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Abstract: The ability to extract flood hazard settings in highly vulnerable areas like populated
floodplains by using new computer algorithms and hydraulic modeling software is an important
aspect of any flood mitigation efforts. In this framework, the 1D/2D hydraulic models, which were
generated based on a Light Detection and Ranging (LiDAR) derivate Digital Elevation Model (DEM)
and processed within Geographical Information Systems (GIS), can improve large-scale flood hazard
maps accuracy. In this study, we developed the first flood vulnerability assessment for 1% (100-year)
and 0.1% (1000-year) recurrence intervals within the Jijia floodplain (north-eastern Romania), based on
1D HEC-RAS hydraulic modeling and LiDAR derivate DEM with 0.5 m spatial resolution. The results
were compared with official flood hazards maps developed for the same recurrence intervals by the
hydrologists of National Administration “Romanian Waters” (NARW) based on MIKE SHE modeling
software and a DEM with 2 m spatial resolutions. It was revealed that the 1D HEC-RAS provides a
more realistic perspective about the possible flood threats within Jijia floodplain and improves the
accuracy of the official flood hazard maps obtained according to Flood Directive 2007/60/EC.

Keywords: HEC-RAS river analysis system; high-density LiDAR data; 1D modeling; flood hazard
maps; Jijia floodplain

1. Introduction

In the last few decades, with climate change and global warming, catastrophic flood events have
been frequently recorded all over the world and central-eastern Europe, including Romania, was no
exception [1–7]. In this regard, north-east Romania, drained by the Siret and Prut rivers which together
have the largest river basins in the country, is one of the most vulnerable territories [8]. For example,
approximately at intervals of two years in the last 20 years (post-2000), major flood events have occurred
and became a constant threat to urban and rural settlements located within the floodplains of the main
rivers [9]. Generally, the most catastrophic floods events were caused by heavy rains [10,11], but their
impact was also amplified by the inefficient river regulation measures [12,13], the intensification of
deforestation [14], and/or housing development within the floodplain areas [15,16]. Also, in some cases,
the impact and damage caused by floods were determined by the incapacity of the local authorities to
implement efficient planning policies (e.g., achievement of flood hazard maps with high accuracy).
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However, since 2007, when Romania joined the European Union, flood risk maps have been compiled
under the Flood Directive 2007/60/EC of the European Council [17–19].

In this framework, the ability to generate flood hazard maps based on new computer algorithms
and hydraulic modeling software and integrating the results within a Geographical Information
Systems (GIS) database are important foundations for any flood mitigation efforts [9,20,21]. In this
context, there are many scientific studies that used different hydraulic modeling applications and
GIS tools (e.g., LISFLOOD-FP, MIKE SHE, HEC-RAS) designed to simulate floodplain inundation
in a computationally efficient manner over complex topography [22–31]. Thereby, due to the recent
computational upgrades of the Hydrologic Engineering Center—River Analysis System (HEC-RAS
5.0.7.), a software developed by the U.S. Army Corps of Engineers Hydrologic Engineering Center
(USACE HEC, Davis, CA, USA) [32], this integrated hydrological modeling system proved to be the
most efficient application. For example, due to the 1D, 2D, and combined 1D-2D stream flow modeling
capability, the HEC-RAS software is the most widely used tool within flood hazard and risk mapping
studies [33–40], for real time flood forecasting [41,42], and even for remodeling past flood events [16].
However, in Romania, the official flood hazard maps designed under Flood Directive 2007/60/EC by
the hydrologists of National Administration “Romanian Waters” (NARW) were made using the MIKE
SHE software, which provided results that are quite similar to the HEC-RAS application [43,44].

In this study, we developed the first flood vulnerability assessment for floods with 1% (100-year)
and 0.1% (1000-year) recurrence intervals within the Jijia floodplain (north-eastern Romania), based on
a Light Detection and Ranging (LiDAR) derivate Digital Elevation Model (DEM) with 0.5 m spatial
resolution and 1D HEC-RAS hydraulic modeling, and we compared the results with official flood
hazards maps developed by NARW for the same recurrence intervals, based on 2 m spatial resolutions
LiDAR derivate DEM and MIKE SHE modeling software. We used the 1D HEC-RAS modeling
instead of 2D HEC-RAS modeling because a 1D hydraulic method gives good results in cases of
flood propagation along the main river, as in the area studied by us [45–47]. The 2D models are
recommended in cases when the water is expected to overtop levees and the flow direction may
change, spreading across a large area [48,49]. The field evidences were collected in several sections
of the study area and consisted of GPS measurements of traces left by floods on the walls of houses,
fences, and bridge pillars. Thereby, the main objective of this study is to assess the effects of 0.5 m
and 2 m LiDAR based DEM resolutions in simulating the flood extent, inundation depth, and flood
hazard pattern. This type of research corresponds with more than five years collaboration between
researchers and PhD students within the Doctoral School of Geosciences, University “Alexandru Ioan
Cuza” of Iaşi (UAIC), Romania and the specialists of Prut-Bîrlad Water Administration (PBWA) within
NARW, in the field of hydrological risk assessment and improvement of flood hazard perception
in north-eastern Romania [8–12,14–16,19,50]. The results led to a more realistic perspective on the
possible flood threats within the Jijia floodplain and improved the accuracy of the official flood hazard
maps designed according to the Flood Directive 2007/60/EC.

2. Study Area

2.1. Hydro-Geomorphological Framework

The Jijia River is located in the north-eastern part of Romania (watershed centroid: 47◦30′ N, 27◦ E)
and is the main tributary right-bank of the Prut River (Figure 1a,b). From a morphological point of view,
the Jijia river basin (5757 km2) overlaps the lower area of the Moldavian Plateau, also known as the Jijia
Plain [50] (Figure 1c). The general morpho-structural context consists of a monocline (dipping strata
from NW to SE) formed by a succession of thicker sandy clay deposits and thin layers of limestone
and sandstone of Lower and Medium Sarmatian age [51]. Over these, a loess layer with thicknesses
between 1–2 m (most frequently) and 15–30 m (e.g., cuesta slopes, fluvial terraces) covers the entire
study area [52]. The Jijia floodplain is characterized by recent (Holocene) alluvial deposits accumulated
in the last 10,000 years, approximately. Characteristic landforms are well-contoured valleys separated



Water 2020, 12, 1624 3 of 21

by interfluves that are most often of the cuesta type [51]. Elevations range between 18 m and 584 m,
the average slope angle is 5.09◦ (maximum value > 38◦ for active river banks consumed by erosion),
and relief energy does not exceed 150 m/km2–200 m/km2 within the Jijia basin [22,50] (Figure 1c).
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Figure 1. Geographical location of the Jijia river basin in (a) eastern Europe and (b) north-eastern
Romania (Jijia Plain); (c) Location of the Jijia floodplain (see Figure 2.) within the Jijia river basin and the
gauging stations (G1: Dorohoi; G2: Dangeni; G3: Todireni; G4:Victoria) used for 1D HEC-RAS modeling.

From a hydrographical point of view, Jijia River springs in Bour Mountain (Ukraine) from a relative
altitude of 410 m, flows south, and meets the Prut River at a relative altitude of 18 m on the territory
of Ias, i County (Romania). The main hydrometric characteristics of Jijia River are: 287 km of total
watercourse length, of which 12 km is in Ukraine and 275 km in Romania, 1%� average longitudinal
slope, 1.45 sinuosity coefficient, and 152 m average altitude of the water surface [50]. The major
tributaries of the Jijia River are the Sitna, Miletin, and Bahlui rivers [50,51]. Climate conditions,
characterized by a mean annual air temperature between 9 ◦C–9.5 ◦C (63 year monitoring period
between 1955–2018) and multi-annual average precipitations between 550–600 mm (63 year monitoring
period between 1955–2018), control 60% of the water flow rate and are often overtaken in transition
seasons and in periods with maximum rainfall [53]. Thereby, the multi-annual average discharge is
10 m3/s (316,000,000 m3/year), with fluctuations between 0.519 m3/s and 71.06 m3/s [5]. The historical
maximum discharge was 397 m3/s and has been recorded in the lower sector of the Jijia at Todireni
gauge station in 17 July 1969 [15,50,53]. Other historical flood events associated with high discharges
occurred on: 15 July 1955—303 m3/s), 11 June 1975—141 m3/s, 13 April 1979—192 m3/s, 9 April
1980—147 m3/s, and 7 June 1991—78 m3/s) [50,53].
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Figure 2. (a) Habitation characteristics in the Jijia floodplain vs. flood hazards: (b) houses and (c) roads
affected by a flash flood that occurred in Mihail Kogalniceanu settlement (lower sector of the Jijia
floodplain) on 15 April 2018; (d) traces of a flood event that occurred in the summer of 2008 and affected
the rural settlements from the common floodplain of the Jijia-Prut rivers.

2.2. Habitation in The Jijia Floodplain

There are 76 settlements within the floodplain of the Jijia River and the watercourse either passes
through them or runs in their close vicinity, which leads to a high flood hazard (Figure 2). Among all
settlements, only Dorohoi is of urban status and the remaining 75 are all rural localities (villages
or commune residences). According to the latest demographic studies and national census [54],
in the Jijia floodplain, there are 92,826 inhabitants, of which 24,309 inhabitants are only in Dorohoi
City, and the population density is 653.06 inhabitants/km2 (2630 inhabitants/km2 in Dorohoi) [54].
Concerning the causes and extent of flood hazard within the inhabited territory of the Jijia floodplain,
the most catastrophic events took place due to intense anticyclone activity in the June–July interval [55].
The last example is the flash flood which took place in 2018 (Figure 2b,c) as a result of heavy rains
generated by the intense activity of Azores anticyclone and its influence on Eastern Europe [19].
Overall, being a typical rural area highly dependent on subsistence agriculture by family farming
or small-scale fisheries, the Jijia floodplain is heavily affected by hydrological disasters, especially in
terms of material losses and trauma population [50,51,53] (Figure 2d).

3. Database and Methodology

Figure 3 summarizes the workflow chart followed in this study with the hydrological,
LiDAR derived DEM, official flood maps (Figure 3a), and built-up data acquisition process (Figure 3b);
the key steps for 1D HEC-RAS flood modeling and validation of streamflow accuracy based on average
discharge (Figure 3c); comparison between 1D HEC-RAS flood extents and official flood extents
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(Figure 3d); flood hazards assessment based on Ministry of Land Infrastructure and Transport (MILT)
criteria in Japan using 1D HEC-RAS models and official flood hazard maps (Figure 3e).
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Figure 3. Workflow chart followed in this study: (a) obtaining the hydrological data recorded at
each gauge station within the Jijia floodplain (G1, G2, G3, and G4), LiDAR based DEM (0.5 m spatial
resolution) data, and the official flood hazard maps with 1% (100-year) and 0.1% (1000-year) recurrence
interval probabilities used for 1D HEC-RAS modeling process and flood hazard comparison; (b) manual
digitization of land cover classes and built-up areas using high resolution orthophotos for flood hazard
assessment; (c) 1D HEC-RAS multi-scenario development with 1% (100-year) and 0.1% (1000-year)
recurrence interval probabilities, where Qavg was generated based on average discharge for 1D stream
flow accuracy; (d) comparison between 1D HEC-RAS flood extents and official flood extents provided
by NARW with 1% (100-year) and 0.1% (1000-year) recurrence interval probabilities; (e) flood hazard
assessment based on the built-up data and flood depth classification according to the MILT and
comparison between 1D HEC-RAS hazard models and official flood hazard maps with 1% (100-year)
and 0.1% (1000-year) recurrence interval probabilities.

3.1. Data Acquisition

3.1.1. LiDAR Data

The LiDAR data was obtained from NARW—Prut-Bîrlad Water Administration (PBWA) and
consisted of 23,832 raster files generated on the basis of raw ground point elevation data collected using
airborne LiDAR technology at spatial density between 16 point/m2 (built-up areas) and 4 point/m2

(outside built-up areas) [43] (Figure 3a). The point data cloud was filtered to exclude vegetation or
another type of not terrain surface point (e.g., man-made features) by the producer. A DEM with
0.5 m spatial resolutions used for 1D HEC-RAS modeling within this study was generated by spatial
processing in the ArcGIS 10.2 software of LiDAR raster files. Thereby, a raster dataset was created
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into a geodatabase to merge the LiDAR geotiffs and additionally to reduce the errors generated
by the merging process; the unified DEM was filtered using specific commands from ArcToolbox
(e.g., flow direction, sink, fill) [56]. Also, because the raster filtering highlights the null elevation values,
we made their correction based on local and regional topography [12].

3.1.2. Hydrological Data

The hydrological data used in this study were obtained from the PBWA (Iaşi branch) and consisted
of flow and water levels data recorded at four main gauging stations (G1, G2, G3, and G4) located on
the Jijia River: G1 Dorohoi—Monitoring period 50 years (1968–2018), G2 Dangeni—Monitoring
period 49 years (1969–2018), G3 Todireni—Monitoring period 49 years (1969–2018), and G4

Victoria—Monitoring period 63 years (1955–2018) (Figure 3a). After the hydrological data acquisition
stage, the Qmax (m3/s) flow rates corresponding to the 1% (100-year) and 0.1% (1000-year) recurrence
intervals based on the discharge recorded at each gauging station were needed [57]. The calculations
consisted of determining the probability of empirical overflow according to Weibull’s formula
(Equation (1)) [58] and the recurrence intervals’ probability of unregistered flows based on the Person
III formula (Equation (2)) [59]. The peak flow obtained for each gauging station (G1, G2, G3, and G4)
was the same as the one obtained by the NARW (Table 1).

Pi = i/(n + 1) × 100, (1)

where Pi% is the probability of the occurrence of a measured flow, i is the order number of the orderly
increasing flow, and n is the total number of terms of the string.

Qp% = Qavg. ×
(
1 + Cv × ϑp%

)
, (2)

where Qp% is the recurrence interval of flow, Qavg is the mean flow, Cv is the coefficient of variation,
and ϑp% is the order of the insurance curve for Cv = 1.

Table 1. The Qmax (m3/s) flow rates and the recurrence intervals probabilities estimated using the
Weibull and Pearson type III distribution curve for each gauging station (Gn) on the Jijia River between
1969 and 2018.

River Gauging
Station

1 Latitude 1 Longitude Date of
Occurrence

2 Qmax. (m3/s)

2 Qmax. (m3/s)
Recurrence Intervals

3 1% 4 0.1%

Jijia

G1-Dorohoi 26.4101 47.9557 24 June 1985 170 211.49 356.16
G2-Dangeni 26.9732 47.8319 13 July 1969 155 174.71 261.18
G3-Todireni 27.1156 47.6139 17 July 1969 397 286.45 471.34
G4-Victoria 27.6003 47.3079 21 July 1969 325 303.95 478.46

1 WGS 84 decimal degree projection; 2 Qmax . (m3/s)-Maximum flow rates recorded at G1, G2, and G3 gauging stations
between 1969 and 2015, and maximum flow rates recorded at G4 gauge station between 1955 and 2015; 3 Qmax . (m3/s)
estimated for 100 year (1%) and 4 Qmax . (m3/s) estimated for 1000 year (0.1%) recurrence intervals.

3.1.3. Land Use on Built-Up Areas Data

Land used data acquisition for flood hazard assessment within the Jijia floodplain was carried
out in two stages. The first step consisted of on-screen digitizing within the ArcGIS 10.2 of land use
polygons based on orthophotos collected in 2015. For improving land use data accuracy obtained
by the manual digitization method, the results were adjusted where appropriate according to the
European Riparian Zone database developed within the Copernicus Land Monitoring Service (CLMS)
project [60]. The second step consisted of on-screen digitizing within the ArcGIS 10.2 of built-up
areas (e.g., houses, attachment buildings, administrative buildings) with a 20 m2 minimum mapping
unit based on various spatial databases (e.g., orthophotos 2015, OpenStreetMap) [61] (Figure 3b).
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All resulted features were unified and classified into land use categories according to Corine Land
Cover specification (CLC 2018) [62], in conjunction with the National Agency for Cadastral and Land
Registration of Romania classification for built-up areas.

3.1.4. Official Flood Hazard Data

The official flood hazard data developed for 10% (10-year), 1% (100-year), and 0.1% (1000-year)
recurrence intervals were generated by specialists of PBWA within the first stage of Flood
Directive 2007/60/EC implementation in Romania [17–19]. For the north-eastern part of the country,
which includes the Jijia floodplain, this action corresponded with the implementation of the project
Works for reducing the flood risk in Prut-Bîrlad Basin [43]. Thereby, the hydrological modeling was
realized using the Mike 11 Rainfall-runoff (RR) software tool at the medium-scale river basins. For the
1D hydraulic modeling, the Mike 11 Hydrodynamics (HD) software tool was used based on discharge
function (Z = f (Q)) and 2 m spatial resolutions LiDAR derivate DEM. In this study, to evaluate the
difference between 1D HEC-RAS and official 1D Mike flood hazard models, only 1% (100-year) and
0.1% (1000-year) recurrence interval scenarios generated based on official peak flow values (Table 1)
were used (Figure 3a,d).

3.2. 1D HEC-RAS Modeling

The 1D flood hazard models for 1% (100-year) and 0.1% (1000-year) recurrence intervals were
generated using the open source HEC-RAS 5.0.7. software developed by USACE HEC since 1993 and
the HEC-GeoRAS 10.2., an auxiliary module for ArcGIS 10.2. As mentioned above, this method has
multiple applications in 1D and 2D water flow simulation, sediment transport modeling, and space–time
flood evolution [63]. Most frequently, 1D HEC-RAS modeling is used for the assessment of flood-prone
areas and statistical analysis of flood occurrence within the floodplain of small-scale and medium-scale
catchment basins [64]. Thereby, for 1D HEC-RAS modeling within the Jijia floodplain, three steps were
followed (Figure 3a):

• Step one—this pre-processing stage involved the manual digitization of thematic vector layers
(e.g., river network, stream centerline, river banks, flow paths, cross sections) in ArcGIS 10.2.
software based on orthophotos collected in 2015 and LiDAR based DEM with 0.5 m spatial
resolutions, and generation of the attribute table for each of them. Based on hydrological and
geomorphological rules (e.g., spring to spill, from left bank to right bank, perpendicular to the
thalweg, no intersection between cross sections), more than 1700 cross sections with 150–300 m
intervals between them were manually digitized.

• Step two (Figure 4)—this processing stage involved the import of the required parameters
(e.g., Manning roughness coefficient, hydrological data) into HEC-RAS software to run the 1D
flood simulation. Thereby, the Manning roughness coefficient (n) was calculated based on land use
classes for each cross section, stream centerline, and river bank intersections (built-up area: n = 0.3;
roads: n = 0.014; vegetated open space areas: n = 0.05; arable land: n = 0.025; pasture: n = 0.035;
broad-leaved forest: n = 0.1; transitional woodland-shrub: n = 0.06; water surface: n = 0.04;
degraded land: n = 0.08) [64]. The flow rates were calculated using Weibull’s (Equation (1)) and
the Pearson III (Equation (2)) for 1% (100%) and 0.1% (1000-year) recurrence intervals (Table 1).
The 1D flood simulations based on St. Venants continuity equation (Equation (3)), which describes
the preservation of mass in a given control volume, were computed with steady flow data and
the boundary condition was set for normal depth at 0.7 [12]. We used a steady flow analysis
instead of unsteady flow analysis because in the second case, the HEC-RAS software needs a
hydrograph, which we could not obtain from the local authorities. Thereby, to overcome this
limitation, we used the flow rate for each gauging station, similar to official flood hazard data.

∂(Q)

∂x
+
∂A
∂t

+ q = 0, (3)
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where Q is the flow rate, A is the cross-sectional area, and q is the lateral inflow.
• Step three—this post-processing stage involved exporting the 1D HEC-RAS results to the ArcGIS

software and generating the flood patterns with 1% (100-year) and 0.1% (1000-year) recurrence
intervals. The validation of the results was performed by comparing the real discharge recorded
at each gauging station with the computed discharge hydrographs.

Water 2020, 12, x FOR PEER REVIEW 8 of 21 

 

( ) + + 𝑞 =  0, (3) 

where Q is the flow rate, A is the cross-sectional area, and q is the lateral inflow. 

• Step three—this post-processing stage involved exporting the 1D HEC-RAS results to the 
ArcGIS software and generating the flood patterns with 1% (100-year) and 0.1% (1000-year) 
recurrence intervals. The validation of the results was performed by comparing the real 
discharge recorded at each gauging station with the computed discharge hydrographs. 

 
Figure 4. Methodological framework and detailed key steps followed for 1D HEC-RAS flood 
modeling and flood hazard mapping. 

4. Results and Discussion 

4.1. D HEC-RAS Flood Pattern with 1% and 0.1% Recurrence Intervals 

The 1D modeling performed with HEC-RAS 5.0.7 version offered various output in terms of 
detailed mapping of flood characteristics within the RAS mapper features. Following the 1% 
(100-year) and 0.1% (1000-year) recurrence interval scenarios, individual layers of the flooded areas 
in the Jijia floodplain regarding the flood extent and depth were exported. Based on these two flood 
characteristics, the flood vulnerability assessment was performed using the hazard classification 
according to the criteria of the Japanese Ministry of Land Infrastructure and Transport (MLIT) [65].  

4.1.1. Flood Extent 

The flood extent layer consists of an inundation boundary layer in a shapefile format which 
captured the potentially affected areas by floods with 1% (100-year) and 0.1% (1000-year) recurrence 
intervals (Figure 5). According to the 1% (100-year) recurrence interval scenario, an area of 195.92 
km2 within Jijia floodplain is potentially flooded and 2084 buildings are also potentially affected. In 
the 0.1% (1000-year) recurrence interval scenario, the total flood extent covers a 251.82 km2 area and 
2928 buildings are located in the potentially flooded areas (Table 2). Overall, in the first 1D 
HEC-RAS scenario (1%), the flood extent affected only the built-up areas located near the Jijia River 
(e.g., river banks, lakeshores, wetlands proximity) and in the second 1D HEC-RAS scenario (0.1%), 
the flood extent affected the entire Jijia floodplain, except for some areas that are protected by the 
recent hydrotechnical works (e.g., dams, drainage channels, polders) (Figure 5a–c). 

Figure 4. Methodological framework and detailed key steps followed for 1D HEC-RAS flood modeling
and flood hazard mapping.

4. Results and Discussion

4.1. 1D HEC-RAS Flood Pattern with 1% and 0.1% Recurrence Intervals

The 1D modeling performed with HEC-RAS 5.0.7 version offered various output in terms of
detailed mapping of flood characteristics within the RAS mapper features. Following the 1% (100-year)
and 0.1% (1000-year) recurrence interval scenarios, individual layers of the flooded areas in the Jijia
floodplain regarding the flood extent and depth were exported. Based on these two flood characteristics,
the flood vulnerability assessment was performed using the hazard classification according to the
criteria of the Japanese Ministry of Land Infrastructure and Transport (MLIT) [65].

4.1.1. Flood Extent

The flood extent layer consists of an inundation boundary layer in a shapefile format which
captured the potentially affected areas by floods with 1% (100-year) and 0.1% (1000-year) recurrence
intervals (Figure 5). According to the 1% (100-year) recurrence interval scenario, an area of 195.92 km2

within Jijia floodplain is potentially flooded and 2084 buildings are also potentially affected. In the
0.1% (1000-year) recurrence interval scenario, the total flood extent covers a 251.82 km2 area and
2928 buildings are located in the potentially flooded areas (Table 2). Overall, in the first 1D HEC-RAS
scenario (1%), the flood extent affected only the built-up areas located near the Jijia River (e.g., river banks,
lakeshores, wetlands proximity) and in the second 1D HEC-RAS scenario (0.1%), the flood extent
affected the entire Jijia floodplain, except for some areas that are protected by the recent hydrotechnical
works (e.g., dams, drainage channels, polders) (Figure 5a–c).
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Figure 5. Flood extent derived from the 1D HEC-RAS modeling based on LiDAR data (0.5 m spatial
resolution) and Qmax. (m3/s) flow rates with 1% (100-year) and 0.1% (1000-year) recurrence intervals
estimated for each gauging station (G1, G2, G3, and G4). Significant differences between 1% (100-year)
and 0.1% (1000-year) flood extents are highlighted in the sections (a–c).

Table 2. Flood extent area and number of buildings potentially affected by floods computed for each
1% (100-year) and 0.1% (1000-year) recurrence interval scenarios using 1D HEC-RAS modeling.

Flood Extent 1% (100-Year) 0.1% (1000-Year) 1 Differences

Total flood extent (km2) 195.92 251.82 55.9
2 Number of affected buildings 2084 2928 844

1 The values indicate the increase from 1% (100-year) recurrence interval scenario to 0.1% (1000-year) recurrence
interval scenario of flood extent area and number of buildings potentially affected by floods. 2 About 95% of all
potentially affected buildings are single storey houses built of bricks and/or clay bricks.

4.1.2. Flood Depth

The 1D flood depth pattern for 1% (100-year) and 0.1% (1000-year) recurrence intervals were
generated by taking into consideration the maximum depth for each cell within inundated areas
(Figures 6 and 7). According to the 1% (100-year) recurrence interval scenario, 96.88% of the built-up
area (2019 buildings) is potentially affected by floods that do not exceed 1 m depth and the remaining
3.12% of the built-up area (65 buildings) is potentially affected by floods with depths between 1 m
and 5 m. In the case of the 0.1% (1000-year) recurrence interval scenario, 96.72% of the built-up area
(2832 buildings) is potentially affected by floods that do not exceed 1 m depth and the remaining 3.28%
of the built-up area (96 buildings) is potentially affected by inundations between 1 m and 5 m (Table 3).
Due to the Jijia floodplain morphology (e.g., 1%� average longitudinal slope), there are no significant
differences between 1% (100-year) (Figure 6a–c) and 0.1% (1000-year) (Figure 7a–c) recurrence interval
scenarios in terms of inundation depths, except the <1.0 m and 1.0–2.0 m flood depth classes (Table 3).



Water 2020, 12, 1624 10 of 21

Water 2020, 12, x FOR PEER REVIEW 10 of 21 

 

 
Figure 6. Flood depth derived from 1D HEC-RAS modeling based on LiDAR data (0.5 m spatial 
resolution) and Qmax. (m3/s) flow rates with 1% (100-year) recurrence intervals estimated for each 
gauging station (G1, G2, G3, and G4). The 1% (100-year) flood depth pattern is highlighted in the 
sections (a–c). 

 
Figure 7. Flood depth derived from 1D HEC-RAS modeling based on LiDAR data (0.5 m spatial 
resolution) and Qmax. (m3/s) flow rates with 0.1% (1000-year) recurrence intervals estimated for each 
gauging station (G1, G2, G3, and G4). The 0.1% (1000-year) flood depth pattern is highlighted in 
sections (a–c). 

Figure 6. Flood depth derived from 1D HEC-RAS modeling based on LiDAR data (0.5 m spatial
resolution) and Qmax. (m3/s) flow rates with 1% (100-year) recurrence intervals estimated for each
gauging station (G1, G2, G3, and G4). The 1% (100-year) flood depth pattern is highlighted in the
sections (a–c).

Water 2020, 12, x FOR PEER REVIEW 10 of 21 

 

 
Figure 6. Flood depth derived from 1D HEC-RAS modeling based on LiDAR data (0.5 m spatial 
resolution) and Qmax. (m3/s) flow rates with 1% (100-year) recurrence intervals estimated for each 
gauging station (G1, G2, G3, and G4). The 1% (100-year) flood depth pattern is highlighted in the 
sections (a–c). 

 
Figure 7. Flood depth derived from 1D HEC-RAS modeling based on LiDAR data (0.5 m spatial 
resolution) and Qmax. (m3/s) flow rates with 0.1% (1000-year) recurrence intervals estimated for each 
gauging station (G1, G2, G3, and G4). The 0.1% (1000-year) flood depth pattern is highlighted in 
sections (a–c). 

Figure 7. Flood depth derived from 1D HEC-RAS modeling based on LiDAR data (0.5 m spatial
resolution) and Qmax. (m3/s) flow rates with 0.1% (1000-year) recurrence intervals estimated for each
gauging station (G1, G2, G3, and G4). The 0.1% (1000-year) flood depth pattern is highlighted in
sections (a–c).
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Table 3. Number of potentially affected buildings by different flood depth classes (m) computed for
each 1% (100-year) and 0.1% (1000-year) recurrence interval scenarios using 1D HEC-RAS modeling.

Flood Depth Classes (m) 1% (100-Year) 0.1% (1000-Year) 1 Diff.

<1.0 2019 2832 813
1.0–2.0 41 63 22
2.0–3.0 19 23 4
3.0–4.0 5 9 4
4.0–5.0 0 1 1

1 Diff.—Differences: the values indicate the increase, from 1% (100-year) recurrence interval scenario to 0.1%
(1000-year) recurrence interval scenario, of the number of potentially affected buildings by different flood depth
classes (m).

4.1.3. Flood Vulnerability Assessment

Generally, the flood vulnerability assessment within built-up areas is based on quantifiable
variables like flood extent, water velocity, and water depth. This statistical and GIS effort corresponding
to the post-processing stage of the 1D HEC-RAS models can provide valuable information regarding
the probable damages in cases of hydrological events with possible destructive potential. In this
context, because the flood velocity is a constant variable in all 1D computed scenarios (80% from the
total built-up area are affected by the 0.01–0.25 m/s velocity class; 15.5% from the total built-up area are
affected by the 0.25–0.5 m/s velocity class; 4% from the total built-up area are affected by the 0.5–1 m/s
velocity class), we made the flood vulnerability assessment using only the flood extent and depth
variables. Thereby, to generate the flood hazard maps for built-up areas within Jijia floodplain, the water
depth corresponding to each flood extent scenario was classified according to MLIT methodology [65],
which are based on five flood hazard classes:

• H1—Very low hazard (flood depth < 0.5 m): flood does not pose a hazard to people and on-foot
evacuation is not difficult.

• H2—Low hazard (flood depth between 0.5 m and 1 m): flood water poses a hazard for infants
and on-foot evacuation of adults becomes difficult; evacuation becomes more complicated.

• H3—Medium hazard (flood depth between 1 m and 2 m): flood depth can cause the drowning of
people; but people may be safe inside their homes.

• H4—High hazard (flood depth between 2 m and 5 m): people are exposed to flood hazard even
inside their homes and evacuation through the roof is suggested.

• H5—Extreme hazard (flood depth > 5 m): built-up structures like single storey houses may get
covered by the flood; people may drown, even if they evacuate through the roof of their homes.

According to the 1% (100-year) recurrence interval scenario, even if the first four hazard classes
(H1, H2, H3, and H4) are encountered, more than 96.8% of vulnerable buildings are situated in
the very low (H1-1406 houses; 67.46% from total buildings) and low (H2-613 houses; 29.41% from
total buildings) hazard classes. The rest of medium (H3) and high (H4) hazard classes could affect
approximately 65 buildings (H3-1.96% from total buildings; H4-1.15% from total buildings) (Figure 8).
In the case of the 0.1% (1000-year) recurrence intervals scenario, 56.61% of total vulnerable buildings are
potentially very minorly affected by floods (H1-1658 buildings), 40.09% of total vulnerable buildings
are potentially minorly affected by floods (H2-1174 buildings); the remaining 3.3% are located in
the medium (H3-63 buildings) or high (H4-33 buildings) exposed area to flood hazard (Figure 9).
Overall, the significant difference between flood hazard maps generated based on 1% (100-year)
(Figure 8a–c) and 0.1% (1000-year) (Figure 9a–c) recurrence interval scenarios are only observed in the
case of the H2 class. The increasing number of potentially low affected buildings by floods according to
the 0.1% (1000-year) recurrence interval scenario is induced by morphological features and habitation
practice within the Jijia floodplain (e.g., settlements located on the first flooded terraces) (Table 4).
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Figure 9. Flood hazard pattern based on flood depth classification according to the MILT criteria. Data
derived from 1D HEC-RAS modeling based on LiDAR data (0.5 m spatial resolution) and Qmax. (m3/s)
flow rates with 0.1% (1000-year) recurrence interval estimated for each gauging station (G1, G2, G3,
and G4). The 0.1% (1000-year) flood hazard pattern is highlighted for sections (a–c).
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Table 4. Number of potentially affected buildings by floods vs. flood hazard classes computed for each
1% (100-year) and 0.1% (1000-year) recurrence interval scenarios using 1D HEC-RAS modeling.

Flood Hazard Classes 1 1% (100-Year) 0.1% (1000-Year) 2 Diff.

H1 (Very low) 1406 1658 252
H2 (Low) 613 1174 561

H3 (Medium) 41 63 22
H4 (High) 24 33 9

1 Flood hazard classes according to MLIT criteria [65] where the H5 (Extreme) flood hazard class was excluded
because no buildings potentially affected by floods with depths greater than 5 m were recorded; 2 Diff.—Differences:
the values indicate the increase, from 1% (100-year) recurrence interval scenario to 0.1% (1000-year) recurrence
interval scenario, of the number of potentially affected buildings by different flood hazard classes.

4.2. Differences between 1D HEC-RAS Models and Official Flood Hazard Maps

Following the main objective of this approach, we managed to compare the flood hazard maps
we obtained for 1% (100-year) and 0.1% (1000-year) recurrence intervals with official flood hazards
maps [66] realized by specialists of NARW for the same recurrence intervals under the first stage of Flood
Directive 2007/60/EC implementation in Romania [17–19]. The comparisons take into consideration the
following indicators for each recurrence interval scenario: flood extent (Figures 10 and 11), total number
of potentially affected buildings (Table 5), and the flood hazard classification based on water depth
according to MLIT criteria (Figure 12) [65].
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Figure 10. Comparison between official flood extent provided by NARW for 1% (100-year) recurrence
interval probability and 1D HEC-RAS flood extent for 1% (100-year) recurrence interval probability.
The significant differences recorded within the lower sector of the Jijia floodplain are highlighted for
sections (a,b).
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Figure 11. Comparison between official flood extent provided by NARW for the 0.1% (1000-year)
recurrence interval probability and 1D HEC-RAS flood extent for the 0.1% (1000-year) recurrence
interval probability. The significant differences recorded within the lower sector of the Jijia floodplain
are highlighted for sections (a,b).

Table 5. Comparison between flood extent and total number of buildings potentially affected by floods
based on NARW flood hazard maps and 1D HEC-RAS scenarios computed for 1% (100-year) and 0.1%
(1000-year) recurrence intervals.

Recurrence
Interval

Flood Extent (km2)
4 Diff.

Number of Buildings
Potentially Affected by Floods 5 Diff.

3 NARW Flood
Hazard Maps

1D HEC-RAS
Models

3 NARW Flood
Hazard Maps

1D HEC-RAS
Models

1 1% 145.23 195.92 –50.69 830 2084 –1254
2 0.1% 226.65 251.82 –25.17 2617 2928 –311
1 100-year recurrence interval probability; 2 1000-year recurrence interval probability; 3 NARW—National
Administration “Romanian Waters” flood hazard maps; 4 Diff.—Differences: the negative values indicate an
underestimation of flood extent within the Jijia floodplain provided by NARW hazard maps compared to 1D
HEC-RAS scenarios; 5 Diff.—Differences: the negative values indicate an underestimation of the number of
buildings potentially affected by floods within the Jijia floodplain provided by NARW hazard maps compared to 1D
HEC-RAS scenarios.

According to flood extent maps provided by NARW for the 1% (100-year) recurrence interval
within the Jijia floodplain, a surface of 145.23 km2 and 830 buildings (e.g., houses, attachment buildings,
administrative buildings) will potentially be affected by floods. Comparing the official data with 1D
HEC-RAS flood extent patterns for the 1% (100-year) recurrence interval, a significant difference is
observed (Figure 10a,b). Therefore, 50.69 km2 of flood extent and 1254 buildings potentially affected
by floods were removed from flood risk areas by the official scenarios (Table 5). Also, a significant
difference is noted in the case of the flood maps generated by NARW for the 0.1% (1000-year) recurrence
interval characterized by 226.65 km2 of total flood extent and 2617 buildings potentially affected by
floods (Figure 11a,b). Compared to 1D HEC-RAS 0.1% (1000-year) results, more than 25.17 km2 of
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potentially flooded area and 311 buildings potentially affected by floods within the Jijia floodplain
were underestimated by the NARW flood scenarios (Table 5).
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based on 1D HEC-RAS modeling: (a) flood extent area vs. flood hazard classes computed for 1%
(100-year) recurrence intervals, (b) number of buildings potentially affected by floods vs. flood hazard
classes computed for 1% (100-year) recurrence intervals, (c) flood extent area vs. flood hazard classes
computed for 0.1% (1000-year) recurrence intervals, and (d) number of buildings potentially affected
by floods vs. flood hazard classes computed for 0.1% (1000-year) recurrence intervals.

Using flood hazard classification based on water depth according to MLIT criteria, high differences
between official hazard maps and 1D HEC-RAS models were also observed (Figure 12). According to
flood extent area vs. flood hazard classes computed for 1% (100-year) recurrence intervals, a significant
difference was recorded in the case of H1 (flood depth < 0.5 m), where official flood hazard maps
underestimate 68.64 km2 of vulnerable area, and H3 (flood depth between 1–2 m), where official flood
hazard maps overestimate 19.44 km2 of vulnerable area (Figure 12a). In this context, the flood extents
influence the estimation of the number of buildings potentially affected by floods vs. flood hazard
classes computed for 1% (100-year) recurrence intervals. Thereby, the most significant differences
were recorded in the case of H1 (flood depth < 0.5 m), where official flood hazard maps do not take
into account 731 potentially affected buildings by floods, and H2 (flood depth between 0.5–1 m),
where official flood hazard maps exclude 459 such buildings (Figure 12b).

Similar differences were also noted in the case of flood extent area vs. flood hazard classes computed
for 0.1% (1000-year) recurrence intervals. Comparing the official flood extent with 1D HEC-RAS flood
extent, which were both computed for 0.1% (1000-year) recurrence intervals, significant differences
were recorded in the case of H1 (flood depth < 0.5 m), where official data underestimated 61.11 km2 of
vulnerable area, and H3 (flood depth between 1–2 m), where official flood hazard maps overestimated
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42.5 km2 of vulnerable area (Figure 12c). Following the same trend, the number of buildings potentially
affected by floods vs. flood hazard classes computed for 0.1% (1000-year) recurrence intervals recorded
difference in the case of H1 (flood depth < 0.5 m), where official flood hazard maps do not take into
account 300 potentially affected buildings, and H2 (flood depth between 0.5–1 m), where official flood
hazard maps exclude 100 potentially affected buildings (Figure 12d).

The approach and results of our study lead to the claim that the 1D hydraulic modeling using
HEC-RAS 5.0.7 and high-density LiDAR data applied for flood simulation generates sufficiently
accurate information regarding flood hazard and vulnerability. As specific hydraulic modeling
applications continue to improve and the availability of hydrological data (e.g., flow rate, water level)
and DEM resolution increases (e.g., LiDAR data), more GIS data needs to be integrated and used in
flood modeling. In this framework, 1D flood simulations based on LiDAR derived DEM provide
the best results within floodplain areas. Due to its accurate representation of the complex hydraulic
conditions that can be found in floodplains (e.g., channels, confluences, reservoirs, ponds, polders),
1D hydraulic models can capture the hydraulic behavior of the river (e.g., water propagation, flood
extent and velocity, flood depth) in a more accurate way than other methods, except for the urban area
where flood movements are at least fully 2D.

Despite all these benefits, there are limitations to 1D HEC-RAS modeling for flood hazard
assessment which depend on the detail of input data, area characteristics, level of complexity in the
output data, project time, and money etc. Its use for large-scale analysis (e.g., large river basin) has
to be done with caution because the 1D modeling processing consumes many resources (time and
money) and the results can understate flood risk perception.

However, due to the adaptability of the 1D HEC-RAS modeling in a computationally efficient
manner over complex topography, this method is essential for the delineation of flood prone areas on a
medium and large scale in the context of climate change trends and development pressure.

Noteworthy is the fact that even in a well-planned area like the Jijia floodplain, flood hazard can
be a constant threat to human society. Several examples can be invoked when flash flood induced by
heavy rains or accidental discharge caused by human error turn into a catastrophic flood event on this
territory [8]. In the same framework, by comparing the 1D HEC-RAS modeling results (e.g., flood extent,
total number of potentially affected buildings, flood hazard classification based on water depth) with
the existent official flood hazard maps previously drawn for Romania, we highlight the effects of 1D
cross-sections accuracy generated based on LiDAR-derived DEM in the delineation of flood prone
areas and hazard assessment.

5. Conclusions

Floods and associated hazards have become a topic of growing concern for citizens, authorities,
and policy-makers within affected territories, especially in the highly populated floodplains. For this
reason, the ability to generate flood hazard maps based on new computer algorithms and hydraulic
modeling software and integrate the results (e.g., GIS database) within the regional management plans
and/or local studies are important aspects of flood mitigation.

In the present study, flood hazard and vulnerability were assessed using the 1D HEC-RAS
hydraulic modeling and LiDAR derivate DEM with 0.5 m spatial resolutions within the Jijia floodplain.
Based on multi-scenario development using the estimated discharge data for 1% (100-year) and
0.1% (1000-year) recurrence intervals probabilities at a four gauge station (G1: Dorohoi—50 year
monitoring period, G2: Dangeni—49 year monitoring period, G2 Todireni—49 year monitoring period
and G4: Victoria—63 year monitoring period), the results led to the formulation of the following
concluding remarks:

• According to the 1D HEC-RAS flood scenario with a 1% (100-year) recurrence interval probability,
61.11% (195.92 km2) of Jijia floodplain and 2084 buildings are potentially affected by floods.
Based on MILT criteria for flood hazard classification, 1406 buildings are located within H1 area,
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613 buildings are located within H2 area, 41 buildings are located within H3, and 24 buildings are
located within H4.

• According to the 1D HEC-RAS flood scenario with a 0.1% (1000-year) recurrence interval
probability, 78.54% (251.82 km2) of Jijia floodplain and 2928 buildings are potentially affected by
floods. Using the same MILT criteria for flood hazard classification, 1658 buildings are located
within H1 area, 1174 buildings are located within H2 area, 53 buildings are located within H3,
and 33 buildings are located within H4 area.

• Comparing the flood hazard maps generated using the 1D HEC-RAS modeling with the official
flood hazard maps provided by NARW, 1254 buildings according to the 1% (100-year) recurrence
interval scenario and 311 buildings according to the 0.1% (1000-year) recurrence interval scenario
were removed from flood risk areas by the official data. Thereby, this difference indicates that the
NARW flood scenarios underestimate the flood impact within the Jijia floodplain.

• The results obtained in this study improve the accuracy of official flood hazard maps and contribute
to small-scale delineation of flood patterns with 1% (100-year) and 0.1% (1000-year) recurrence
intervals in the Jijia floodplain.

Overall, the application of 1D HEC-RAS hydraulic modeling based on LiDAR derived DEM with
high resolution can answer real questions regarding flood hazard at a regional level. Developing flood
scenarios for different recurrence intervals on a small-scale is a very important aspect for any flood
mitigation effort, especially in rural areas where the hydrological disasters are a major contributor to
material losses and trauma population.
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The following abbreviations are used in this manuscript:

LiDAR Light Detection and Ranging
DEM’s Digital Elevation Models
GIS Geographic Information System
HEC-RAS Hydrologic Engineering Canter’s—River Analysis System
1D, 2D HEC-RAS one dimension, HEC-RAS two dimension
MIKE SHE Hydrological modeling system for simulating surface water flow
NARW National Administration “Romanian Waters”
UAIC University “Alexandru Ioan Cuza” of Iaşi
LISFLOOD-FP Two-dimensional hydrodynamic model research tool
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USACE HEC U.S. Army Corps of Engineers Hydrologic Engineering Center
PBWA Prut-Bîrlad Water Administration
G1 Gauging station-Dorohoi
G2 Gauging station-Dangeni
G3 Gauging station-Todireni
G4 Gauging station-Victoria
CLMS Copernicus Land Monitoring Service
CLC Corine Land Cover
RR Mike 11 Rainfall-runoff

HD Mike 11 Hydrodynamics
MLIT Ministry of Land Infrastructure and Transport (Japan)
H1 Very low hazard according to MLTI classification
H2 Low hazard according to MLTI classification
H3 Medium hazard according to MLTI classification
H4 High hazard according to MLTI classification
H5 Extreme hazard according to MLTI classification
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