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Abstract: Various models based on Budyko framework, widely applied to quantify the impacts
of climate change and land use/cover change (LUCC) on runoff, assumed a fixed partition used
to distinguish the impacts. Several articles have applied a weighting factor describing arbitrary
partitions for developing a total differential Budyko (TDB) model and a complementary Budyko (CB)
model. This study introduces the weighting factor into a decomposition Budyko (DB) model and
applies these three models to analyze runoff variation due to the impacts in the upper-midstream
Heihe River basin. The Pettitt test is first applied to determine a change point of a time series
expanded by the runoff coefficient. The cause for the change point is analyzed. Transition matrix is
adopted to investigate factors of LUCC. Results suggest the consistency of the CB, TDB, and present
DB models in estimating runoff variation due to the impacts. The existing DB model excluding the
weighting factor overestimates the impact of climate change on runoff and underestimates the LUCC
impact as compared with the present DB model. With two extreme values of the weighting factor,
runoff decrease induced by LUCC falls in the range of 65.20%–66.42% predicted by the CB model,
65.01%–66.57% by the TDB model, and 64.83%–66.85% by the present DB model. The transition
matrixes indicate the major factors of LUCC are climate warming in the upstream of the study area
and cropping in the midstream. Our work provides researchers with a better understanding of runoff

variation due to climate change and LUCC.

Keywords: Budyko framework; weighting factor; climate change; land use/cover change; runoff;
Heihe River

1. Introduction

Spatiotemporal variation of runoff has been an important component in hydrological cycle [1].
Climate change and land use/cover change (LUCC) are two major impacts on runoff [2]. Variation in
temperature due to climate change causes the redistribution of precipitation to evapotranspiration
and runoff [3]. Extreme hydrological events such as drought and flood influence runoff and intensify
global water cycle [4–6]. On the other hand, LUCC such as deforestation and cultivation affects
the regional water cycle and runoff [7]. A large amount of groundwater pumping for irrigation
reduces runoff and increases evapotranspiration [8]. These therefore lead us to question how to
differentiate and quantify the individual impacts of climate change and LUCC on runoff on reginal or
global scale [9]. Exploring runoff variation due to the impacts helps researchers understand complex
hydrological processes [10,11].
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In recent decades, researchers have developed a variety of models for estimating runoff variation
caused by climate change and LUCC in global catchments [12–16]. Most models depend on a natural
runoff series without considering the LUCC impact and assume climate change and LUCC being
decoupled. These models can be classified into three groups: empirical model, hydrological model,
and water–energy balance model. The empirical model includes climate elasticity of runoff using
nonparametric estimation [17] and statistical regression [18]. Parameters of the empirical model are
estimated by linear regression, which requires long-term historical datasets [19]. The hydrological
model [20] defines a physical explanation for each parameter but involves high uncertainty in parameter
estimation [19,21]. The water–energy balance model, based on the Budyko framework [22] or the
ecohydrological conceptual framework [23], has more physical structure than the empirical model and
fewer parameters than the hydrological model. When coupled with trajectory analysis, the water–energy
balance model is applicable in exploring the varying process of runoff and distinguishing the impacts
of climate change and LUCC [21].

Variation in the Budyko curve in Figure 1 can account for the impacts of climate change and
LUCC on runoff. Point A is regarded as a natural state without the impacts, but Point D is regarded
as a state subjected to the impacts. The path from Point A to D is nonunique, leading to various
partitions of the impacts. Path 1 (i.e., A–B–D) is, for example, regarded as the lower boundary and
Path 2 (i.e., A–C–D) as the upper boundary. A vertical path between Paths 1 and 2 reflects the only
LUCC impact. A segment on Path 1 or 2 accounts for the only impact of climate change. Most existing
Budyko framework models, however, assume a fixed partition used to distinguish the impacts of
climate change and LUCC on runoff. For releasing this assumption, a weighting factor was proposed
to represent arbitrary paths from Point A to D for describing arbitrary partitions of the impacts [24,25].
The weighting factor was applied to develop two improved models of total differential Budyko
(TDB) [22] and complementary Budyko (CB) [25]. The CB model was used to analyze runoff subject to
the impacts in China [21,26]. As concluded, the weighting factor provides Budyko framework models
with more flexibility of distinguishing the impacts.Water 2020, xx, x FOR PEER REVIEW 3 of 16 
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Figure 1. Schematic diagram of Budyko curves with precipitation P, evapotranspiration E,
potential evapotranspiration E0, catchment characteristic parameter ω, subscript b being baseline
period, and v being variation period. E′b and E′v are affected by land use/cover change (LUCC) and
climate change, respectively.

A great deal of effort has been made on the developments of the TDB and CB models with the
weighting factor [21,25,26]. What seems to be lacking, however, is to examine the consistency of
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multiple Budyko framework models based on the weighting factor accounting for arbitrary partitions
of both climate change and LUCC impacts. In addition, a widely applied decomposition Budyko (DB)
model has not considered the weighting factor [3].This study develops an improved DB model with
the weighting factor and investigates the consistency of the DB, CB, and TDB models in assessing the
impacts on runoff in the upper-midstream Heihe River basin during the study period of 1961–2014.
The Mann–Kendall (MK) test and Sen’s slope are adopted for trend analysis. The Pettitt test is applied to
determine a reasonable change point of runoff coefficient time series. The Mezentsev–Choudhury–Yang
function [22,27,28] is used to define the Budyko curve. The effect of the weighting factor on model
predictions is explored. In addition, the transition matrix is adopted to investigate factors of LUCC
from 1980 to 2000. Our work provides implications for not only better understanding of runoff variation
but also more reliability of Budyko framework models for attribution analysis.

2. Methodology

2.1. Trend Analysis

2.1.1. Mann–Kendall Test

Inspecting the trend of hydro-meteorological series is a critical task for exploring the relations
between runoff Q and climate factors including precipitation P, and potential evapotranspiration E0.
Sen’s slope [29] and the non-parametric Mann–Kendall (MK) test [30,31] are used to identify temporal
trends of P, E0 and Q. Assume that each dataset of Q, P, and E0, expressed as {xi, xi+1, . . . , xn} with n
being the total number, is independent and identically distributed. The test statistic S and the variance
of S are defined as:

S =
n−1∑
i=1

n∑
j=i+1

sgn(x j − xi) (1)

sgn(θ) =


1 θ > 0
0 θ = 0
−1 θ < 0

(2)

Var(S) = n(n− 1)(2n + 5)/18 (3)

The standardized test statistic Z for the standard normal distribution is calculated by:

Z =
1√

var(S)


s− 1 S > 0

0 S = 0
s + 1 S < 0

(4)

The significance level is set to 10%. With the significance level, the null hypothesis of no trend
was rejected if |Z| > 1.645.

2.1.2. Sen’s Slope

The slope β for a time series {xi, xi+1, . . . , xn} proposed by Sen [29] is expressed as:

β = median
(xi − x j

i− j

)
, ∀ j < i, 1 ≤ j < i ≤ n (5)

A positive value of β indicates an increase, while a negative value indicates a decrease.

2.2. Pettitt Test for Determination of Change Point

A change point, dividing the study period into baseline and variation periods, needs to be
determined before assessing the impact of LUCC on runoff. The baseline period before the change
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point assumes no LUCC impact. The non-parametric Pettitt test is used to detect a change point of a
time series [32]. Qiu et al. [33] revealed the Pettitt test to a time series of P or Q for the Heihe river
basin did not give a unique and significant change point. For determining a change point, this study
therefore applies the Pettitt test to runoff coefficient defined as σ = Q/P accounting for the relation
between P and Q.

Considering a time series {xi, xi+1, . . . , xN} with N being the total number, the Pettitt test uses the
Mann-Whitney statistic Ut,N that verifies if two subseries {x1, . . . , xt} and {xt+1, . . . , xN} result from the
same population. The test statistic Ut,N is defined as:

Ut,N =
t∑

i=1

N∑
j=t+1

sgn(xi − x j) for t = 1, . . . , N − 1 (6)

sgn(θ) =


1 θ > 0

0 θ = 0

−1 θ < 0

(7)

A most significant change point will be determined when the value of |Ut,N| is a maximum,
i.e., Kt,N = max(

∣∣∣Ut,N
∣∣∣). The significance level associated with Kt,N is expressed as:

ρ � 2 exp (
−6K2

t,N

N3 + N2 ) (8)

When ρ < 5%, the null hypothesis is rejected.

2.3. Budyko Framework

The Budyko [34,35] framework is based on the physical principles proposed by Schreiber [36]
and Ol’Dekop [37]. The annual average actual evapotranspiration is dominated by the balance
between the water supply of the atmosphere and the demand of atmospheric evaporation. A number
of articles have presented various functions based on the Budyko framework for describing the
relation between the long-term average of E/P and the dryness index of E0/P. The commonly used
Mezentsev-Choudhury-Yang function is expressed as:

E
P
= f (P, E0,ω) = (1 + (

E0

P
)
−ω

)
−1/ω

(9)

where ω is a parameter reflecting catchment characteristic. By applying Equation (9) and ignoring
change in the long-term storage, the runoff Q can be expressed as:

Q = P− E = P− f (P, E0,ω)P (10)

The ω can thus be obtained by Equation (10) with annual values of observed P, E0, and Q.
The change in observed runoff ∆Qobs is the difference in the mean annual runoffs Qb for baseline period
and Qv for variation period, written as:

∆Qobs = Qv −Qb (11)

The change in estimated runoff ∆Qest contains two components associated with the impacts of
climate change ∆Qclim and LUCC ∆Qlucc, expressed as:

∆Qest = ∆Qclim + ∆Qlucc (12)
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The contribution rates of climate change ηclim and LUCC ηlucc can be respectively written as [38]:

ηclim =
∆Qclim

|∆Qclim|+ |∆Qlucc|
× 100% (13)

ηlucc =
∆Qlucc

|∆Qclim|+ |∆Qlucc|
× 100% (14)

Three models of CB, TDB, and DB are discussed in the following subsections.

2.3.1. Complementary Budyko (CB) Model

The CB model starts from complementary relationship of the elasticity coefficients associated with
precipitation and potential evapotranspiration, expressed as [24]:

∂Q/Q
∂P/P

+
∂Q/Q
∂E0/E0

= 1 (15)

Equation (15) reduces to:

Q = P
∂Q
∂P

+ E0
∂Q
∂E0

(16)

The change of runoff Q in Equation (16) is written as [25]:

dQ = (
∂Q
∂P

)dP + (
∂Q
∂E0

)dE0 + Pd(
∂Q
∂P

) + E0d(
∂Q
∂E0

) (17)

The weighting factor α is used to represent different paths from Point A to Point D in Figure 1 [21].
For Path 1 with α = 0, Point A to B reflects a fixed ratio of E0/P and a varying ω, indicating E0 and P are
assumed constant in baseline period and the catchment characteristic parameter is the only variable
accounting for the impact of LUCC on runoff from baseline period to variation period. The path from
Point B to D indicates the only impact of climate change on runoff with a fixed catchment characteristic
parameter of variation period (i.e., ωv) with subscript v being variation period. For Path 2 with α = 1,
the segment from Point A to C accounts for the only impact of climate change on runoff from baseline
period to variation period with a fixed catchment characteristic parameter of baseline period (i.e., ωb)
with subscript b being baseline period. The vertical descent from Point C to D reflects the only impact
of LUCC due to the change of the catchment characteristic parameter (from ωb to ωv). For an arbitrary
path between Paths 1 and 2, Equation (17) with the weighting factor α becomes:

∆Qest = α
(
∂Qb
∂Pb

∆P +
∂Qb
∂E0,b

∆E0

)
+ (1− α)

(
∂Qv
∂Pv

∆P + ∂Qv
∂E0,v

∆E0

)
+α

(
Pb∆ ∂Q

∂P + E0,b∆ ∂Q
∂E0

)
+ (1− α)

(
Pv∆ ∂Q

∂P + E0,v∆ ∂Q
∂E0

) (18)

The first two terms on the right-hand side stand for the impact of climate change, and the rest
terms for the impact of LUCC.

2.3.2. Total Differential Budyko (TDB) Model

The TDB model with a first-order approximation to Q = P− f (P, E0,ω)P can be written as [22]:

dQ =

(
∂Q
∂P

)
dP +

(
∂Q
∂E0

)
dE0 +

(
∂Q
∂ω

)
dω (19)

Similar to the derivation of Equation (18), the change of runoff for arbitrary paths represented by
weighting factor α can be expressed as [25]:
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∆Qest ≈ α

(
∂Qb
∂Pb

∆P +
∂Qb
∂E0,b

∆E0

)
+ (1− α)

(
∂Qv

∂Pv
∆P +

∂Qv

∂E0,v
∆E0

)
+ α

∂Qb
∂ωb

∆ω+ (1− α)
∂Qv

∂ωv
∆ω (20)

The first two terms on the right-hand side of Equation (20) are identical to those of Equation (18).
The TDB model gives error in prediction because of applying the first-order approximation. This will
be discussed in Section 4.2.

2.3.3. The Present Decomposition Budyko (DB) Model

Existing DB model is a graphic model based on Budyko curve represented by Path 2 with α = 1
(i.e., A–C–D) in Figure 1 [3]. With Path 2, the impacts of climate change and LUCC on runoff can be
written as:

∆Qclim = Pv(1− E′v) − Pb(1− Eb) (21)

∆Qlucc = Pv(E′v − Ev) (22)

where Eb = f (Pb, E0,b,ωb), Ev = f (Pv, E0,v,ωv), and E′v = f (Pv, E0,v,ωb). Due to the uncertainty of
path [25], Path 1 with α = 0 (i.e., A–B–D) is also a possible way to assess runoff variation due to the
impacts, expressed as:

∆Qclim = Pv(1− Ev) − Pb(1− E′b) (23)

∆Qlucc = Pb(Eb − E′b) (24)

where E′b = f (Pb, E0,b,ωv). Based on Equations (21)–(24), the present DB model with the weighting
factor α accounting for an arbitrary path between Paths 1 and 2 can be expressed as:

∆Qest = α(Pv(1− E′v) − Pb(1− Eb)) + (1− α)(Pv(1− Ev) − Pb(1− E′b))
+α(Pv(E′v − Ev)) + (1− α)(Pb(Eb − E′b))

(25)

Table 1 shows the expressions of ∆Qclim and ∆Qlucc for the CB, TDB, and present DB models.

Table 1. The expressions of climate change impact ∆Qclim and LUCC impact ∆Qlucc for the three models.

Models ∆Qclim ∆Qlucc

CB α
(
∂Qb
∂Pb

∆P + ∂Qb
∂E0,b

∆E0

)
+ (1− α)

(
∂Qv
∂Pv

∆P + ∂Qv
∂E0,v

∆E0

)
α
(
Pb∆ ∂Q

∂P + E0,b∆ ∂Q
∂E0

)
+ (1− α)

(
Pv∆ ∂Q

∂P + E0,v∆ ∂Q
∂E0

)
TDB α

(
∂Qb
∂Pb

∆P + ∂Qb
∂E0,b

∆E0

)
+ (1− α)

(
∂Qv
∂Pv

∆P + ∂Qv
∂E0,v

∆E0

)
α ∂Qb
∂ωb

∆ω+ (1− α) ∂Qv
∂ωv

∆ω

The present DB α(Pv(1− E′v) − Pb(1− Eb)) + (1− α)(Pv(1− Ev) − Pb(1− E′b)) α(Pv(E′v − Ev)) + (1− α)(Pb(Eb − E′b))

2.4. Transition Matrix of Land Use

Transition matrix of land use accounts for change of land use during different periods. The types
of land use are classified into: crop-lands, forest, grassland, water bodies, snow and ice, urban and
built-up, and barren in this study. The transition matrix of land use is obtained by using the Spatial
Analyst Tools of ArcGIS function. One can refer to the study by Liu et al. [39] for detailed description
of transition matrix.

3. Study Area and Datasets

The Heihe River, the second largest inland river in the south Qilian Mountain of northwestern China,
suffers from serious water scarcity. The river generally flows northwards towards Mongolia. The main
river channel (98◦–101◦ E, 38◦–42◦ N) is 821 km long. The total catchment area is 14.31 × 105 km2.
Two main hydrological stations, Yingluoxia and Zhengyixia, divide the Heihe River basin into three
sub-basins (upper, middle, and downstream). The upper and middle Heihe River basins, which contain
alpine ice-snow and permafrost, mountainous forest zones, and a plain oasis agriculture zone,
are selected as the study area (Figure 2). The water sources of the upstream are mainly precipitation
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and glacier melt water. The midstream basin is an important commodity grain-producing area in a
representative piedmont valley plain oasis.

Daily meteorological data at five meteorological stations in the study area were downloaded from
the China Meteorological Data Sharing Service System (http://data.cma.cn/). Measurement of monthly
runoff at the Zhengyixia hydrological station was collected from the Gansu Provincial Hydrological
Bureau. The hydro-meteorological datasets for the upper and middle reaches spanned the period of
1961–2014. The daily potential evapotranspiration was estimated using the Penman-Monteith equation
as suggested by Food and Agriculture Organization of the United Nations (FAO) [40]. The data of
five meteorological stations with a resolution of 1 km× 1 km were spatially averaged by the Inverse
Distance Weighted (IDW) method. The daily precipitation and potential evapotranspiration and
monthly runoff were aggregated to obtain the individual time series expanded by 54 annual totals.
In addition to the meteorological data, remotely sensed land use maps of 1980 and 2000 with a
resolution of 1 km× 1 km were provided by the Resource and Environment Data Cloud Platform of
the Chinese Academy of Sciences (http://www.resdc.cn/) and adopted to analyze the change in land
use and cover in the study area.
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4. Results and Discussion

4.1. Trend Analysis of Hydro-Meteorological Series and Determination of Change Point

The trend analysis of hydro-meteorological series is conducted by applying the MK test and Sen’s
slope for better understanding runoff process during the study period of 1961–2014. The results of
trend analysis are shown in Table 2. The mean annual runoff (i.e., 28.47 mm/yr) is much smaller than
the mean annual precipitation (i.e., 251.09 mm/yr) or potential evapotranspiration (i.e., 946.49 mm/yr).
The trends of all meteorological factors were increasing. In contrast, a slight downward trend is
detected for Q. The results of β > 0 or Z > 0 for P and β < 0 or Z < 0 for Q indicate a negative correlation
between P and Q, which contradicts the linear positive correlation in the natural state. This may be
attributed to the fact that irrigation and farming increased evapotranspiration and reduced runoff in
the midstream of the Heihe River basin, important agricultural area [3]. It can be reasoned that the
runoff variation is therefore related to both climate change and LUCC.

http://data.cma.cn/
http://www.resdc.cn/
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Table 2. Summary of trend analysis for hydro-meteorological series.

Parameter P E0 Q

β (mm/yr) 0.8 0.25 −0.01
Z 2.40 *** 0.67 −0.13

Annual Mean (mm/yr) 251.09 946.49 28.47

Note: *** denotes the confidence level of 10%.

The change point divides the study period of 1961–2014 into a baseline period and a variation
period according to the Pettitt test [32]. Figure 3 shows temporal distributions of Ut,N from the Pettitt test
used to annual time series of precipitation P, runoff Q and runoff coefficient σ = Q/P. The unremarkable
peak at 2001 for P as well as the peaks at 1983 and 2002 for Q are below the significance level of 10%,
failing to pass the significance test. The only peak at 1984 for σ = 0.14, passing the significance test of
5%, can be regarded as a change point that reflects a significant change in the relation of runoff and
precipitation. With the change point of 1984, the available data can be divided into the baseline period
of 1961–1984 and the variation period of 1985–2014.

Figure 3. Temporal distributions of the test statistic Ut,N estimated by the Pettitt test applied to time
series of precipitation P in panel (a), runoff Q in panel (b) and runoff coefficient σ in panel (c) during
the period 1961–2014. Significance levels of 5% and 10% are represented by the upper and lower
broken lines, respectively.

4.2. The Impacts of Climate Change and LUCC on Runoff Based on the Budyko Framework Models

For better understanding the behavior of runoff change, the variation period of 1985–2014 is
divided into six sub-variation periods of five years. Figure 4 illustrates the straight paths from
the baseline period of 1961–1984 to the six sub-variation periods based on the Budyko framework.
Each path moves from the baseline period to the upper left, indicating a greater increase in P than that
in E0; therefore, the climate therein became moister. The upper component of each path represents
runoff increase due to climate change, and the leftward component accounts for runoff decrease caused
by LUCC.
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Table 3 displays the impacts of climate change and LUCC on runoff (i.e., ∆Qclim and ∆Qlucc) as
well as the contribution rates (i.e., ηclim and ηlucc) estimated by the CB, TDB, and the present DB models
considering the causes of α = 0 for the lower boundary of Path 1, α = 1 for the upper boundary of Path
2, and α = 0.5 in between during the variation period of 1985–2014. A reasonable range between two
estimates for the cases of α = 0 and α = 1 can be seen. The estimates for the case of α = 0.5 fall in their
own ranges. Existing DB model, a special case of the present DB model with α = 1, overestimates ηclim
and underestimates

∣∣∣ηlucc
∣∣∣ as compared with those predicted by the present DB model with α = 0.5.

Reasonable ranges of 33.15%–35.17% for ηclim and 64.83%–66.85% for
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∣∣∣ are obtained using the
present DB model. It is worth noting that the three models give close values of ηlucc for the case
of α = 0.5, indicating LUCC is the main cause for runoff decrease in the ranges of 65.20%–66.42%
predicted by the CB model, 65.01%–66.57% by the TDB model and 64.83%–66.85% by the present DB
model. Qiu et al. [33] reported

∣∣∣ηlucc
∣∣∣ = 53% predicted by the sensitivity model based on the Budyko

framework. Our three models predict greater values of
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∣∣∣ than theirs. The difference may result
from the following reasons. Their model applies the Zhang et al. [12] function with the period of
1964–2006 while our models are based on the Yang et al. [22] function with the period of 1961–2014.
In addition, our models consider the weighting factor α, but their model does not.

Define difference D in the value of either ∆Qclim or ∆Qlucc between Paths 1 for α = 0 and Path 2 for
α = 1. Although the three models give close ranges of ∆Qclim for the variation period of 1985–2014
in Table 3, the present DB model predicts a greater D than the others for each sub-variation period
in Figure 5a. This may come from the fact that the present DB model, a graphical model, relies on
two variables of ratio E0/P and ω using Equation (9) while the others depend on three variables of
E0, P, and ω using Equations (18) and (20). It is worth noting that the CB and TDB models give exact
the same D in Figure 5a because of the identical expression in Table 1 for ∆Qclim. The TDB model,
however, gives inaccurate results of much greater D for ∆Qlucc than the CB model for the first four
sub-variation periods in Figure 5b because the first-order approximation of the TDB model causes a
residual runoff change ∆Qres, defined as an observed runoff change ∆Qobs minus an estimated one
∆Qest. Figure 6 shows the relations of ∆Qest and ∆Qobs in panel (a) as well as ∆Qres and ∆Qobs in panel
(b) for the six sub-variation periods estimated by the TDB model with α = 0 for the lower boundary,
α = 1 for the upper boundary, and α = 0.5 in between. When α = 0, ∆Qres is of significantly positive
relation with ∆Qobs. The |∆Qest| is underestimated as compared with |∆Qobs|. When α = 1, there is a
negative correlation between ∆Qres and ∆Qobs, leading to an overestimate of |∆Qest|. Our results for
the cases of α = 0 and 1 accord with the findings of Zhou et al. [25] and Wang et al. [26] that |∆Qest|
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by the TDB model was significantly underestimated for α = 0 and overestimated for α = 1 compared
with |∆Qobs|. When α = 0.5, ∆Qres approaches zero and can be ignored, indicating the TDB model gives
close values of ∆Qclim, ∆Qlucc, ηclim, and ηlucc to the others in Table 3. Error in ∆Qest by the TDB model,
in other words, becomes minor for α approaching 0.5.

Table 3. The impacts of climate change and LUCC as well as contribution rates calculated by the
complementary Budyko (CB), total differential Budyko (TDB) and present decomposition Budyko (DB)
models for three cases of α = 0 for the lower boundary, α = 1 for the upper boundary, and α = 0.5
in between.

∆Qclim(mm) ∆Qlucc(mm) ηclim(%) ηlucc(%)

CB TDB DB CB TDB DB CB TDB DB CB TDB DB

The lower boundary (α = 0) 3.71 3.71 3.57 −7.34 −6.90 −7.20 33.58 34.99 33.15 −66.42 −65.01 −66.85
The upper boundary (α = 1) 4.15 4.15 4.30 −7.78 −8.27 −7.93 34.80 33.43 35.17 −65.20 −66.57 −64.83

In between (α = 0.5) 3.93 3.93 3.94 −7.56 −7.59 −7.57 34.22 34.15 34.22 −65.78 −65.85 −65.78

Figure 5. The differences of ∆Qclim in panel (a) and ∆Qlucc in panel (b) between the cases of α = 0
and α = 1 using the three models of the CB, TDB, and present DB for six sub-variation periods.
The differences for the 2000–2004 period in panel (a) are less than 10−2.
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Figure 6. (a) Comparison of ∆Qest with ∆Qobs, (b) the relation of ∆Qres and ∆Qobs for each of six
sub-variation periods estimated by the TDB model for three cases of α = 0 for the lower boundary, α = 1
for the upper boundary, and α = 0.5 in between.

Figure 7 shows the contribution rates ηclim and ηlucc for six sub-variation periods predicted by the
CB, TDB, and the present DB models with α = 0 for the lower boundary, α = 1 for the upper boundary,
and α = 0.5 in between. The three models agree to ηclim and ηlucc with minor error for each sub-variation
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period. The magnitude of
∣∣∣ηlucc

∣∣∣ is the largest in the sub-variation period of 2000–2004 for each model
and each α and then decreases after the that period. This may be because China has experienced
a striking economic boom with reform and opening-up policy since 1980 [38]. Population growth
and economic development increased water withdrawal and utilization, resulting in a decrease
in runoff. Since then, ηclim generally increased and exceeded 50%, indicating that climate change
impact dominates runoff change in the last two sub-variation periods. In addition, Figure 7 displays
dramatically temporal variability of ηclim and ηlucc during the entire period except the last sub-variation
period, which is similar to the finding of Wang et al. [26].

Figure 7. Histograms of the contribution rates of climate change and LUCC (i.e., ηclim and ηlucc) for six
sub-variation periods based on the baseline period of 1961–1984 calculated by the CB, TDB, and present
DB models with (a) α = 0 for the lower boundary, (b) α = 1 for the upper boundary and (c) α = 0.5
in between.

4.3. Factors of LUCC

A variety of studies have considered the change in ω (i.e., ∆ω) related to human activities.
Roderick and Farquhar [41], however, revealed that ∆ω is linked to rainfall intensity of climate factor.
Jiang et al. [42] estimated ∆ω according to the factors of temperature, potential evapotranspiration and
irrigated area and found errors in ∆ω caused by assuming ∆ω due to human activities. Since LUCC is
the dominant cause of runoff change in the study area as concluded in Section 4.2, this section applies
the transition matrix of land use types for analyzing factors of LUCC. Table 4 shows the transition
matrixes for describing LUCC from 1980 to 2000 in the upstream and midstream of the Heihe River
basin. Grassland and barren occupied most of the area. In the upstream, the type of snow and ice was
mainly converted into grassland and barren. Hao and Zong [43] also revealed this snow–ice area shrunk
by half and turned into grassland and barren because of climate warming since 1980s. The reduction of
the snow–ice area due to rising temperature and the spatiotemporal change of precipitation significantly
affected runoff. In the midstream, four types (i.e., forest, grassland, water bodies, and barren) are
converted into cropland, because the midstream is an important grain-producing area. More than
eighty percent of water withdrawal was used to irrigate farmland, which is regarded as the main
human activities in the midstream [44]. The increase in cropland indicates cropping is the major human
activity resulting in LUCC. This result is consistent with the studies [45,46]. The grassland area also
increased from the areas of the other types as a result of the Grain for Green Program. As concluded,
the transition matrixes suggest the main factors of LUCC are climate warming in upstream and
cropping in midstream, reflecting the impacts of not only climate change but also human activities.
This result accords with the finding of Luo et al. [47] that runoff variation in the upstream is caused by
climate change and in the midstream by LUCC.
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Table 4. The transition matrixes of seven land use types for the upstream and midstream of the Heihe
River basins from 1980 to 2000 (unit: km2).

Land Use Types
Upstream/Midstream (2000)

Crop-Lands Forest Grass-Land Water Bodies Snow and Ice Urban and Built-Up Barren

Upstream
(1980)

Croplands 27 0 0 0 0 0 0
Forest 0 2107 0 0 0 0 0

Grassland 0 0 4997 0 0 0 0
Water Bodies 0 0 0 175 0 0 0
Snow and Ice 0 2 51 0 76 0 99

Urban and Built-Up 0 0 0 0 0 10 0
Barren 0 0 0 0 0 0 2413

Midstream
(1980)

Croplands 3483 0 32 5 0 11 1
Forest 6 2427 16 0 0 0 9

Grassland 226 5 7298 0 0 5 30
Water Bodies 31 0 4 498 0 0 0
Snow and Ice 0 0 0 0 57 0 11

Urban and Built-Up 0 0 0 0 0 309 0
Barren 46 0 3 1 0 4 10,511

5. Conclusions

To conclude, this study is preliminary research on the impacts of climate change and LUCC on
runoff in the upper-midstream Heihe River basin, but its relevance to Budyko framework models can
be seen. A major finding is the consistency of the CB, TDB, and present DB models in predicting runoff

variation due to the impacts for the study area. The results indicate the weighting factor α is applicable
in providing a flexible and reasonable partition of both impacts on runoff. It can be reasoned that the
impacts simultaneously induce runoff variation in the study area. Existing DB model excluding α gives
an overestimated climate change impact on runoff and underestimated LUCC impact in comparison
with the present DB model. In addition, error due to first-order approximation used to develop the
TDB model becomes minor when α = 0.5. Furthermore, the extreme values of α = 0 and 1 can be used
to quantify uncertainty of the impacts in providing those ranges in Table 3.

Our findings are consistent with those of the articles discussed above. With respect to the
weighting factor α, our findings confirm those of Zhou et al. [25] and Wang et al. [26] although there
are some differences regarding other aspects of the studies. These results lend some credence to the
hypothesis that estimated runoff change |∆Qest| is underestimated by the TDB model for α = 0 and
overestimates it for α = 1 as compared with observed runoff change |∆Qobs|. The discrepancy between
∆Qest and ∆Qobs results from the first-order approximation but becomes minor for α = 0.5. In addition,
our finding is similar to that of Wang et al. [26]. The result indicates dramatically temporal variability
of the contribution rates of climate change and LUCC to runoff during 1985–2014 because China has
encountered striking economic boom since 1980. Moreover, our study agrees with Luo et al. [47].
The transition matrixes reveal the major factors of LUCC are climate warming in the upstream of the
Heihe River basin and cropping in midstream. This finding is indicative of the fact that the reasons of
inducing runoff variation are due to both climate change and LUCC in the study area.

This study has demonstrated the weighting factor is needed and should be stressed in assessing the
impacts of climate change and LUCC on runoff. It follows that the use of multiple Budyko framework
models are also needed for achieving reliability of model predictions. Our work provides researchers
with a better understanding of runoff variation due to the impacts for semi-arid regions. However,
whether this will also apply to humid regions of the world cannot be determined on the basis of this
study. Further research is therefore warranted in exploring runoff variation induced by the impacts in
humid regions using Budyko framework models with the weighting factor.
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