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Abstract: Stochastic simulation has a prominent position in a variety of scientific domains including
those of environmental and water resources sciences. This is due to the numerous applications
that can benefit from it, such as risk-related studies. In such domains, stochastic models are
typically used to generate synthetic weather data with the desired properties, often resembling
those of hydrometeorological observations, which are then used to drive deterministic models of the
understudy system. However, generating synthetic weather data with the desired properties is not
an easy task. This is due to the peculiarities of such processes, i.e., non-Gaussianity, intermittency,
dependence, and periodicity, and the limited availability of open-source software for such purposes.
This work aims to simplify the synthetic data generation procedure by providing an R-package
called anySim, specifically designed for the simulation of non-Gaussian correlated random variables,
stochastic processes at single and multiple temporal scales, and random fields. The functionality
of the package is demonstrated through seven simulation studies, accompanied by code snippets,
which resemble real-world cases of stochastic simulation (i.e., generation of synthetic weather data) of
hydrometeorological processes and fields (e.g., rainfall, streamflow, temperature, etc.), across several
spatial and temporal scales (ranging from annual down to 10-min simulations).

Keywords: R-package; stochastic simulation; non-gaussian; random variables; stochastic processes;
random fields; disaggregation models; weather generation; synthetic time series

1. Introduction

“Oh, Lord, please keep the world linear and Gaussian.”

~ Chester Kisiel’s [1] pray to the theoretical hydrologist [2] (p. 288).

1.1. Motivation

The notions of stochastics and randomness have a prominent position in a variety of scientific
fields, such as those of biology, finance, artificial intelligence, environmental and water resources
science, as well as hydrology. This is due to the ability offered by the relevant mathematical
objects, such as those of random variables, stochastic processes, and random fields, to provide the
basis to account for uncertainty in the analysis and modeling of physical or non-physical systems.
Characteristic applications are risk- or reliability-based studies which typically aim to propagate
the uncertainty of the inputs into the outputs of interest, and eventually into the decision-making
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procedure (formulating a type of Monte-Carlo experiments). For instance, this rationale has been
widely employed in the domain of environmental and water resources science where, apart from
providing tools to simulate hydrometeorological processes per se, stochastic models are used to provide
synthetic inputs with the desired properties (typically resembling those of observed processes, e.g.,
hydrometeorological ones) to drive physically- or conceptually-based (typically deterministic) models
of the system under study. See for instance the works of Koutsoyiannis and Economou [3], Celeste and
Billib [4], Haberlandt et al. [5], Giuliani et al. [6], Tsoukalas and Makropoulos [7,8], Tsoukalas et al. [9],
Feng et al. [10], and Do and Razavi [11] in environmental and water resources domain, as well as
the works Robert and Casella [12] and Kroese et al. [13,14] for other applications in science and
real-word practice.

At this point, it is noted that, for the sake of simplicity (although not being entirely precise),
throughout the paper, we may use the term stochastic process to refer also to random variables (RVs)
and random fields (RFs).

Despite the wide use of stochastic modeling approaches, it is generally acknowledged that
generating synthetic inputs with the desired properties is not an easy, nor a standardized task. In our
view, this can be mainly attributed to two reasons associated with: (1) the deviation from Gaussianity
exhibited by several physical and non-physical processes (e.g., [15]); and (2) the limited availability of
general, easy-to-use, open-source software designed for such purposes (see the relevant discussion
by Efstratiadis et al. [16]). The first point is evidently related with the introductory aphorism of this
paper (i.e., Chester Kisiel’s pray to the theoretical hydrologist), which reflects the generally challenging
task of handling non-Gaussian behavior, especially for hydrometeorological processes, which, beyond
non-Gaussianity, are also characterized by other significant peculiarities such as intermittency, auto-
and cross-dependence and periodicity [17–19]. These characteristics are also apparent in other types of
processes (e.g., non-physical ones such as water demand processes; see Kossieris et al. [20]).

In our view, it is argued that the primary difficulty in the modeling of such characteristics originates
from the fact that the classical linear stochastic models were formally developed for the simulation of
correlated Gaussian random variables, processes, and fields - a fact that hampers their use (without
modifications; e.g., see the relevant discussion in Tsoukalas et al. [21,22]) in a wide range of real-world
applications that involve processes that deviate significantly from Gaussianity.

1.2. Modeling Rationale and Historical Overview

The need for suitable non-Gaussian models have motivated many research efforts in a variety
of scientific domains, particularly in the hydrological one (e.g., see [5,23–30] for relevant discussions,
model classifications and reviews). These efforts can be coarsely classified into two groups [31]. The first
group regards methods that aim to resemble a process in terms of summary statistical characteristics,
such as moments (e.g., mean, variance, and skewness) and (typically low-order) correlation coefficients
(e.g., [16,32–39] (pp. 53–57) [40–45]). The second group consists of methods that aim to simulate
realizations of a process with target marginal distributions and correlation structures. In the present
work, we focus on methods of the second group since by definition provide a more accurate modeling
approach (for further arguments, see Deodatis and Micaletti [31], as well as Tsoukalas et al. [25]
and references therein). At the same time, these methods avoid a problem called envelope behavior
encountered in popular stochastic simulation approaches (i.e., based on the rationale of Thomas and
Fiering model) of the first group; a problem that regards the generation of time series with unrealistic
dependence patterns [22].

Particularly, here, we focus on methods that rely on the so-called Nataf’s joint distribution
model [46]. A concept that was initially proposed for the simulation of correlated RVs [47,48], yet,
as discussed next and detailed in Section 2.3, can and has been employed also for the simulation of
non-Gaussian stochastic processes and random fields.

Nataf’s joint distribution model (NDM) suggests that the joint distribution of correlated random
variables (RVs) with any target marginal distributions can be obtained on the basis of an appropriately
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parameterized auxiliary multivariate standard Gaussian distribution, and specifically by mapping
the correlated Gaussian variables to the target distributions via their inverse cumulative distribution
function (ICDF). It is also interesting to note that NDM is essentially what we call today a Gaussian
copula [49].

As literature reveals, the notion of NDM has been used in several disciplines for the simulation
of non-Gaussian RVs, stochastic processes and RFs, but under many different names (see an
earlier, yet relevant, discussion in Section 4.6 of Tsoukalas et al. [21] which regards applications
of NDM in hydrological domain). Indicatively, we note that the notion of NDM, a term widely
used in the domain of structural and civil engineering [47,50–54], is similar with concepts used
in other scientific domains, such as those of, non-linear (often called memoryless) transformation
approaches [55–58], translation processes [15,59,60], meta-Gaussian approaches [61–63], latent Gaussian
processes [64–67], transformed Gaussian processes [68–71], parent Gaussian methods [72–74], and the
so-called To-Anything approaches [20,21,25,75–80].

A closer look at the above research efforts reveals that all those methodologies share a common
element that is the mapping (transformation or translation) of a (auxiliary, latent ore parent) Gaussian
vector, process or field to the desired domain via a non-linear function (typically the ICDF) to obtain
correlated RVs, stochastic processes, and RFs, respectively, with target marginal distributions and
correlation structure. Therefore, it can be argued that all rely on the concept of NDM. It is also noted that
several of these methods aim to resemble a process with a prescribed spectrum instead of correlation
structure, which is of course equivalent since the correlation and spectrum are interrelated quantities
(e.g., see the spectrum-based works of Yamazaki and Shinozuka [81] and Deodatis and Micaletti [31]).
It should be pointed out that the preservation of the target correlation structure (after the mapping) is
directly linked with the appropriate parameterization of the underlying Gaussian model on the basis
of the so-called equivalent correlation structure (see Section 2.2), a delicate step often neglected.

To elaborate more, NDM was employed by Li and Hammond [82], van der Geest [83], and Cario
and Nelson [75], under the term NORmal To Anything (NORTA), for the generation of correlated
non-Gaussian RVs, extending it also for random vectors with continuous and discrete marginal
distributions, as well as combinations of them. In the same spirit, Kelly and Krzysztofowicz [61] used
a bivariate Gaussian distribution to establish the so-called bivariate meta-Gaussian distribution that
can admit arbitrarily specified marginal distributions. See also the relevant works on the topic by
Moran [40], who focused on the case of a bivariate Gamma distribution, and Emrich and Piedmonte [84],
who studied a method for the generation of multivariate binary variates.

Moving beyond random variables, the concept of NDM has been employed for the simulation
of non-Gaussian stochastic processes in a similar way to RVs. In this modeling case, an auxiliary
Gaussian process with zero mean and unit variance (e.g., simulated via linear stochastic models, such
as autoregressive moving average (ARMA) models) is mapped to the target domain. The development
of such modeling techniques can be traced back to the early works of Gujar and Kavanagh [85], Klemeš
and Borůvka [86], and Matalas [32], as well as the seminal work of Grigoriu [59], who also referred to
the notion of NDM, and the relevant sequel works [15,60] that adopt the term translation process. In a
similar vein, Cario and Nelson [76] developed the AutoRegressive To Anything (ARTA) model that
combines an autoregressive linear model with NDM to simulate auto-correlated univariate stationary
processes with any marginal distribution. Further to this, ARTA model was later further extended
for multivariate simulations by the Vector AutoRegressive To Anything (VARTA) approach [80].
In this spirit, Tsoukalas et al. [21,77] developed the Stochastic Periodic AutoRegressive To Anything
(SPARTA) scheme that is a generalization of ARTA and VARTA models for the simulation of univariate
and multivariate cyclostationary (i.e., periodic) processes with arbitrary marginal distributions.
Furthermore, the Symmetric Moving Average To Anything (SMARTA) model [78] combines NDM
with the symmetric moving average model [44] to simulate non-Gaussian processes that exhibit
any-range dependence structure. Analogously, Papalexiou [72], using autoregressive models, proposed
an approach for the stochastic modeling of hydroclimatic processes, with focus on the modeling
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intermittency. Further to these, recent developments [25,79] offer modular multivariate stochastic
simulation schemes that can generate multi-scale consistent time series at multiple locations (or of
multiple processes at the same location). A modeling task of high importance in water resources
applications [16,43,87,88].

Moving to random fields (RFs), their modeling and simulation has been for years an active topic of
research with contributions spanning across theoretical developments [89–91], as well as earth science
applications (e.g., [58,71]). RFs offer the tools to mathematically describe a wide range of processes
(e.g., hydrometeorological) accounting for both spatial and temporal dynamics. The literature offers a
variety of methods for such modeling task (see the above-referenced works), yet most of them concern
Gaussian RFs and methods focusing on the spatial dynamics. In this vein, and for reasons mentioned
above, herein we turn our focus on non-Gaussian methods that rely on the concept of NDM. A literature
review reveals that the NDM concept has been widely employed for the simulation of non-Gaussian
RFs [50–52,55–58,63,67,70,73,81,92], but again different names were adopted. Indicatively, we mention
the works of Bell [68] and Lanza [69] who devised a model for the simulation of rainfall’s random
fields through the transformation of a Gaussian field to a non-Gaussian one, characterized by a
zero-inflated log-Normal marginal distribution (to account for rainfall’s intermittent behavior). In the
same spirit, Rebora et al. [55] used a static non-linear transformation to map a Gaussian RF to
log-Normal distribution, while similar approaches can be found in the works of Christakos [58] and
Gong et al. [70]. Other approaches, termed meta-Gaussian or latent Gaussian, were employed by
Guillot [63], Guillot and Lebel [62], and Baxevani and Lennartsson [67], who also used the notion of
auxiliary (or latent) Gaussian RFs that are subsequently mapped to the target domain via a non-linear
transformation. See also the work of Gioffrè et al. [92], who used translation-based method for the
simulation of non-Gaussian fields of wind pressure fluctuations. Finally, a more recent treatment that
regards the simulation of hydrometeorological RFs was given by Papalexiou and Serinaldi [73] who
used the term parent-Gaussian fields.

1.3. Contribution and Organization of the Paper

Currently, there is a strong momentum in the development of Nataf-based schemes in the realm
of environmental science, water resources and hydrology since such methods have been proven
capable of simulating processes with characteristics exhibited in both physical (e.g., rainfall, streamflow,
and wind) and non-physical (e.g., water demand) processes [20,21,25,72,73,77–79,93]. In this spirit,
and aiming to fulfill the need for general and open-source software for synthetic data generation,
this work builds upon this momentum, as well as past research efforts, and presents an R package
called anySim. This endeavor aims to facilitate the easy simulation of non-Gaussian correlated random
variables, stochastic processes, and random fields, providing this way the means to practitioners and
researchers to easily access and employ state-of-the-art stochastic simulation methods, required by a
variety of uncertainty-aware frameworks and analyses (e.g., risk-based engineering studies).

The remaining of this paper is structured as follows. Section 2 presents a brief introduction
to the key aspects of the NDM approach, providing also simple guides and technical details for
the development of NDM-based stochastic simulation schemes. Section 3 describes the structure,
modules, and functionalities of the developed anySim R-package. Section 4 presents a suite of
simulation problems focused on the stochastic simulation of hydrometeorological processes (e.g.,
rainfall, streamflow, temperature, etc.), demonstrating the functionalities of the package and the
associated models, while Section 5 provides the simulation results of the demonstration problems,
as well as the associated R-code (i.e., a tutorial). Finally, Section 6 concludes this work, highlighting
also interesting future research activities to improve the functionalities and utility of anySim. It is noted
that a reader familiar with the rationale of NDM and the related methods could skip Section 2 and go
directly to Sections 3–5 where the anySim package is detailed and demonstrated.
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1.4. A Brief Note on Notation and Style Used

In general, throughout this manuscript, we refer to a function (either distribution function or
correlation structure) by writing its name followed by a parenthesis containing the corresponding
R-function using Courier New fonts. For instance, the ICDF of the Gamma distribution (qgamma).
Moreover, and unless stated otherwise, regarding distribution functions, we typically use the Greek
letters α and β to denote the distribution’s shape and scale parameters, respectively, as well as the
letter c to denote the location parameter. In the case of more than one shape parameter, we use the
same letter using subscripts (e.g., α1 and α2). Furthermore, we use (intuitively-chosen) script letters to
abbreviate distributions, e.g., a random variable X that follows the Gamma distribution is denoted by
X ∼ G(α , β).

2. Methods

2.1. Theoretical Background of NDM Approach

As discussed in the previous section, the NDM approach, after certain extensions and modifications,
can be applied for the simulation of correlated random variables, stochastic processes, and random fields.
Although anySim supports all these modeling applications, here we choose to present the key theoretical
aspects of Nataf-based schemes on the basis of a problem that studies the generation of two random
variables with predefined marginal distributions and correlation. This bivariate simulation problem
describes the simplest simulation scenario but is the cornerstone of any Nataf-based approach (e.g.,
that could regard stochastic processes or random fields) since the linear stochastic models (that are used
to establish the auxiliary Gaussian process or field) are also based on Pearson’s correlation coefficient
which is a two-point dependence measure. The interested reader may also refer to Tsoukalas et al. [78]
and Tsoukalas et al. [21,25] for alternative descriptions of the theoretical background of NDM approach
on the basis of multivariate stationary and cyclostationary stochastic processes, respectively.

Back to the bivariate simulation case, let us assume that our target is to generate correlated random
variables (RVs) X1 and X2 with predefined target marginal distributions FX1(x1) := P(X1 ≤ x1) and
FX2(x2) := P(X2 ≤ x2), respectively, and target correlation ρX1X2 := Corr[X1, X2], which stands for the
Pearson’s correlation coefficient between the two variables, hereinafter abbreviated as ρ.

Let us initially define two auxiliary correlated RVs Z1 and Z2, which both have the standard
Gaussian marginal distribution and correlation coefficient ρ̃Z1Z2 := Corr[Z1, Z2], herein after termed
as equivalent correlation (for reasons explained below) and abbreviated as ρ̃. It is noted that the joint
distribution of the two auxiliary variables is the bivariate Gaussian with zero mean, unit variance,
and correlation ρ̃.

The target RVs X1 and X2 can be obtained by mapping the auxiliary normal variables to the target
distributions via the following mapping operations:

X1 = F−1
X1
(Φ(Z1)), X2 = F−1

X2
(Φ(Z2)) (1)

where F−1
X1
(·) and F−1

X2
(·) denote the inverse cumulative distribution functions (ICDF) of the target

distributions of X1 and X2, respectively, and Φ(·) stands for the standard Gaussian cumulative
distribution function (CDF).

Since the mapping procedure presented in Equation (1) is based on the ICDF of the target
distribution, it ensures by construction that the final variables will have the desired marginal properties.
On the other hand, the use of ICDF imposes a nonlinear and monotonic transformation, and hence this
mapping does not ensure the preservation of the linear correlation coefficients [94]. Specifically, the sole
use of this mapping operation leads to typically reduced correlation coefficients, while as the target
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distribution deviates from the Gaussian case, the larger will be the reduction. However, it can be
shown the equivalent correlation ρ̃ and the target one ρ are linked by [47],

ρ =

∫
∞

−∞

∫
∞

−∞
F−1

X1
(Φ(z1)) F−1

X2
(Φ(z2))ϕ2(z1, z2; ρ̃)dz1dz2 − E[X1] E[X2]√

Var[X1] Var[X2]
(2)

where E[·] and Var[·] denote the mean and variance of the known target distributions, ϕ2(z1, z2; ρ̃)
is the standard bivariate Gaussian probability density function (PDF) with correlation ρ̃. The latter
equation can be compactly expressed as,

ρ = F
(
ρ̃
∣∣∣FX1(x1), FX2(x2)

)
(3)

where F (·) is the abbreviation of the function defined in Equation (2). Therefore, the key challenge in
any NDM approach is to determine the equivalent correlation ρ̃ that will result to the target correlation
ρ, after applying the mapping procedure (i.e., determine the link between ρ and ρ̃). This operation can
be accomplished by inverting Equation (3) that can be compactly written as,

ρ̃ = F −1
(
ρ
∣∣∣FX1(x1), FX2(x2)

)
(4)

Further details on the relationship among the equivalent and target correlation coefficients, both
of practical and theoretical interest, can be found given in several works in the related literature
(e.g., [21,47,72] and references therein), while interesting discussions on its theoretical bounds were
provided by Fréchet [95],Whitt [96], Hoeffding [97], and Armstrong [98]. The interested reader is also
referred to [99] and [100], where the authors using entropy-related notions, provided an alternative
view, as well as useful insights on the topic.

2.2. Establishing Target-Equivalent Correlation Relationship

In the general case, the establishment of the target-equivalent correlation relationship requires
the use of numerical schemes and integration methods [21,72,76,82,101,102], since the relationship
in Equation (3) has analytical solution only for a few cases, for instance, when the marginal are
uniform [82,103] or log-Normal [32,104,105]. It is also noted that the use of alternative rank-based
dependence quantities, such as the Kendall’s tau and Spearman’s rho, should be avoided for the
estimation of ρ̃, since the relationships [49,106,107] that link those quantities assume that the marginal
distributions are Gaussian, which is rarely the case (see the discussion in Tsoukalas [79] Section
4.5.3 and Tsoukalas et al. [78] Section 3.2.3).

In anySim, aiming to simplify the establishment of the target-equivalent correlation relationship,
we have automated this procedure via a function called NatafInvD. In brief, this function avoids the
use of iterative methods (in the sense of [81]) and works as follows (further details can also be found in
the manual of the package): Equation (3) is solved (e.g., via Monte-Carlo or an integration method) for
a specific set of ρ̃ values, and the corresponding target ρ values are obtained. Then, an approximation
function (either a polynomial or a parametric one) is fitted to these known anchor points, establishing an
approximation of the true F (·). The equivalent correlation ρ̃, given a target correlation ρ, is obtained
by inverting the fitted function. Regarding the first step, the user can choose between three integration
methods by providing appropriate values (in the form of a string) in the argument NatafIntMethod
of NatafInvD. The integration methods supported are Gauss–Hermite integration (GH), adaptive
multidimensional integration (Int), and Monte-Carlo integration (MC). Regarding the second step,
polydeg argument of NatafInvD is a scalar indicating the order of the fitted polynomial, while,
if polydeg = 0, then the function fits an alternative and simpler two-parameter function (see [72]). It is
noted that the “MC” method (see [21]) captures the whole form of F (·) and is applicable irrespective
of the type of marginal distributions (i.e., continuous, discrete or mixed-type of distributions), hence
recommended when the target marginals are discrete.
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2.3. Developing Nataf-Based Stochastic Simulation Schemes

In the modeling and simulation of stochastic processes and random fields, key requirements are the
reproduction of both the marginal behavior (i.e., target distribution function) and dependence structures
both in time and in space, as expressed by the auto- and cross-correlation coefficients, respectively. In this
vein, a key component of any Nataf-based simulation scheme is the Gaussian process (Gp) model that
generates the auxiliary realizations (in analogy to the auxiliary Gaussian RVs as presented in Section 2.1),
which are then mapped to the target distribution of the non-Gaussian process via the ICDF.

The role of the model that simulates the Gaussian process is crucial in the whole procedure since
its structure determines that of the target process, e.g., to simulate a stationary auto-correlated process
then a stationary Gaussian process should be employed, while the simulation of a cyclostationary
one requires the use of an auxiliary cyclostationary Gaussian model. It is important to highlight that,
irrespective of this choice, the Gaussian model should be parameterized on the basis of equivalent
correlation coefficients. This implies that the auxiliary realizations will preserve the equivalent
correlation coefficients, ensuring (after their mapping via the ICDF) the reproduction of target auto-
and cross-correlation structures. Note that the selection of the stochastic simulation model for the
generation of auxiliary Gaussian realizations (e.g., via spectra-based methods that use trigonometric
series, covariance decomposition methods or linear stochastic models such as ARMA models) is merely
a matter of modeling requirements and convenience.

An option adopted in this work and implemented in anySim package is the use of Gaussian
linear stochastic models (often called ARMA models). In this respect, the widely-known stationary
autoregressive model of order p (AR(p)), in a univariate or multivariate context, can be employed in
the case of stationary processes. An alternative option is offered by the univariate or multivariate
Symmetric Moving Average model of order q (SMA(q)), introduced by Koutsoyiannis [44]. In the case
of cyclostationary processes, i.e., when the distribution function and correlation structure of the process
vary periodically from season-to-season, any stochastic scheme from the family of standard periodic
autoregressive model of order n (PAR(n)) could be used. For the sake of simplicity and parsimony,
anySim focuses on the univariate and multivariate contemporaneous PAR(1) model [108] that supports
the reproduction of season-to-season lag-1 correlations as well as the lag-0 cross-correlations among
processes. Especially for most of practical applications in hydrology, it is argued that this model suffices,
keeping the number of parameters to a minimum [43] (provided that the process at the temporal scale
of simulation is characterized by cyclostationary, e.g., monthly runoff).

Regarding the stationary auxiliary AR(p) or (SMA(q)), as a side note, we remind that the use of high
values of p or q does not comes at the cost of parsimony of the relevant Nataf-based schemes, since in
anySim we also employ the concept of theoretical (auto) correlation structures (see also Section 2.5). In this
vein, the theoretical structure completely determines the autocorrelation structure of the target process,
while the order p or q of the models essentially determines the maximum time lag up to which the target
structure will be reproduced. Having said this, the parameters of the AR or SMA models are simply
regarded as internal coefficients, to be estimated from the target autocorrelation structure [25,44,78].

With respect to the above and the procedure briefly described in Section 2.1, a general framework
for the establishment of Nataf-based schemes for the stochastic simulation of non-Gaussian processes
(univariate or multivariate) and random fields is briefly described in Sections 2.3.1 and 2.3.2, respectively.

2.3.1. A Layman’s Step-by-Step Guide for the Simulation of Non-Gaussian Processes

Step 1. Identify the type (i.e., stationary or cyclostationary, univariate or multivariate) of the
processes, accounting for the process’ properties and the time scale of simulation.

Step 2. Based on the available information (e.g., historical data), as well as the user expertise,
assign appropriate target marginal distributions for the processes and identify the target correlation
structure, in time and space (in the case of multivariate simulation). For more details, see Section 2.5.

Step 3. Select a suitable stochastic model to simulate the auxiliary Gaussian process (Gp), based
on the analysis of Step 1.
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Step 4. Estimate the equivalent correlation coefficients for all pairs of interest, which are required
by the parameter estimation procedure of the auxiliary Gp model.

Step 5. Estimate the parameters of the auxiliary Gp model using the equivalent correlation coefficients.
Step 6. Generate a synthetic Gaussian time series by employing the auxiliary Gp model.
Step 7. Map the auxiliary Gaussian time series to the actual domain (using the target ICDF) in

order to attain a realization of the target process.

2.3.2. A layman’s Step-by-Step Guide for the Simulation of Non-Gaussian Random Fields

Step 1. Identify the type (i.e., spatial or spatiotemporal) of the RF to simulate, accounting also for
its properties and the time scale of simulation.

Step 2. Based on the available information (e.g., gridded historical data or satellite observations),
as well as the user expertise, assign an appropriate target marginal distribution for the RF and identify
the target correlation structure, in time and space (for more details, see Section 2.5).

Step 3. Select a suitable stochastic model to simulate the auxiliary Gaussian RF, based on the
analysis of Step 1.

Step 4. Estimate the equivalent correlation coefficients for all pairs of interest, which are required
by the parameter estimation procedure of the auxiliary Gaussian RF model.

Step 5. Estimate the parameters of the auxiliary Gaussian RF model using the equivalent
correlation coefficients.

Step 6. Generate a synthetic Gaussian RF by employing the auxiliary Gaussian RF model.
Step 7. Map the auxiliary Gaussian RF to the actual domain (using the target ICDF) in order to

attain a realization of the target RF.
It is noted that, for the sake of convenience, the above guide regards the simulation of

homogenous, stationary, and isotropic RFs, yet it can be easily adopted to account for anisotropy and
cyclical stationarity. Particularly, the former one can be accomplished by using either appropriate
coordinate transformation functions (e.g., [109]) or by directly employing anisotropic correlation
structures [58,110,111], while the latter one by cyclically varying the parameters of the marginal
distribution and those determining the process’ spatiotemporal correlation structure.

Based on the two above guides, anySim implements a great variety of Nataf-based schemes,
capable of simulating a wide range of non-Gaussian processes and fields. These schemes along with
the corresponding R-functions are presented in Section 3.2.

2.4. Multi-Scale Stochastic Simulation Via Disaggregation

Another modeling application supported by anySim package is the multi-scale stochastic
simulation that targets the simultaneous reproduction of the marginal and stochastic behavior
of processes across multiple temporal levels. It is well known that multi-scale consistency cannot be
achieved via single-scale simulation since the reproduction of the characteristics of the process at a
specific spatiotemporal level (expressed in terms of either a distribution function or a set of statistical
characteristics) does not ensure the resemblance of the relevant characteristics of the aggregated process
at any higher spatiotemporal level.

The problem of multi-scale consistency holds a prominent position in the modeling of
hydrometeorological processes and it is of high practical interest since the effect of statistical and
stochastic properties of synthetic series, which are used as inputs in a system model may extend far
beyond the scale of simulation of the system [112].

The multi-scale simulation schemes are typically based upon the concept of disaggregation.
According to this concept, the synthetic series are generated with the requirement to reproduce the
characteristics of the process at a finer scale (e.g., monthly scale) and, simultaneously, to be fully
consistent with the given data of a coarser scale (e.g., annual scale). The full consistency between the
series of two time scales implies that the additive property is preserved at any period, i.e., the lower-level
variables within each period sum up exactly to the given higher-level total for this period.
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The hydrological literature offers several methods for such purposes (i.e., multi-scale simulation
and/or disaggregation), yet few of them are freely available in R. For instance, CastaliaR [113] is
a solution based on linear stochastic models with non-gaussian white noise (see also [16]), while
HyetosMinute (see [114] and references therein) makes use of the Bartlett–Lewis clustering mechanism
for the simulation of rainfall at fine time scales. Moreover, it is noted that both solutions aim at the
preservation of the process moments, and not its distribution. On the contrary, anySim aims at the
preservation of the process marginal distribution and correlation structure via using an approach based
on multi-scale simulation via disaggregation. Specifically, anySim implements the so-called Nataf-based
Disaggregation to Anything (NDA) framework ([25]; see also the brief discussion on alternative methods).
NDA consists a scale-free disaggregation approach for the pairwise coupling of Nataf-based schemes,
each applied individually to simulate the process at a coarser and finer time scale. A key element of
this approach is a mathematical transformation, termed as adjusting procedure, which is applied to the
lower-level series (e.g., monthly) to establish full consistency, i.e., preservation of the additive property,
with the series of the higher-level (e.g., annually). Additionally, NDA incorporates a Monte Carlo-type
repetitive sampling procedure to ensure that the sum of the independently generated lower-level series
are close to the given higher-level values, establishing an a priori consistency between the two series
and improving in this way the efficiency of the method. These two key elements are thoroughly
discussed by Koutsoyiannis and Manetas [43] and Koutsoyiannis [88].

NDA can be employed for both multivariate and univariate multi-temporal simulation, after certain
modifications and appropriate selection of a Nataf-based scheme, depending on the characteristics of
the process studied (see previous section). Here, to keep things simple, we briefly present the whole
procedure on the basis of a problem that studies the disaggregation of a univariate coarser-level series
to a lower-level one.

Given that a realization ξt, of a process Ξt, where t is the time index, is known at a specific time scale
(the coarser temporal level), we aim to produce fully consistent lower-level realizations xl of a process
Xl, with l denoting the time index at the lower scale. Let also k equal to the ratio of the time units of
higher-level to the time units of lower-level (e.g., 1-year/1-month = 12, 1-day/1-h = 24, 1-day/1-min = 24 ×
60, etc.). The coarser-level realization ξt is known either from observations or it has been generated by
another model. The disaggregation procedure applied for all time indices t is the following:

Step 1. Using a Nataf-based model, generate N temporary realizations x̃l of the lower-level
process X̃l, of length k.

Step 2. Aggregate (e.g., using the sum operator) the lower-level temporary realizations x̃l to
obtain the N higher-level temporary realizations ξ̃t. i.e., ξ̃t := X(k)

t =
∑kt

l=(t−1)k+1 Xl

Step 3. Estimate the distance di, where i = 1, . . . , N, between the temporary realizations ξ̃t and
the given one ξt via an appropriate distance metric.

Step 4. Select the temporary realization x̃l, whose corresponding aggregated value (i.e., ξ̃t) has
the minimum di. The selected lower-level realization is hereafter denoted as x̃′t , and its corresponding
aggregated value is denoted by ξ̃′t.

Step 5. Produce the final synthetic realizations xl by modifying the selected temporary realization
x̃′t via an adjusting procedure that allocates the difference between the given realization ξt and the sum
of the selected auxiliary realizations, ξ̃t.

As presented in detail in Section 3.2, anySim currently supports the disaggregation of univariate
coarser-level processes to stationary or cyclostationary processes.

As a distance metric (Step 3) to quantify the consistency between the temporary and the given
coarser level realizations, anySim employs the simple squared difference between ξt and ξ̃t; while the
consistency between the selected realization x̃′t and the given higher-level realization ξt (Step 5) is
established using the so-called proportional adjusting procedure, which is mathematically defined by
xl = x̃′t

(
ξt/ξ̃′t

)
.
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2.5. Technical Details

As discussed above, the simulation schemes implemented in anySim can be used in combination
with any marginal distribution function (with such parameters that ensure finite variance) and valid
(i.e., positive definite) correlation structures, describing either the temporal or spatial dependence of
the process/field. In this section, we provide technical details on the marginal distribution functions
and correlation structures, which are used in the simulation studies examined next, consisting though
generic modeling paradigms.

2.5.1. Marginal Distributions

The flexibility provided by NDM to employ any marginal distribution allows one to use
any continuous, discrete, or mixed-type distribution, given that it is parameterized to have finite
variance. A list of distribution functions (continuous and discrete) employed in this work is given
in Appendix A, while here we briefly discuss the case of zero-inflated (ZI) marginal distribution
(also known as, zero-augmented or discrete-continuous). ZI is a two-component (one discrete and
one continoous) mixed-type distribution function holding a prominent position in hydrology since
it can parsimoniously describe intermittent processes, such as rainfall and streamflow at fine time
scales [25,68,69,72,78,115–120]. The CDF, denoted as FX (pzi), and ICDF, denoted as F−1

X (qzi), of the
zero-inflated distribution are given, respectively, by,

FX(x) =
{

p0, x = 0
p0 + (1− p0)GX(x), x > 0

(5)

F−1
X (u) =

 0, 0 ≤ u ≤ p0

G−1
X

(
(u−p0)
(1−p0)

)
, p0 < u ≤ 1

(6)

where p0 := P(X = 0) is a parameter controlling the inflation of zeros (i.e., the discrete part of the ZI
distribution – the probability of observing zero values) and GX := FX|X>0 = P(X ≤ x|X > 0) denotes
the distribution to be inflated (i.e., the continuous part of the ZI distribution). The combination of
this distribution with Nataf-based models for simulating intermittent processes (i.e., rainfall) was
recently formalized in [72], as well as employed by other works [20,25,78,79]. Earlier hydrology-related
applications that couple Nataf-based schemes (although not recognized as such at the time) with
this distribution model can found in the works of Bell [68] and Lanza [69] conducted in 1987 and
2000 respectively, who used a zero-inflated distribution in combination with a the log-Normal one for
the continuous part. Further details on the ZI distribution can be found in the work by Aitchison [121],
as well as that of Kedem et al. [120], who among others provided the relationships that give its
product moments. It is also noted that the ZImodel can be combined with a two-component mixture
distribution for the description of the continuous part of the process, enabling the distinct modeling of
the main body and the tail behavior of the distribution [20,93].

In the following simulation examples (Sections 4 and 5), for notation convenience, we refer to
such distribution using the prefix “ZI” followed by the abbreviation of the continuous distribution,
while the parameters of the model will be also provided in the followed parenthesis. For instance,
a zero-inflated Gamma distribution (abbreviated by G with parameters shape α and scale β) is referred
to as ZIG(p0, α, β).

2.5.2. Correlation Structures

Further to marginal distributions, anySim currently implements three correlation structures (CSs),
i.e., ρh := Corr[Xt, Xt+h], where a h is an index that could denote either the separation distance (typically
Euclidean) of two points in space (hereafter, we use the letter d for that case) or the time lag (in this
case, we use the letter τ). In the former case, we refer to it as the cross-correlation structure (CCS; i.e.,
spatial) of the process, while in the latter as the auto-correlation structure (ACS; i.e., temporal).
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The following description of the three CSs implemented in anySim, and the corresponding
notation (i.e., the use of index τ), is oriented towards the representation of the ACS of a process, yet we
remark that the same models can be also employed for the representation of spatial dependencies (i.e.,
cross-correlation) by using instead of τ, an index d (see Section 5.5 for an example).

The first CS implemented in the package is the so-called two-parameter Cauchy-type correlation
structure (CAS; cscas), introduced by Koutsoyiannis [44] as an ACS, which is able to capture a wide
range of processes. CAS is given by:

ρCAS
τ (β,κ) = (1 + κβτ)−1/β, τ ≥ 0 (7)

where β ≥ 0 and κ > 0 are model parameters, and τ denotes the time lag. It is noted that depending on
the values of its parameters CAS can model both short- (β = 0) and long-range (β > 0) dependence, i.e.,
SRD and LRD, respectively [16,20,25,44,78].

The second CS is that of the Hurt–Kolmogorov (HK; csHurst) process, or else known as fractional
Gaussian noise (fGn) process [122–126], whose form is given by:

ρHK
τ (H) =

1
2

(
|τ− 1|2H

− 2|τ|2H + |τ+ 1|2H
)

(8)

where H is a parameter (0 ≤ H ≤ 1), called Hurst coefficient, determining the extent of LRD. It is
remarked that, under certain parameterization, CAS can provide an accurate approximation of fGn
CS [44]. For further details, the interested reader is referred to the aforementioned work, as well
as in the broader literature, mainly focusing on temporal LRD processes, which as it is argued are
omnipresent in nature [124,127–129].

The third CS contained in anySim, typically used only as an ACS, is a simple periodic function
(csPeriodic) given by MacKay [130]:

ρP
τ (p, l) = exp

(
−

2 sin2(πτ/p)
l2

)
(9)

where p and l are parameters, denoting the distance among function’s repetitions and the process’s length
scale, respectively. This function is particularly useful in the modeling of stationary processes with
periodically varying autocorrelation coefficients, since it can be easily combined (though multiplication)
with any other ACS. An indicative example of combination of this ACS with CAS ACS can be found in
Section 5.2.

Further to the above three CSs contained in anySim, the structure of the package enables the user
to define alternative (valid) correlation structures. For instance, one could resort to the non-separable
CSs literature (e.g., [131–134]) to identify and use a full spatiotemporal model that simultaneously
describes the complete spatiotemporal structure of the process/field or could resort to the use of
separable models [135–137]. Further to these classical approaches, the interested reader is referred to
the recent work of Papalexiou and Serinaldi [73], who presented a convenient and flexible framework
for the construction of non-separable spatiotemporal CSs by using copulas [138,139] and survival
functions, as link functions.

Regarding anySim current functionality, it is noted that the use of separable models is already
enabled, since they model the spatiotemporal of a process/field independently (i.e., as product of two
functions), by using one CS for the spatial dependence (CCS) and one for the temporal (ACS). Such an
example is given Section 5.5 where we use the product of two Cauchy-type (CAS) CSs to model the
spatiotemporal CS of a RF.

As a final note, we remark that, beyond using the notion of correlation to describe the spatial
or temporal dependence structure of a process/field, one could use alterative tools such as those of
spectrum or variance over aggregated scales, since all these quantities are interlinked (see [129,140]
and references therein).
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3. The anySim R-Package

3.1. Package Structure

At its current version, anySim package is composed by 28 individual R-functions which can be
grouped into four main categories with respect to their functionality. To facilitate the user, we adopted
a common prefix to name the R-functions of each category:

1. R-functions prefixed by “cs” concern theoretical correlation structures, such as those presented
in Section 2.5 (e.g., cscas corresponds to Cauchy-type autocorrelation structure).

2. Prefix “Nataf” is used for the R-functions that support the solution of Equation (3) and the
establishment of relationship F (·) between the target and equivalent (in Gaussian domain)
correlation coefficient (see Section 2.2).

3. Prefix “Est” indicates R-functions that support the estimation of parameters of the linear auxiliary
Gaussian models (e.g., EstARTAp supports the parameterization of ARTA (p) models), wrapping
also the functions of previous category for the estimation of equivalent correlation coefficients.

4. The functions that support simulation and generation of synthetic data are prefixed by “Sim”.
Finally, the package enables multi-scale stochastic simulation (see Section 2.4) via the functions
prefixed by “Disagg”.

Additionally, anySim contains four supplementary R-functions that allow: (a) the construction
of a zero-inflated distributions (dpqzi; see Section 2.5 for further details); (b) the estimation of some
typical statistical characteristics (i.e., mean, variance, skewness, and kurtosis) of a given distribution
(DistrStats and DistrStats2); and (c) the estimation of lag-1 season-to-season correlation coefficients
of a series in the case of cyclostationarity (s2scor; see also the simulation example in Section 5.3).

Regarding installation, anySim package is currently available via GitHub and can be obtained and
loaded using the R code presented in Box 1.

Box 1. Installation (using devtools) of anySim R package via GitHub and loading to R.
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3.2. Package Simulation Modules

In its current form, anySim consists of three major modules that regard the simulation of correlated
random variables, stochastic processes and random fields.

Regarding the first modeling application, the package implements the so-called NORTA
approach [75], while the auxiliary (Gaussian) variables are generated following the Cholesky
decomposition approach. The two key R-functions for this modeling application are EstCorrRVs and
SimCorrRVs (see simulation example in Section 5.1).

Regarding stochastic processes, the package supports a variety of functionalities covering
the cases of both stationarity and cyclostationarity, as well as univariate and multivariate
simulation. The currently implemented schemes, along with the corresponding R-functions for
model parameterization and stochastic simulation, are:

• Autoregressive To Anything model of order p (ARTA(p)): This model is used for the simulation
of univariate stationary processes, employing a univariate AR(p) model for the auxiliary Gp
(R-functions: EstARTAp and SimARTAp; see simulation example in Section 5.2). It is noted that
a similar, yet lower-order (i.e., with p = 2), implementation of this modeling approach was
demonstrated by Cario and Nelson [76], while the use of higher-order models (in combination
with theoretical ACSs to ensure parsimony) is employed in [20,25,72,79].

• Stochastic Periodic Autoregressive To Anything model of order 1 (SPARTA) [21,77]: This model
is used for the simulation of multivariate (or univariate) cyclostationary processes, employing
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the PAR(1) model for the auxiliary Gp (R-functions: EstSPARTA and SimSPARTA; see simulation
example in Section 5.3).

• Symmetric Moving Average (neaRly) To Anything (SMARTA(q)) [78]: This model is used for the
simulation of multivariate (or univariate) stationary processes, employing a Gaussian SMA(q)
model for the simulation of the auxiliary Gp (R-functions: EstSMARTA and SimSMARTA; see
simulation example in Section 5.4).

Further to these, anySim implements the above Nataf-based schemes stochastic models in a
disaggregation framework (see Section 2.4) to support the reproduction of the marginal and stochastic
properties of the process at multiple temporal levels; specifically:

• Disagg_ARTAp enables the disaggregation of a given coarser-level series to a finer-level stationary
series, using the ARTA(p) model for the simulation of the finer-level process (see also the simulation
example in Section 5.6).

• Disagg_SPARTA enables the disaggregation of a given coarser-level series to a finer-level
cyclostationary series, using the SPARTA model for the simulation of the finer-level process (see
also the simulation example in Section 5.7).

Evidently, the above two functions can also be used to disaggregate a specific value, rather than
an entire series, to a stationary or a cyclostationary series, respectively.

Finally, for the simulation of random fields anySim uses again the SMARTA(q)) model,
as implemented by the R-functions: EstSMARTA_RFs and SimSMARTA (see simulation example in
Section 5.5). It is noted that EstSMARTA_RFs function is just an optimized (i.e., faster) version of
EstSMARTA, devised to speed-up the parameter estimation procedure for RFs.

As explained above, NDM approach can be implemented with arbitrary (continuous, discrete,
or mixed-type) marginal distributions (with finite variance) and valid correlation structures, given
that their combination is feasible (i.e., leads to a positive definite correlation structure). This flexibility
has also been passed to the above R-functions which are capable to receive as inputs user-defined
distributions as well as auto- and cross-correlation structures. In the following sections we demonstrate
the capabilities of anySim using typical distributions and correlation structures, widely employed in
the modeling of hydrometeorological processes.

4. Demonstration of anySim Capabilities

Simulation Examples

The capabilities of anySim package are demonstrated via seven simulation examples that cover a
wide range of modeling applications that involve the simulation random variables, stochastic processes,
and random fields. The simulation examples are designed to realistically resemble real-world cases of
stochastic simulation of hydrometeorological processes (e.g., rainfall, streamflow, temperature, etc.),
i.e., generation of synthetic weather data. The main characteristics of the examples (which in most cases
are based on real-world data), such as the distribution functions and correlation structures involved,
as well as the corresponding R-functions, are summarized in Table 1. A detailed description of these
examples, accompanying with the corresponding R-code and the simulation results, is presented in
Sections 5.1–5.7.
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Table 1. Summary table of anySim simulation examples presented in the paper.

Section Simulation Example Marginal
Distribution Correlation Structure anySim Functions

5.1 Simulation of
correlated RVs

Gamma, Beta,
Log-Normal

Predefined correlation
matrix

EstCorrRVs
SimCorrRVs

5.2
Simulation of

univariate stationary
processes

Gamma Product of CAS and
periodic ACS

EstARTAp
SimARTAp

Beta-Binomial CAS ACS

Zero-inflated Burr
Type-XII 1 CAS ACS

5.3

Simulation of
univariate

cyclostationary
(12 seasons) process 2

Generalized Gamma,
Burr Type-XII

Periodic autoregressive
of order 1

EstSPARTA
SimSPARTA

5.4
Simulation of

multivariate stationary
process

Beta, Zero-inflated
Generalized Gamma,

Normal
CAS ACS EstSMARTA

SimSMARTA

5.5 Simulation of
spatiotemporal RF 3

Zero-inflated Burr
Type-XII

Separable (product of
two CAS)

EstSMARTA_RFs
SimSMARTA

5.6

Disaggregation of a
given coarser-level

univariate timeseries to
a lower level sequence,
assuming stationarity 4

Lower time scale:
Zero-inflated Burr

Type-XII

Lower time scale:
CAS ACS

Lower time scale:
EstARTAp

Disagg_ARTAp

5.7

Multi-scale simulation
of univariate timeseries
via disaggregation 5: A

two-level scheme,
assuming stationarity

in the coarser time
scale and

cyclostationarity in the
lower time scale

Coarse time scale:
Gamma

Lower time scale:
Generalized Gamma,

Burr Type-XII

Coarser time scale:
CAS ACS

Lower time scale:
Periodic autoregressive

of order 1

Coarser time scale:
EstARTAp
SimARTAp

Lower time scale:
EstSPARTA

Disagg_SPARTA

1 Resembling the distributional and correlation properties of hourly rainfall recorded at Oberstdorf, Germany gauge
(station ID: 3730). 2 Resembling the distributional and correlation properties of Kremasta, Greece monthly runoff. 3

Resembling the distributional properties of daily rainfall recorded at station in Bologna, Italy. 4 Resembling the
distributional and correlation properties of 10-min rainfall recorded at a station in Soltau, Germany (station ID: 4745).
5 Resembling the distributional and correlation properties of Nile’s monthly streamflow gauge at both annual and
monthly scale.

The boxes of R-code contained herein assumes that anySim package is already installed and loaded
to the user’s R environment (see Box 1), while they are supported by several comments aiming to
enhance readability, as well as reproducibility and modification of these examples. Here, we focus on
the demonstration of the functionalities of anySim, and due to this the procedures for the identification
of parameters of the distribution functions and CSs are omitted. It is worth noting that NDM approach,
as well as the R-functions of anySim, are fully independent to the parameter identification procedure,
and hence the selection and fitting of these two key components are fully controlled by the user.

Finally, to keep the size of this manuscript to a minimum, we also omit the R-code for the
generation of the plots that illustrate simulation results. It is noted that all graphs were produced in R
via ggplot2 package [141].

5. Results

5.1. Simulation of Correlated Non-Gaussian Random Variables

The first simulation study concerns the problem of generating correlated random variables with
pre-defined continuous marginal distributions and correlation matrix. As mentioned in Section 3.2,
anySim implements the NORTA approach [75] differentiated regarding the estimation of the equivalent
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(i.e., Gaussian) correlation coefficients. EstCorrRVs function is used for the estimation of the auxiliary
Gaussian model parameters, while these parameters are inserted into SimCorrRVs function to perform
the generation of correlated RVs (see Box 2).

In this simulation study, we examine the problem of generating three correlated RVs X1, X2 and X3

with Gamma (qgamma), Beta (qbeta), and Log-Normal (qlnorm) distribution, respectively, with parameters,
X1 ∼ G(α = 1.5,β = 2), X2 ∼ B(α1 = 1.5, α2 = 3) and X3 ∼ LN(α = 0.5, β = 1) - the parameters
have been chosen arbitrarily for demonstration purposes (see Appendix A for further details on the
distribution functions). We assume also the following target correlation matrix denoted by R (parameter R
in EstCorrRVs):

R =

X1 X2 X3

X1

X2

X3


1 0.7 0.5

0.7 1 0.8
0.5 0.8 1


where its ith and jth element denotes ρi, j := Corr

[
Xi, X j

]
.

Box 2 presents the R-code for the generation of 10,000 RVs with the above-specified target marginal
and correlation characteristics. Figure 1 presents the results of the simulation in terms of scatter plots
(depicting the established dependence structure) and histograms, depicting also the corresponding
target theoretical probability density functions (PDFs). The results highlight the ability of the method
to fulfill its promises, since the empirical distributions of the generated data are in close agreement
with the target ones, as well as the target correlation coefficients obtained from the simulated data
closely match the target values (see the titles of Figure 1d–f).

We note that, using the same simulation method (and R-code already provided by anySim), it is
possible to generate stationary and non-stationary non-Gaussian processes and fields [79], yet, in this
work and in the following sections, we limit our focus on models (and code) particularly designed for
the cases of stationary and cyclostationary processes as well as on stationary fields.Water 2020, 12, x FOR PEER REVIEW  16 of 41 
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Figure 1. Simulation of correlated RVs: (a–c) histograms of simulated data along with the target
theoretical distribution functions; and (d–f) scatter plots depicting the established correlation between
the 3 RVs under study.



Water 2020, 12, 1645 16 of 41

Box 2. R-code for the generation of correlated RVs with specific target marginal distributions and
correlation matrix.
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# Define the target correlation matrix. 
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# Estimate the parameters of the auxiliary Gaussian model. 

paramsRVs=EstCorrRVs(R=CorrelMat,dist=Distr,params=DistrParams, 

                        NatafIntMethod='GH',NoEval=9,polydeg=8) 

# Generate 10000 synthetic realisations of the 3 correlated RVs. 

SynthRVs=SimCorrRVs(n=10000,paramsRVs=paramsRVs) 

5.2. Simulation of Univariate Stationary Non-Gaussian Processes

Moving now to the use of anySim for the simulation of univariate stationary non-Gaussian
processes, we demonstrate package capabilities via three distinct examples involving processes with
continuous, discrete, and zero-inflated marginal distribution, respectively. The simulation scheme of
this section is based to some extent on the so-called ARTA approach [76], with modifications regarding
the order of the auxiliary Gp model, the use of theoretical ACS, and the method for the estimation
of equivalent correlation coefficients. This scheme, termed as ARTA(p), is implemented via two
key R-functions: the EstARTAp for the estimation of parameters of the auxiliary (Gaussian) AR(p)
model and the SimARTAp for the generation of synthetic data according to a target stationary process.
Further details on this modeling approach can be found in the literature [20,25,72,79], where the use
alternative distribution models are discussed (e.g., three components mixtures, focusing also on the
modeling of extremes), as well as high-order multivariate models are presented in detail [25,79].

Back to our case, the first example of the ARTA(p) scheme (see Box 3) concerns the simulation of a
process {Xt}t∈Z> with Gamma distribution (qgamma) and autocorrelation structure given by the product
of a CAS (cscas) and a periodic ACS (csPeriodic). Particularly, we assume Xt ∼ G(α = 5, β = 1) and
ρτ := Corr[Xt, Xt+τ] = ρCAS

τ (β = 3,κ = 0.6) × ρP
τ (p = 12, l = 1.5).

In the second example (see Box 4), we assume that {Xt} is a process with discrete distribution,
specifically a Beta-Binomial (qbb), i.e., Xt ∼ BB(N = 10, α1 = 3, α2 = 10), and autocorrelation
structure given by CAS (cscas), i.e., ρτ = ρCAS

τ (β = 1.5, κ = 0.3).
Finally, the third case (see Box 5) concerns the simulation of an intermittent process {Xt},

described by a zero-inflated Generalized Gamma (GG) marginal distribution ZIGG (combination
of qzi and qgengamma) with p0 = 0.8 for the discrete part and GG(α1 = 1.16,α2 = 0.54, β = 0.25)
for the continuous part. The process has an autocorrelation structure given by CAS (cscas), i.e.,
ρτ = ρCAS

τ (β = 0.91, κ = 1.09). We note that in this case the parameterization of the process resembles
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the empirical properties obtained from the hourly rainfall dataset of month July (extending over the
period 1 September 1995 to 31 December 2017) at Oberstdorf, Germany (German Weather Service;
station ID 3730) (for further details on this dataset and simulation cases, see also [25]).

The results of the three above-described simulation examples are summarized in Figure 2, where
we can see the exact reproduction of the target distribution functions (including the probability of zero
values for the case of second example—see Figure 2e) and the target autocorrelation structures.
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Box 3. R-code for the simulation of univariate stationary process with continuous marginal distribution
and autocorrelation structure given by the product of a CAS and a periodic ACS.
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Box 5. R-code for the simulation of univariate stationary process with zero-inflated marginal 
distribution and autocorrelation structure given by CAS. 

set.seed(18) 

# Define the target autocorrelation structure. 
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# Define the target distribution function (ICDF). 

FX='qzi' # Define that distribution is of zero-inflated type 
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Box 4. R-code for the simulation of univariate stationary process with discrete marginal distribution
and autocorrelation structure given by CAS.
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5.3. Simulation of Univariate Cyclostationary Non-Gaussian Processes

Further to stationary processes, anySim can also be used for the generation of univariate
cyclostationary processes {Xt}t∈Z> , reproducing the target lag-1 season-to-season correlations, as well
as the seasonally varying target marginal distributions. Recall that a cyclostationary process consisted
of s = 1, . . . , S sub-periods (e.g., months) can be denoted by Xs,t or simply Xt, where in that case
the sub-period (i.e., season—e.g., month) that corresponds to a time step t may be recovered by
s = t mod(S), while when t mod(S) = 0 we get s = S. Moreover, the period (say n; e.g., year) may be
obtained by n = 1 + (t− s)/S.

For the simulation of univariate cyclostationary non-Gaussian processes, anySim implements the
SPARTA model that is described in detail in the works of Tsoukalas et al. [21,25,77] (also used for monthly
large-scale simulations of streamflow processes [142], as well as for the simulation of non-physical processes
at hourly time scale; see Kossieris et al. [20]). The procedure is evolved via two key R-functions (see
Box 6): the EstSPARTA function for the estimation of parameters of the auxiliary PAR(1) model and the
SimSPARTA function for the generation of synthetic data according to a target cyclostationary process.

As a demo case, we examine the simulation of monthly runoff that is characterized by monthly
seasonality, and hence it is treated as cyclostationary process with marginal distributions and correlation
structures which vary periodically from month-to-month. We note that, in this case, the parameterization
of the process resembles the empirical properties obtained from a monthly runoff series from Kremasta
(Greece). Specifically, we aim to reproduce the fitted distributions of each month, which are either GG
(qgengamma) or BrXII (qburr), as well as the empirical lag-1 season-to-season correlations (12 values).

Box 6 presents the R-code for the generation 10,000 data from the above defined cyclostationary
process, while Figure 3 summarizes the results of the simulation. As can be seen, the method resembles
the given season-to-season correlations (see Figure 3b), while the indicative empirical probability plots of
Figure 3c,d demonstrate the efficiency of the method in terms of reproducing the target marginal behavior.
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Box 6. R-code for the simulation of univariate cyclostationary process with specific distribution function
at each season and specific lag-1 season-to-season correlations.
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5.4. Simulation of Multivariate Stationary Processes with Continuous and Zero-Inflated Marginal Distributions

This section focuses on the case of multivariate stationary processes and demonstrates
the functionalities of anySim through a simulation example involving three contemporaneously
cross-correlated processes, i.e., {Xt}t∈Z> =

{
X1

t , X2
t , X3

t

}
. In this case, apart from auto-dependence,

the processes exhibit cross-dependence at lag-0. It is noted that such type of simulation may regard
different processes at the same location (e.g., humidity, rainfall, and temperature) or processes of the
same type (e.g., rainfall) at different locations. In this simulation study, we focus on the former case,
assuming that the three processes represent the daily humidity, rainfall, and temperature, respectively,
of a specific month (to support the assumption of stationarity).

For the simulation of multivariate stationary processes, anySim implements the SMARTA(q)
model [78] via two key R-functions (see Box 7): the EstSMARTA function for the estimation of parameters
of the auxiliary (Gaussian) SMA model and the SimSMARTA function for the generation of synthetic data.

In this simulation example, we assume a Beta distribution (qbeta) for humidity (i.e., X1
t ∼

B(α1 = 15, a2 = 5)), a zero-inflated Generalized Gamma distribution (ZI GG; combination of qzi
and qgengamma) for rainfall (i.e., X2

t ∼ ZI GG(p0 = 0.7,α1 = 1.35, a2 = 0.4, β = 0.12)), and a Normal
distribution (qnorm) for temperature (i.e., X3

t ∼ N(µ = 15, σ = 3)). Regarding the auto-dependence
structure, we employed the CAS (cscas) with different parameters for each process, i.e., ρ1

τ =

ρCAS
τ (β = 0.1, κ = 0.7), ρ2

τ = ρCAS
τ (β = 0.2, κ = 1) and ρ3

τ = ρCAS
τ (β = 0.1, κ = 0.5), where ρi

τ :=
Corr

[
Xi

t, Xi
t+τ

]
. Finally, the three processes were assumed contemporaneously cross-correlated,

as given by the following lag-0 cross-correlation matrix R0 (parameter Cmat in EstSMARTA), where
each element represents the lag-0 correlation, ρi, j

0 := Corr
[
Xi

t, X j
t

]
. Specifically, the target matrix R0 is

given by:

R0 =

X1
t X2

t X3
t

X1
t

X2
t

X3
t


1 0.4 −0.5

0.4 1 0.3
−0.5 −0.3 1


Note that the parameters of the marginal distributions, as well as those of the ACSs and

lag-0 correlations, were not obtained from observed data but they were chosen to realistically represent
the hypothesized processes.

Box 7 presents the R-code for the generation of a 3-dimensional realization with 214 time steps
according to the above simulation scenario, while the results of this example are summarized graphically
in Figure 4. As can be seen, the method enables the reproduction of the target distribution function and
autocorrelation structure of all three processes (see Figure 4d–i), while the scatter plots in Figure 4j–l
provide an illustrative representation of the established cross-dependencies among the processes.
Figure 4j–l also highlights the efficiency of the method in terms of reproducing the lag-0 cross-correlation
coefficients (as shown in the titles of Figure 4j–l where the target and simulated lag-0 cross-correlation
coefficients are presented).
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Figure 4. Simulation of multivariate stationary processes: (a–c) simulated realizations of the three
correlated processes (randomly selected window of 1000 time steps); (d–e) comparison between
theoretical and simulated empirical probability plots; (g–i) comparison between theoretical and
simulated autocorrelation structures; and (j–l) scatter plots depicting the lag-0 cross-correlation
between the 3 processes under study.
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Box 7. R-code for the simulation of multivariate stationary processes with specific distribution functions
and autocorrelation structures, as well as specific lag-0 cross-correlation matrix.
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# formulation given in Box 5.  

# Define the parameters of the target distributions. 

pFXs[[1]]=list(Distr=qbeta,p0=0,shape1=15,shape2=5) # Beta distribution 

pFXs[[2]]=list(Distr=qgengamma,p0=0.7,scale=0.12, shape1=1.35, 

shape2=0.4) # Gen. Gamma 

pFXs[[3]]=list(Distr=qnorm,p0=0,mean=15,sd=3) # Normal distribution 

# Estimate the parameters of SMARTA model 

SMAparam=EstSMARTA(dist=FXs,params=pFXs,ACFs=ACSs,Cmat=Cmat, 

                   DecoMethod='cor.smooth',FFTLag = 2^7, 

                   NatafIntMethod='GH',NoEval=9,polydeg=8) 

# Generate the synthetic series of 2^14 length. 

simSMARTA=SimSMARTA(SMARTApar=SMAparam,steps=2^14,SMALAG=2^6) 

5.5. Simulation of Spatiotemporal Random Fields with Zero-Inflated Marginal Distributions

Beyond stochastic processes, anySim can also be used for simulation of spatiotemporal random
fields (RFs). Particularly, the currently implemented model in anySimmodel called SMARTA(q), is able
to simulate homogenous and stationary non-Gaussian RFs, and to generate realizations reproducing
the field’s target marginal distribution, temporal correlation structure (up to time lag equal to q) and
lag-0 spatial correlation structure. The simulation is performed using two functions of the package:
EstSMARTA_RFs (a faster version of EstSMARTA function, designed for RFs) and SimSMARTA.

To provide a bit more context, let
{
Ξs,t

}
be a spatiotemporal RF, where in this case the index s

refers to a spatial position in R2 and the index t ∈ Z> refers to time. Further to this, assuming a
discretized RF in nX × nY grid consisting of m = (nX × nY) total points, allows us to view the RF{
Ξs,t

}
as a m-dimensional multivariate process, that is, {Ξt}t∈Z> =

{
Ξ1

t ,Ξ2
t , . . . ,Ξi

t, . . . ,Ξ
m
t

}
, where each

process at point i is associated with coordinates si =
(
si

X, si
Y

)T
, where si

X and si
Y denote the horizontal

and vertical coordinates respectively. Let us also assume that the RF is characterized by a marginal
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distribution FΞ(ξ) with finite variance, while ρd,τ := Corr
[
Ξi

t,Ξ
j
t+τ

]
stand for the spatiotemporal

correlation structure of the RF (which is assumed to be positive definite) which depends on the spatial
(Euclidean) distance d of two points si and s j, and the time lag τ.

To simulate a RF with anySim, the first step is to discretize it through the definition of a nX

× nY grid (where nX and nY stand for the number of cells in the horizontal and vertical direction,
respectively). Such an example is given in Figure 5, where a field is discretized with 5 × 5 grid points,
where each point represents the center of the cell (see also Lines 1–7 in Box 8). Having done that, it is
straightforward to see what is mentioned above, i.e., that the simulation of a spatiotemporal RF

{
Ξs,t

}
can be viewed as a multivariate simulation problem of nX × nY processes. Hence, we may employ the
multivariate SMARTA(q), or any other multivariate (Nataf-based) ARMA-type model (see, for instance,
Appendix B in Tsoukalas et al. [25] and Section 5.4 in Tsoukalas [79], who elaborated on high-order AR
Nataf-based models, as well as Papalexiou and Serinaldi [73], who employed high-order AR models for
the simulation of RFs), to simulate the spatiotemporal RF. Moving to the re-formulated RF simulation
problem, i.e., to simulate a multivariate process {Ξt}t∈Z> =

{
Ξ1

t ,Ξ2
t , . . . ,Ξi

t, . . . ,Ξ
nX×nY
t

}
, it is recalled that

Ξi
t represents the process at cell i, which, in this case, due to properties of homogeneity and stationarity,

all cells have the same marginal distribution and ACS (hence, it is straightforward to parameterize
accordingly the SMARTA(q) model), while their CCS is solely determined by the distance among the
points. In particular, for each i ∈

{
1, . . . , (nX × nY)}, we have the corresponding coordinates si, hence

we can easily compute, e.g., the Euclidean, distance among any two points i and j via di, j = ||si
− s j
||.

Having done that, and using the target theoretical spatiotemporal correlation structure, we can now
specify the required (by SMARTA(q) model) lag-0 cross-correlation coefficients among the nX × nY

processes (parameter Cmat in EstSMARTA_RFs).
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Figure 5. Discretization of a random field with 5 × 5 grid points.

The simulation example presented here (Box 8) regards the simulation of a homogenous, stationary,
and isotropic spatiotemporal RF with marginal and correlation properties that mimic those of an
intermittent rainfall field.

Particularly, regarding the RF’s properties and the parameterization of EstSMARTA, it was assumed
that the marginal distribution of the RF was identical to the one fitted to the daily rainfall data recorded
at Bologna, Italy gauge. Since the RF is an intermittent one, we employed a zero-inflated Burr Type-XII
distribution (BrXII) [143,144] marginal distribution, denoted byZIBrXII (combination of qzi and qburr)
with p0 = 0.75 for the discrete part andBrXII(α1 = 0.88,α2 = 11.79, β = 71.62) for the continuous part.

Further to this, to model the spatiotemporal CS of the RF, we employed a separable (product)
model, where both the ACS and CCS are given by CAS (cscas). Particularly, the former is
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given by ρτ = ρCAS
τ (β = 0.1, κ = 0.6), while the latter is given by ρd = ρCAS

d (β = 0.2, κ = 2).
Therefore, the spatiotemporal CS can be expressed as the product of these two CS, i.e., ρd,τ = ρd × ρτ.

Moving to the simulation results, Figure 6 illustrates 30 snapshots (depicting the evolution of
the RF among consecutive time steps) of a RF simulated using the aforementioned characteristics in
30× 30 grid over ~30,000 time steps (which, assuming a daily time step, corresponds to about 82 years
of synthetic data). Additionally, Figure 7 provides a comparison among the target and simulated RF in
terms of reproducing: (a) the target distribution; (b) the target autocorrelation structure; and (c) the
target lag-0 cross-correlation structure. In a similar vein, Figure 8 compares some key statistics among
the target and simulated RF. Particularly, it depicts for each cell: (a) the probability dry; (b) the mean;
(c) the L-scale; and (d) the L-skewness. Arguably, the good agreement between target and simulated
properties, depicted in Figures 7 and 8, highlight the ability of the model to simulate RFs with the
target properties with high accuracy.
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Figure 6. Time step (1–30) of the simulated non-Gaussian spatiotemporal RF, spanning across 30 time steps.
White cells represent cells with zero values (i.e., no rainfall), while blue color palette is used to depict the
non-zero values (light rainfall is depicted with light blue, while heavy rainfall with dark blue).
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Box 8. R-code for the simulation of a spatiotemporal random field (RF) with specific distribution function,
autocorrelation structure (temporal), as well as specific lag-0 cross-correlation structure (spatial).
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5.6. Univariate Disaggregation of Coarser-Level Stationary Series to Finer-Level Stationary Series

The cases examined so far concern the stochastic simulation of processes and fields at a single
temporal scale. This simulation study, as well as the following one, focuses on the multi-scale simulation
of stochastic processes, which targets the reproduction of the marginal and stochastic properties of
a process at multiple temporal scales. As discussed in Section 2.4, this problem holds a prominent
position in the modeling of hydrometeorological processes and anySim addresses it by implementing
functions that support disaggregation, i.e., generation of synthetic time series at a lower temporal scale
which sum up exactly to the given coarser-level data.

Here, we study the problem of disaggregating daily rainfall from a single station into 10-min
amounts. The disaggregation scheme is applied to a 10-min rainfall dataset from Soltau, Germany
(Station ID 4745), extending from 1999 to 2009 with 0.24% missing values. To cope with the effect of
seasonality, we assume that the rainfall process within each monthly period is stationary (i.e., cyclical
stationarity from month-to-month). To save space, the R-code presented in Box 9 and the results in
Figures 9 and 10 concern only the case of January, while the computational procedure is identical for
the other months (i.e., by seasonally varying the model’s parameters).

anySim implements the NDA approach (see Tsoukalas et al. [25], as well as Section 2.4) via
Disagg_ARTAp R-function that enables the disaggregation of a stationary coarser-level series to a
stationary one at a finer level. The key input arguments of this R-function are the higher-level series
(input argument HLSeries) and the parameters of ARTA(p) model (input argument ARTApar) that
control the lower-level stationary model (see Section 3.2).

For the simulation of the lower-level (10-min) process, we assume a Burr Type-XII (qburr)
distribution, i.e., BrXII(α1 = 7.64,α2 = 0.30, β = 0.18), and an autocorrelation structure, given by
CAS (cscas; see Section 2.5), which has been fitted to the empirical estimates of autocorrelation
coefficients up to time lag 24, i.e., ρτ = ρCAS

τ (β = 1.69, κ = 1). The parameters of the auxiliary
(Gaussian) AR(p) model are estimated via EstARTAp function.

Here, instead of disaggregating the observed daily rainfall amounts, we choose to disaggregate a
synthetic daily series to demonstrate a more general case where the series at both temporal scales are
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product of simulation models. To keep things simple (and not use an additional simulation model for
the daily scale), we employ the above fitted ARTA(p) model to generate a realization of 10-min values
that are summed up to compose the daily values that are then disaggregated. It is also noted that in
this case the associated R-function requires about 390 s to disaggregate 500 daily values to 10-min
sequences (by setting the parameter max.iter = 500 in Disagg_ARTAp).

The results of this simulation example are presented in Figures 9 and 10. As shown in Figure 9d,
the procedure establishes full consistency between the synthetic 10-min data (when aggregated to
daily scale) and the corresponding target values. Additionally, the empirical probability distribution
of disaggregated data resembles the target one (see Figure 9e), while the same also stands for the
autocorrelation structure (see Figure 9f). For an additional validation, we also estimate several
statistical quantities (that is, probability zero and the first three L-moments) across multiple scales, i.e.,
k ∈ {1, 2, . . . , 144}, where k = 1 stands for the 10-min time scale (e.g., k = 2 and k = 144 refer to 20-min
and daily temporal scale, respectively). Figure 10 shows that the disaggregation procedure enables
the reproduction of the above statistical quantities also at the intermediate temporal scales, further to
10-min and daily scale.Water 2020, 12, x FOR PEER REVIEW  29 of 41 
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Figure 9. Historical (a) daily and (b) 10-min rainfall series; (c) synthetic (disaggregated) 10-min rainfall
realization; (d) consistency check, comparing the values of the aggregated synthetically generated
10-min data, i.e., when aggregated to daily scale, with the corresponding target values; (e) comparison
of distribution function of non-zero amounts for 10-min historical and disaggregated series (the fitted
theoretical model is shown with red line); and (f) comparison of autocorrelation function (ACF) for
10-min historical and disaggregated series (the fitted theoretical model is shown with the red line).
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Box 9. R-code for the generation of synthetic univariate stationary series at a higher level and its
disaggregation into finer-level cyclostationary series.
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set.seed(124) 

# Define the target autocorrelation structure of finer-level process. 

ACS=cscas(param=c(1.688,1), lag=24) # CAS with b=1.688 and k=1 

# Define the target distribution function (ICDF). 

FX='qzi'# Define that distribution is of zero-inflated type 

# Define the distribution for the continuous part of the process. 

# In this example, the Burr type-XII distribution is used in the  

# formulation given in Box 6.  

# Define the parameters of the zero-inflated distribution function. 

pFX=list(p0=0.96,Distr=qburr,scale=0.181,shape1=7.642,shape2=0.296) 

# Estimate the parameters of the auxiliary Gaussian AR(p) model. 

param=EstARTAp(ACF=ACS,dist=FX, params=pFX, NatafIntMethod='GH') 

# Compose the daily series to be disaggregated 

Sim=SimARTAp(ARTApar=param, burn=1000, steps=(24*6*500))  

DailySeries=apply(X=matrix(data=Sim$X, 

ncol=24*6,byrow=1),MARGIN=1,FUN=sum) 

## Disaggregate the daily series to 10-min data 

disag10min=Disagg_ARTAp(HLSeries=DailySeries,ARTApar=param, 

max.iter=500,steps=24*6) 

5.7. Univariate Disaggregation of Coarser-Level Stationary Series to Finer-Level Cyclostationary Series

This simulation study concerns the synthesis of multi-scale consistent monthly streamflow data
(1000 years; Figure 11b), based on the widely-known dataset of Nile River at Aswan dam ([145];
Figure 11a). As discussed previously, the reproduction of the marginal and correlation properties
of a process at a single temporal level does not ensure the preservation of the characteristics of
the process at the higher aggregation levels. In this vein, the SPARTA model can be employed to
generate stochastically consistent synthetic monthly series at monthly scale (see simulation example in
Section 5.3), but the annual properties (and especially the LRD behavior) of the Nile streamflow data
will not be reproduced. Having said this, the objective of this simulation case is to generate a synthetic
realization of a cyclostationary process {Xt}t∈Z> at monthly scale (the basic one, denoted by k = 1)
with the desired marginal distributions and season-to-season correlations, which when aggregated to

the annual scale (i.e., k = 12), i.e., X(12)
j =

12 j∑
t=( j−1)12+1

Xt (where j is the time index of the aggregated

process) will result in a realization of the annual process which exhibits the target annual marginal
distribution and autocorrelation structure.

To accomplish the above objective, anySim implements the so-called NDA approach [25] via
Disagg_SPARTA R-function that enables the disaggregation of a stationary coarser-level series to a finer
cyclostationary one. The key input arguments of this R-function are the higher-level series (input
argument HLSeries) and the parameters of SPARTA model (input argument SPARTApar) that control
the lower-level cyclostationary model (see Section 3.2).
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As in the previous simulation example, to demonstrate a more general case (see Box 10), we use the
ARTA(p) scheme (SimARTAp; see Section 5.2) to generate a stationary synthetic series at the coarser-level
(annual), which resemble the marginal and stochastic characteristics of the observed annual streamflow
of Nile. For the simulation of the annual process, we assume a Generalized Gamma (qgengamma)
distribution, i.e., GG(α1 = 20.42,α2 = 1.20, β = 7.41), and an autocorrelation structure given by CAS
(cscas; see Section 2.5), which has been fitted to the empirical estimates of autocorrelation coefficients
up to time lag 10, i.e., ρτ = ρCAS

τ (β = 2.62, κ = 1.56). The parameters of the auxiliary (Gaussian) AR(p)
model are estimated via EstARTAp function. Regarding the parameterization of the cyclostationary
process at the lower temporal level (monthly), we fit either a Generalized Gamma (qgengamma) or a Burr
Type-XII (qburr) distribution to each month, as well as estimate the empirical lag-1 month-to-month
correlations (12 values) of the Nile streamflow data.

The results of this simulation example are presented in Figures 12–14. Starting from the simulation
of the higher-level process, Figure 12 reveals the ability of ARTA(p) scheme to reproduce the target
marginal and stochastic properties of annual Nile streamflow. Moving to the finer scale, as shown in
Figure 13, the empirical probability distributions of the disaggregated data at monthly scale resemble
the target theoretical distributions for all 12 months. Finally, Figure 14 shows that the empirical
lag-1 month-to-month correlations are well reproduced without sacrificing realism in the established
dependence patterns (see also the relevant discussion by Tsoukalas et al. [22]).
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Figure 11. (a) Historical Nile monthly streamflow series (March 1870 to December 1945); and
(b) synthetically generated time series using the anySim package (randomly selected window of
80 years). Monthly-based comparison of historical and simulated (bottom row (c)) L-mean, L-scale,
and L-skewness, as well as lag-1 month-to-month correlations coefficients.
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Figure 12. (a) Historical annual time series of Nile streamflow at Aswan Dam; (b) synthetic time series
(1000 years); (c) empirical, simulated, and theoretical distribution function, with the parameters of
the theoretical distribution given in the title of the plot; (d) empirical, simulated, and theoretical and
autocorrelation coefficients, with the parameters of CAS given in the title of the plot; and (e) scatter
plot of annual historical and synthetic time series for time lag 1.
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Figure 13. Monthly-based (a–l) comparison of empirical, simulated, and theoretical distribution
functions. The title of each subplot provides the selected distribution and its parameters.



Water 2020, 12, 1645 32 of 41

Box 10. R-code for the generation of synthetic univariate stationary series at a higher level and its
disaggregation into finer-level cyclostationary series.
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PFXs[[8]]=list(scale=15.27454,shape1=5.607777,shape2=3.654064) 

PFXs[[9]]=list(scale=17.18964,shape1=7.913649,shape2=3.848175) 
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# Estimate the parameters of SPARTA model. 

SPARTApar<-EstSPARTA(s2srtarget=rtarget_mon,dist=FXs,params=PFXs, 

                     NatafIntMethod='GH',NoEval=9,polydeg=8,nodes=11) 

# Disaggregate the annual series to monthly amounts. 

disagMonthly<-Disagg_SPARTA(HLSeries=simAnnual$X[1:100], 

SPARTApar=SPARTApar,max.iter=300,steps=NumOfSeasons) 
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6. Conclusions

In an attempt to fill the gap of limited availability of general and open-source software for
stochastic modeling purposes, this work introduces and details a freely available R-package, called
anySim. The package implements a suite of state-of-the art models, all based on the notion of Nataf’
joint distribution model (i.e., Gaussian copula), which facilitate the simulation of non-Gaussian
correlated random variables, stochastic processes, and random fields. anySim covers the needs of
these three omnipresent modeling tasks, and aims this way to provide an easy-to-use, one-stop
solution for practitioners, engineers, and researchers working towards the development of a variety of
uncertainty-related applications (e.g., development of Monte-Carlo-type experiments for engineering
and environmental studies).

More specifically, as demonstrated through several simulation examples, focusing mostly on
hydrometeorological processes (i.e., generation of synthetic weather data, such as rainfall, streamflow,
and temperature), the current version of anySim is able to perform tasks that regard:

• The simulation of non-Gaussian correlated random variables with target correlation matrix.
• The simulation of non-Gaussian univariate and multivariate processes with given target

auto-correlation and lag-0 cross-correlation structure.
• The simulation of non-Gaussian univariate processes (stationary and cyclostationary) at multiple

temporal scales, preserving the target distributions, as well as the target auto-correlation structures
at multiple temporal scales.
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• The disaggregation of univariate coarser-level sequences to finer-level sequences exhibiting the
target (non-Gaussian) distributions and auto-correlation structure.

• The simulation of non-Gaussian homogenous random fields with target spatiotemporal correlation
structure (preserving the lag-0 contemporaneous spatial correlations, as well as autocorrelation
up to large time lags).

Beyond these, anySim offers a scale-free approach since the implemented simulation models
are suitable for processes/fields of any time (or spatial) scale and can be used as long as the models
are being parameterized by any marginal distribution (including zero-inflated models; to account
for processes/fields characterized by intermittency, such as rainfall) with finite variance and valid
correlation structure (i.e., positive definite). It is remarked that in the cases where the last constraint
is not satisfied, anySim can still be employed if combined with procedures that correct non-positive
definite matrices [34,146], i.e., identify a valid (nearest) correlation structure in case of inconsistency.
However, this problem is not encountered throughout the simulation studies presented herein.

Going beyond the current version of anySim, the package is viewed as dynamic entity that will be
continuously enhanced with new functionalities. Ongoing research in this direction includes:

• The implementation of alternative multivariate models (for stationary and cyclostationary
processes) for both simulation and disaggregation purposes.

• The implementation of methods and functions for conditional simulations.
• The implementation of alternative correlation structures (i.e., spatial, temporal, or combination of

them), as well as methods that correct potential non-positive definite correlation structures.
• The implementation of functions dedicated for fitting distribution functions and correlation

structures to historical data.
• Introduction of stochastic methods that rely on alternative copulas [138,139], such as asymmetric

ones (e.g., Clayton and Gumbel copulas). This way, beyond NDM-based methods (i.e., Gaussian
copula), which are suitable for symmetric dependence structures, anySim could be employed to
describe more complex dependencies and thus further extend the simulation capabilities of the
package (e.g., reproduction of extremes; tail dependencies).

• The implementation of some part of the code, and especially the more time-consuming functions
(e.g., those related with disaggregation), in other programming languages (e.g., C++) to speed-up
the package’s run times.

To conclude, it is argued that anySim brings into fruition, as well as practical implementation in
real-world studies, the desideratum of Klemeš and Borůvka [86], highlighted by Tsoukalas et al. [21],
for generalized generation schemes which are able to represent processes from any distribution and any correlation
structure, thus moving beyond the classical paradigm of stochastic modeling in hydrology that aim
at the resemblance of a process/field in terms of summary statistical characteristics and low-order
correlations (cf. [147]). Of course, the need and utility of non-Gaussian models spans beyond the realm
of hydrology and engineering, since it is widely acknowledged that such processes are omnipresent in
many other scientific domains, such as, finance, biology, communication networks, and operations
research. It is our belief, and hope, that anySim can and may find fertile ground of application also in
such domains, and hopefully resolve existing problems and trigger new developments.
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Appendix A. Distribution Functions Used to Demonstrate anySim 

The probability density function (PDF) of the Gamma distribution (𝒢) is given by,  

𝑓𝒢(𝑥; 𝛼, 𝛽)  =  
1

|𝛽|Γ(𝑎)
(

𝑥

𝛽
)

𝛼−1

exp (−
𝑥

𝛽
) , 𝑥 > 0 (A1) 

where 𝛼 > 0 and  𝛽 ≠ 0 are shape and scale parameters, respectively, while Γ(∙) stands for the 

gamma function. 

The probability density function (PDF) of the Beta distribution (ℬ) is given by, 

𝑓ℬ(𝑥; 𝛼1, 𝛼2)  =  
𝑥𝛼1−1(1 − 𝑥)𝛼2−1

B(𝛼1, 𝛼2)
, 𝑥 ∈ [0,1] (A2) 

where 𝛼1 and 𝛼2 are shape parameters, while B(𝛼1, 𝛼2)  =  Γ(𝛼1)Γ(𝛼2) Γ(𝛼1 + 𝛼2)⁄ . 

The PDF of the three-parameter log-Normal distribution (ℒ𝒩) is given by,  

𝑓ℒ𝒩(𝑥; 𝛼, 𝛽, 𝑐)  =  
1

(𝑥 − 𝑐)𝛼√2𝜋
exp (−

1

2
(

log(𝑥 − 𝑐) − 𝛽

𝛼
)

2

) , 𝑥 > 𝑐 (A3) 

where 𝛼 > 0, 𝛽 ∈ ℝ, and 𝑐 ∈ ℝ denote the shape, scale. and location parameters. respectively. When 

𝑐 =  0, the model reduces to its classical two-parameter variant. 

The PDF of the Generalized Gamma (𝒢𝒢) distribution is given by [148], 

𝑓𝒢𝒢(𝑥; 𝛼1, 𝛼2, 𝛽)  =  
𝛼2

𝑏Γ(𝛼1/𝛼2)
(

𝑥

𝛽
)

𝛼1−1

exp (− (
𝑥

𝛽
)

𝛼2

) , 𝑥 > 0 (A4) 

whereΓ(∙) denotes the gamma function, while 𝛼1 > 0 and 𝛼2 > 0 are shape parameters and 𝛽 > 0 

is a scale parameter. 

The PDF of the Burr Type-XII distribution (ℬ𝓇XII) is [143,144], 

𝑓ℬ𝓇𝑋𝐼𝐼(𝑥; 𝛼1, 𝛼2, 𝛽)  =  (
𝛼1𝛼2

𝛽
) (

𝑥

𝛽
)

𝛼1−1

(1 + (
𝑥

𝛽
)

𝛼1

)
−𝛼2−1

, 𝑥 > 0 (A5) 

where 𝛼1, 𝛼2 > 0  are shape parameters and 𝛽 > 0  is a scale parameter. It is noted that the rth 

moment of the ℬ𝓇XII distribution is finite, if and only if, 𝛼1𝛼2 < 𝑟. 

The probability mass function (PMF) of the Beta-Binomial distribution (ℬℬ) is given by, 

𝑃ℬℬ(𝑥; 𝑁, 𝛼1, 𝛼2)  =  (
𝑁

𝑥
)

B(𝑥 + 𝛼1, 𝑁 − 𝑥 + 𝛼2)

B(𝛼1, 𝛼2)
, 𝑥 ∈ {0,1, … , 𝑁} (A6) 

where 𝑁 is a parameter denoting the number of trials (a positive integer) and 𝛼1 and 𝛼2 are both 

shape parameters. 
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Appendix A. Distribution Functions Used to Demonstrate anySim

The probability density function (PDF) of the Gamma distribution (G) is given by,

fG(x;α, β) =
1∣∣∣β∣∣∣Γ(a)

(
x
β

)α−1

exp
(
−

x
β

)
, x > 0 (A1)

where α > 0 and β , 0 are shape and scale parameters, respectively, while Γ(·) stands for the
gamma function.

The probability density function (PDF) of the Beta distribution (B) is given by,

fB(x;α1,α2) =
xα1−1(1− x)α2−1

B(α1,α2)
, x ∈ [0, 1] (A2)

where α1 and α2 are shape parameters, while B(α1,α2) = Γ(α1)Γ(α2)/Γ(α1 + α2).
The PDF of the three-parameter log-Normal distribution (LN) is given by,

fLN (x;α, β, c) =
1

(x− c)α
√

2π
exp

−1
2

(
log(x− c) − β

α

)2, x > c (A3)

where α > 0, β ∈ R, and c ∈ R denote the shape, scale. and location parameters. respectively.
When c = 0, the model reduces to its classical two-parameter variant.

The PDF of the Generalized Gamma (GG) distribution is given by [148],

fGG(x;α1,α2, β) =
α2

bΓ(α1/α2)

(
x
β

)α1−1

exp
(
−

(
x
β

)α2
)
, x > 0 (A4)

where Γ(·) denotes the gamma function, while α1 > 0 and α2 > 0 are shape parameters and β > 0 is a
scale parameter.

The PDF of the Burr Type-XII distribution (BrXII) is [143,144],

fBrXII(x;α1,α2, β) =
(
α1α2

β

)(
x
β

)α1−1(
1 +

(
x
β

)α1
)−α2−1

, x > 0 (A5)

where α1,α2 > 0 are shape parameters and β > 0 is a scale parameter. It is noted that the rth moment of
the BrXII distribution is finite, if and only if, α1α2 < r.
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The probability mass function (PMF) of the Beta-Binomial distribution (BB) is given by,

PBB(x; N,α1,α2) =

(
N
x

)
B(x + α1, N − x + α2)

B(α1,α2)
, x ∈ {0, 1, . . . , N} (A6)

where N is a parameter denoting the number of trials (a positive integer) and α1 and α2 are both
shape parameters.
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