

Supplementary Material Removal of Herbicides from Landfill Leachate in Biofilters Stimulated by Ammonium Acetate

Nadia Brogård Nord ¹, Nils. M. Sevelsted Berthelsen ², Hasse Milter ² and Kai Bester ^{1,*}

- ¹ Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; nadiabnord@envs.au.dk
- ² Region Zealand, Alléen 15, 4180 Soroe, Denmark; nimb@regionsjaelland.dk (N.M.S.B); hmi@regionsjaelland.dk (H.M)
- * Correspondence: <u>kb@envs.au.dk</u>

Received: 5 May 2020; Accepted: 4 June 2020; Published: 9 June 2020

Name CAS Number	Structure	LogKow	Supplier
Mecoprop (MCPP) 93-65-2		3.1 (PubChem)	Dr. Ehrenstorfer
Mecoprop-P (R-enantiomer) 16484-77-8			Sigma-Aldrich
Месоргор d3 352431-15-3			Dr. Ehrenstorfer
Dichlorprop (DCPP) 120-36-5		3.4 (PubChem)	Dr. Ehrenstorfer
Dichlorprop-P (<i>R</i> -enantiomer) 15165-67-0			Sigma-Aldrich
Dichlorprop d6 Not available			Dr. Ehrenstorfer
2,4-dichlorophenol (2,4-DCP) 120-83-2	CI		Dr. Ehrenstorfer
2-(2-methylphenoxy) propanoic acid (2-MPP) 7345-21-3			Sigma-Aldrich
3-methylcatechol (3-MeCat) 488-17-5	HO OH CH ₃		Sigma-Aldrich

Table S1. Information on compounds, CAS-numbers, structures, and suppliers used for analytical purpose.

Table S2. Corresponding compounds of internal standards used in the analytical methods.

Internal Standard (IS)	Internal Standard
Mecoprop d3	MCPP, MCPP sulphate, 4-CloCr, 2-MPP, 3-MeCat
Dichlorprop d6	DCPP, 2,4-DCP, 4-ClCat, CPP

Table S3. HPLC-method for analysis of parents, and metabolites (CPP, MPP, and MCPP sulfate). The MS/MS was operated in negative mode, ion source potential; –4500 V, source temperature; 400 °C, CAD; 10 psig, CUR; 20 psig, GS1; 50 psig, and GS2; 35 psig. Injection volume was 100 μ L.

Step	Total Time	Flow Rate	0.2% FA in HPLC-	0.2% FA in
	(min)	(µL/min)	Water	Methanol
0	0.00	300	100	0
1	3.00	300	100	0
2	7.50	300	15	85
3	8.00	300	0	100
4	10.00	300	0	100
5	10.50	300	100	0
6	12.00	300	100	0
7	13.00	300	100	0

Step	Total Time (min)	Flow Rate (µL/min)	HPLC-Water (%)	Methanol (%)
0	0.00	300	100	0
1	3.00	300	100	0
2	10.0	300	0	100
3	12.0	300	0	100
4	12.5	300	100	0
5	15.5	300	100	0

Table S4. HPLC-method for analysis of metabolites (3-MeCat, 4-CloCr, 4-Clcat, and 2,4-DCP). The MS/MS was operated in negative mode, ion source potential; –4500 V, source temperature; 400 °C, CAD; 10 psig, CUR; 20 psig, GS1; 50 psig, and GS2; 35 psig. Injection volume was 100 μ L.

Compound	Limit of Detection (µg L ⁻¹)	Limit of Quantification (µg L ⁻¹)
Mecoprop	0.03	0.11
Dichlorprop	0.02	0.06
CPP	0.02	0.07
MPP	0.01	0.04
MCPP sulphate	0.02	0.05
(RS)-mecoprop	0.2	0.06
(RS)-dichlorprop	0.2	0.06
2,4-DCP*	-	3.0
3-MeCat*	-	0.3
4-ClCat*	-	1.0
4-CloCr*	-	0.3

Table S5. Limit of quantification (LOQ) and detection (LOD) of the analyzed compounds.

Table S6. Total organic carbon (TOC) and nitrogen (TN) for inlet water, and outlet water from the biofilters.

System	TOC (mg L ⁻¹)	TN (mg L-1)	
Inlet	13.2 ± 3.2	17.8 ± 1.5	
Peat	9.9 ± 1.2	16.3 ± 1.9	
Stonewool	10.4 ± 1.7	16.7 ± 1.3	
Sand	9.1 ± 0.9 *	16.9 ± 1.1 *	

* Sand average outlet excludes samples taken after NH₄Ac addition.

	Inlet (µg L-1)
MCPP	1.4 ± 0.31
DCPP	0.2 ± 0.03
MPP	0.3 ± 0.13
СРР	3.1 ± 0.68
MCPP Sulphate	< 0.05

Table S7. Average inlet concentrations from the raw landfill leachate during the experimental period.

	Mecoprop (µg L-1)	MPP (µg L-1)	Dichlorprop (µg L-1)	CPP (µg L-1)
Sand	Outlet	Outlet	Outlet	Outlet
Days				
0	2.30	0.31	0.27	5.44
13	1.33	0.15	0.19	2.83
16	0.73	0.15	0.12	1.31
20	0.09	0.08	0.03	0.05
27	<0.03	< 0.01	<0.02	< 0.02
34	1.56	0.41	0.19	3.4
41	0.20	0.08	0.05	0.14
48	1.78	0.51	0.17	3.35
55	0.57	0.13	0.08	1.10
62	0.22	0.01	<0.02	0.25
69	0.21	0.02	<0.02	0.24
Stonewool				
Days				
0	1.87	0.20	0.23	3.52
13	1.76	0.21	0.22	3.77
16	1.76	0.19	0.23	3.48
20	1.63	0.32	0.17	2.41
27	0.05	0.13	0.02	< 0.02
34	1.26	0.32	0.16	2.77
41	1.16	0.87	0.16	2.99
48	1.32	0.33	0.15	1.50
55	0.97	0.59	0.11	1.41
62	1.49	0.28	0.16	3.52
69	1.55	0.24	0.13	3.11
Peat amended sand				
Days				
0	1.79	0.22	0.24	3.9
13	0.58	0.09	0.08	0.40
16	0.94	0.19	0.11	1.39
20	1.51	0.43	0.19	3.43
27	0.1	0.26	0.05	0.03
34	1.90	0.34	0.18	2.01
41	1.79	0.42	0.20	3.88
48	1.81	0.64	0.17	3.54
55	1.65	0.97	0.14	3.36
62	0.53	0.21	0.04	1.26
69	0.61	0.20	0.05	1.42

Table S8. Outlet concentrations of the biofilter. In bold are concentrations below 0.1 $\mu g \ L^{\mbox{--}1}.$

Figure S1. Proposed degradation pathway of mecoprop and dichlorprop. Green arrows shows aerobic degradation, orange is anaerobic, and yellow is neutral/unknown. Compounds in bold are included in our analysis. The blue star indicates the enantioselective pathway. Based on reviews by Buss et al., [7] and Müller and Kohler [13].

Figure S2. Filling of the sand biofilter (left) and the stonewool biofilter from the top (right).

Figure S3. Sketch of the construction of the biofilters and the design of the stonewool layers.

Figure S4. Oxygen concentrations from the three biofilters outlet and at the inlet (SW = stonewool).

Figure S5. Peat amended sand: Removal rate (%) of CPP (•), DCPP (\blacktriangle), MCPP (\blacksquare), and MPP (+) during the experimental period in the 1% peat amended biofilter. 4 data points (>–100%) were removed from the graph. Error bars were set to ±15%, and asterisks (*) shows where outlet values were below LOQ.

Figure S6. Stonewool: Removal (%) of CPP (•), DCPP (\blacktriangle), MCPP (\blacksquare), and MPP (+) during the experimental period. 2 data points (<-100%) were removed from the graph. Error bars were set to ±15%, and asterisks (*) shows where outlet values were below LOQ.

Figure S7. Removal (%) of MCPP from the three different biofilters during the experimental period; Peat (•), Sand (\blacktriangle), and Stonewool (\blacksquare). Error bars were set to ±15%, and asterisks (*) shows where outlet values were below LOD.

Figure S8. Removal (%) of DCPP from the three different biofilters during the experiment; Peat (•), Sand (\blacktriangle), and Stonewool (\blacksquare). Error bars were set to ±15 %, and asterisks (*) shows where outlet values were below LOD.