according to PC2. Stations KA2, KA3 and KA4 are still clustered around the center, indicating that
they have similar and average characteristics.
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Scientists working in the field of surface water quality, by various means, can use this overlay
of multivariate fingerprints. In fact, the position of samples in this plot can indicate whether their
water quality changed over time, both positively or negatively. For instance, it can be noticed that even
after 7 years, KA1 characteristics are still defined by relatively low mineral and low anthropogenic
parameters, and can thus always be assigned as the “water mass reference,” for this river. However, the
position of station KA5 moved considerably according to PC2, indicating a better water quality in 2010
compared to 2003, since anthropogenic parameters defining PC2 are less weighing in its discrimination.

3.2.5. ComDim on 3D Fluorescence Data

ComDim was performed on fluorescence 3D EEMs, extracting 6 CCs. In the following, the first two
CCs (CC1 and CC2) are considered (Figure 7), since they enclose relevant information related to specific
spatiotemporal discriminations. The ComDim scores are presented in Figure 7a, where the same
samples are labeled in three different ways to facilitate their interpretation: the river (KA: Kadisha-Abou
Ali; J: El Jaouz), the sampling site (1 to 6 for the Kadisha-Abou Ali River and 7 to 14 for the El Jaouz
River) and the sampling campaign covering the first 14 campaigns, ranging from July till February,
at a frequency of 2 campaigns per month (labeled from 1 to 14). Saliences and loadings are presented
in Figure 7b,c, respectively, showing the contribution of tentatively identified fluorophores in the
highlighted discriminations.

According to CC1 scores (Figure 7a), all sites of the Kadisha-Abou Ali River are discriminated
for the sampling campaigns 12, 13 and 14 corresponding to winter season (January and February).
Moreover, all sites of the El Jaouz River are discriminated but for sampling campaigns from 4 (September)
to 8 (October). These discriminations, which underline a seasonal variation, are influenced by two
fluorophores highlighted by the saliences (Figure 7b) and the loadings (Figure 7c) of CC1. These signals
were tentatively identified as aromatic proteins and fulvic acid like fluorophores (Table 5, [10,11,41–43]).
According to Xie et al. [42], the protein like fluorophore is frequently associated with anthropogenically
derived organics in wastewater-impacted waters, whereas fulvic acids are a prevailing fraction of
natural organic compounds [44]. These fluorophores have high seasonal dependency related to high
flows in wet seasons and concentration effect in dry seasons [42]. In our case, the discrimination of El
Jaouz River samples in dry season is probably related to concentration of natural organic compounds
all along the river, whereas the Kadisha-Abou Ali River samples corresponding to the wet season may
be influenced by increased wastewater discharges during this season. The last hypothesis may be
supported by the spatial trend noticed on the Kadisha-Abou Ali scores, where the scores of campaigns
12, 13 and 14 increase when going down from the source towards the outlet, while the El Jaouz scores
remain unchanged. Surprisingly, ComDim on EEMs shows the same trend as bivariate correlations
(Figure 2) and PCA (Figure 3), along the course of the two studied rivers; the Kadisha-Abou Ali River
is influenced by massive urban activities unlike the El Jaouz River, which is much less stressed by
human activities.

Table 5. Spectral characteristics and tentative identification of ComDim loadings.

Common
Component Discriminated Samples λex (max) nm λem (max) nm Tentative

Identification Reference

CC1

Rivers: KA and J
Sites: all

Campaigns:
KA: 12/13/14

J: 4/5/6/7/8

200–210 300–375 (310) Aromatic protein [41,42]
200–210 495–550 (540) Fulvic acid like [41]

CC2
River: K

ASites: 5 and 6
Campaigns: all

315–388 (346) 380–480 (433) Wastewater/nutrient
enrichment tracer [10,11,43]
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CC2 scores highlight a very clear discrimination of sites KA5 and KA6 of the Kadisha-Abou
Ali River. Based on the saliences (Figure 7b) and the loadings (Figure 7c) of CC2, the fluorophore
implicated in this discrimination was tentatively identified as a characteristic of wastewater (Table 5).
Once more, these sites appear as highly influenced by the anthropogenic discharges of surrounding
agglomerations, mainly Tripoli. This result obtained on EEMs validates what was found by PCA
analysis, which was based on physico-chemical and microbiological parameters. These similarities
highlight the significant correlation between EEMs, organic physico-chemical and microbiological
parameters, which validates the potential use of EEMs as a water quality indicator [32].

4. Conclusions

In this study, multivariate analyses, particularly PCA and ComDim, are successfully used to
assess spatiotemporal variations in the surface water quality of two Lebanese rivers, the Kadisha-Abou
Ali and El Jaouz. PCA and ComDim easily identify the spatial differences in surface water quality,
the Kadisha-Abou Ali River being subjected to considerably greater anthropogenic stress than the El
Jaouz River. In fact, sites KA5 and KA6 were particularly discriminated based on physico-chemical
and microbiological indicators as well as on EEMs. Moreover, PCA and ComDim proved to be efficient
in temporal studies, where score dispersion can be compared between sites in order to highlight any
seasonal and/or anthropogenic variation. This multivariate approach combining physico-chemical,
microbiological and fluorescence EEMs could be considered as a water quality fingerprint of the
studied rivers, allowing the definition of a water mass reference, pillar for future monitoring. In fact,
a water quality follow-up of Kadisha-Abou Ali River conducted seven years later shows a similar
spatial distribution of samples KA1 to KA5 initially observed, with KA1 always considered as “water
mass reference” and a slight improvement of KA5 water quality.

In conclusion, this methodology may be extrapolated to other fresh water ecosystems, in order to
build their own water quality fingerprint, which will eventually lead to an easier and more reliable
identification and monitoring of pollution sources. In fact, the natural variability intimately connected
to environmental ecosystems constitutes one of the main challenges when interpreting water quality
fingerprints. Pollution indicators should always be reassessed, for any new point or non-point source
of pollution emerging over time.
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5. Walker, D.; JakovljeviĆ, D.; Savic, D.; Radovanovic, M. Multi-criterion water quality analysis of the Danube
River in Serbia: A visualisation approach. Water Res. 2015, 79, 158–172. [CrossRef]

6. Daou, C.; Salloum, M.; Legube, B.; Kassouf, A.; Ouaini, N. Characterization of spatial and temporal patterns
in surface water quality: A case study of four major Lebanese rivers. Environ. Monit. Assess. 2018, 190, 485.
[CrossRef]

7. Ates, N.; Kitis, M.; Yetis, U. Formation of chlorination by-products in waters with low SUVA—Correlations
with SUVA and differential UV spectroscopy. Water Res. 2007, 41, 4139–4148. [CrossRef]

8. Barbosa, M.O.; Ribeiro, A.R.; Ratola, N.; Hain, E.; Homem, V.; Pereira, M.F.R.; Blaney, L.; Silva, A.M.
Spatial and seasonal occurrence of micropollutants in four Portuguese rivers and a case study for fluorescence
excitation-emission matrices. Sci. Total Environ. 2018, 644, 1128–1140. [CrossRef]

9. Powers, L.; Luek, J.L.; Schmitt-Kopplin, P.; Campbell, B.J.; Magen, C.; Cooper, L.; Gonsior, M. Seasonal changes
in dissolved organic matter composition in Delaware Bay, USA in March and August 2014. Org. Geochem.
2018, 122, 87–97. [CrossRef]

10. Yan, C.; Liu, H.; Sheng, Y.; Huang, X.; Nie, M.; Huang, Q.; Baalousha, M. Fluorescence characterization of
fractionated dissolved organic matter in the five tributaries of Poyang Lake, China. Sci. Total. Environ. 2018,
1311–1320. [CrossRef]

11. Murphy, K.R.; Hambly, A.; Singh, S.; Henderson, R.K.; Baker, A.; Stuetz, R.M.; Khan, S.J. Organic Matter
Fluorescence in Municipal Water Recycling Schemes: Toward a Unified PARAFAC Model. Environ. Sci.
Technol. 2011, 45, 2909–2916. [CrossRef]

12. Kannel, P.R.; Lee, S.; Kanel, S.; Khan, S.P. Chemometric application in classification and assessment of
monitoring locations of an urban river system. Anal. Chim. Acta 2007, 582, 390–399. [CrossRef] [PubMed]

13. Barakat, A.; El Baghdadi, M.; Rais, J.; Aghezzaf, B.; Slassi, M. Assessment of spatial and seasonal water
quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. Int. Soil Water
Conserv. Res. 2016, 4, 284–292. [CrossRef]

14. Daou, C.; Nabbout, R.; Kassouf, A. Spatial and temporal assessment of surface water quality in the Arka
River, Akkar, Lebanon. Environ. Monit. Assess. 2016, 188, 684. [CrossRef] [PubMed]

15. Wang, J.; Liu, G.; Liu, H.; Lam, P.K.; Lam, P.K. Multivariate statistical evaluation of dissolved trace elements
and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. Sci. Total Environ. 2017,
583, 421–431. [CrossRef] [PubMed]

16. Fernandes, A.; Fernandes, L.F.S.; Cortes, R.; Pacheco, F. The Role of Landscape Configuration, Season, and
Distance from Contaminant Sources on the Degradation of Stream Water Quality in Urban Catchments.
Water 2019, 11, 2025. [CrossRef]

17. Qannari, E.M.; Wakeling, I.; Courcoux, P.; MacFie, H.J. Defining the underlying sensory dimensions.
Food Qual. Preference 2000, 11, 151–154. [CrossRef]

18. El Ghaziri, A.; Cariou, V.; Rutledge, D.N.; Qannari, E.M. Analysis of multiblock datasets using ComDim:
Overview and extension to the analysis of (K + 1) datasets. J. Chemom. 2016, 30, 420–429. [CrossRef]

19. Karoui, R.; Dufour, E.; Schoonheydt, R.; De Baerdemaeker, J. Characterisation of soft cheese by front face
fluorescence spectroscopy coupled with chemometric tools: Effect of the manufacturing process and sampling
zone. Food Chem. 2007, 100, 632–642. [CrossRef]

20. Ministry of Environment (MOE). State of the Environment Report (SOER), Lebanon. MOE, UNDP and
ECODIT, p. 47, 2010. Available online: http://www.undp.org.lb/communication/publications/downloads/
SOER_en.pdf. (accessed on 3 September 2019).

21. Massoud, M.A.; El-Fadel, M.; Scrimshaw, M.; Lester, J. Factors influencing development of management
strategies for the Abou Ali River in Lebanon. Sci. Total. Environ. 2006, 362, 15–30. [CrossRef]

22. Kabbara, N.; Benkhelil, J.; Awad, M.; Barale, V. Monitoring water quality in the coastal area of Tripoli (Lebanon)
using high-resolution satellite data. ISPRS J. Photogramm. Remote Sens. 2008, 63, 488–495. [CrossRef]

http://dx.doi.org/10.1016/j.watres.2005.11.042
http://www.ncbi.nlm.nih.gov/pubmed/16442142
http://dx.doi.org/10.1016/j.marpolbul.2012.01.032
http://www.ncbi.nlm.nih.gov/pubmed/22330076
http://dx.doi.org/10.1016/j.watres.2015.03.020
http://dx.doi.org/10.1007/s10661-018-6843-8
http://dx.doi.org/10.1016/j.watres.2007.05.042
http://dx.doi.org/10.1016/j.scitotenv.2018.06.355
http://dx.doi.org/10.1016/j.orggeochem.2018.05.005
http://dx.doi.org/10.1016/j.scitotenv.2018.05.099
http://dx.doi.org/10.1021/es103015e
http://dx.doi.org/10.1016/j.aca.2006.09.006
http://www.ncbi.nlm.nih.gov/pubmed/17386518
http://dx.doi.org/10.1016/j.iswcr.2016.11.002
http://dx.doi.org/10.1007/s10661-016-5686-4
http://www.ncbi.nlm.nih.gov/pubmed/27878544
http://dx.doi.org/10.1016/j.scitotenv.2017.01.088
http://www.ncbi.nlm.nih.gov/pubmed/28126280
http://dx.doi.org/10.3390/w11102025
http://dx.doi.org/10.1016/S0950-3293(99)00069-5
http://dx.doi.org/10.1002/cem.2810
http://dx.doi.org/10.1016/j.foodchem.2005.09.082
http://www.undp.org.lb/communication/publications/downloads/SOER_en.pdf.
http://www.undp.org.lb/communication/publications/downloads/SOER_en.pdf.
http://dx.doi.org/10.1016/j.scitotenv.2005.09.079
http://dx.doi.org/10.1016/j.isprsjprs.2008.01.004


Water 2020, 12, 1673 17 of 18

23. Association Française de Normalisation (AFNOR) (French Association for Standardization). Qualité de
l’eau—Recueil de Normes Françaises (Water Quality—Collection of French Standards); Association Française de
Normalisation: Paris, France, 1994.

24. Cordella, C.B.; Bertrand, D. SAISIR: A new general chemometric toolbox. TrAC Trends Anal. Chem. 2014, 54,
75–82. [CrossRef]

25. Bouroche, J.M.; Saporta, G. L’analyse des données. Collection Que sais-je? In Data Analysis. Collection What
Do I Know; Presses Universitaires de France: Paris, France, 1992.

26. Singh, K.P.; Malik, A.; Sinha, S. Water Quality Assessment and Apportionment of Pollution Sources of Gomti
River (India) Using Multivariate Statistical Techniques—A Case Study. Anal. Chim. Acta 2005, 538, 355–374.
[CrossRef]

27. Bouveresse, D.J.-R.; Pinto, R.C.; Schmidtke, L.; Locquet, N.; Rutledge, D. Identification of significant factors
by an extension of ANOVA–PCA based on multi-block analysis. Chemom. Intell. Lab. Syst. 2011, 106, 173–182.
[CrossRef]

28. Rosa, L.N.; De Figueiredo, L.C.; Bonafé, E.G.; Coqueiro, A.; Visentainer, J.V.; Março, P.H.; Rutledge, D.N.;
Valderrama, P. Multi-block data analysis using ComDim for the evaluation of complex samples:
Characterization of edible oils. Anal. Chim. Acta 2017, 961, 42–48. [CrossRef]

29. Bouhlel, J.; Bouveresse, D.J.-R.; Abouelkaram, S.; Baéza, E.; Jondreville, C.; Travel, A.; Ratel, J.; Engel, E.;
Rutledge, D.N. Comparison of common components analysis with principal components analysis and
independent components analysis: Application to SPME-GC-MS volatolomic signatures. Talanta 2018, 178,
854–863. [CrossRef]

30. Bouza-Deaño, R.; Rodriguez, M.T.; Fernández-Espinosa, A. Trend study and assessment of surface water
quality in the Ebro River (Spain). J. Hydrol. 2008, 361, 227–239. [CrossRef]

31. Varol, M. Spatio-temporal changes in surface water quality and sediment phosphorus content of a large
reservoir in Turkey. Environ. Pollut. 2020, 259, 113860. [CrossRef]

32. Tang, J.; Li, X.; Cao, C.; Lin, M.; Qiu, Q.; Xu, Y.; Ren, Y. Compositional variety of dissolved organic matter and
its correlation with water quality in peri-urban and urban river watersheds. Ecol. Indic. 2019, 104, 459–469.
[CrossRef]

33. Razmkhah, H.; Abrishamchi, A.; Torkian, A. Evaluation of spatial and temporal variation in water quality by
pattern recognition techniques: A case study on Jajrood River (Tehran, Iran). J. Environ. Manag. 2010, 91,
852–860. [CrossRef]

34. Vega, M.; Pardo, R.; Barrado, E.; Deban, L. Assessment of seasonal and polluting effects on the quality of
river water by exploratory data analysis. Water Res. 1998, 32, 3581–3592. [CrossRef]

35. El Najjar, P.; Kassouf, A.; Probst, A.; Probst, A.; Ouaini, N.; Daou, C.; El Azzi, D. High-frequency monitoring
of surface water quality at the outlet of the Ibrahim River (Lebanon): A multivariate assessment. Ecol. Indic.
2019, 104, 13–23. [CrossRef]

36. Ruždjak, A.M.; Ruždjak, D. Evaluation of river water quality variations using multivariate statistical
techniques. Environ. Monit. Assess. 2015, 187, 1–14. [CrossRef]

37. Zheng, L.-Y.; Yu, H.-B.; Wang, Q.-S. Assessment of temporal and spatial variations in surface water quality
using multivariate statistical techniques: A case study of Nenjiang River basin, China. J. Central South Univ.
2015, 22, 3770–3780. [CrossRef]
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