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Abstract: The electrokinetics methods have great potential to characterize hydrogeological processes
in porous media, especially in complex partially saturated hydrosystems (e.g., the vadose zone).
The dependence of the streaming coupling coefficient on water saturation remains highly debated
in both theoretical and experimental works. In this work, we propose a physically based model
for the streaming potential coupling coefficient in porous media during the flow of water and air
under partially saturated conditions. The proposed model is linked to fluid electrical conductivity,
water saturation, irreducible water saturation, and microstructural parameters of porous materials.
In particular, the surface conductivity of porous media has been taken into account in the model.
In addition, we also obtain an expression for the characteristic length scale at full saturation in
this work. The proposed model is successfully validated using experimental data from literature.
A relationship between the streaming potential coupling coefficient and the effective excess charge
density is also obtained in this work and the result is the same as those proposed in literature using
different approaches. The model proposes a simple and efficient way to model the streaming potential
generation for partially saturated porous media and can be useful for hydrogeophysical studies in
the critical zone.

Keywords: streaming potential coupling coefficient; zeta potential; fractal; porous media

1. Introduction

During the last two decades, developments of geophysical methods for the studies of
hydrosystems have led to the creation of a new scientific discipline named hydrogeophysics
(see, e.g., [1–3]). Among geoelectrical methods used to study hydrogeological models in situ,
the self-potential method, which consists in passively measuring the naturally occurring electrical
fields at the surface or inside geological media, relies on electrokinetic coupling processes, and is
therefore sensitive to fluid movements (see, e.g., [4]). For example, measurements of self-potential can
be exploited for detecting and monitoring groundwater flow (see, e.g., [5–8]), geothermal areas and
volcanoes (see, e.g., [9–11]), detection of contaminant plumes (see, e.g., [12,13]), monitoring water flow
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in the vadose zone (see, e.g., [14–17]). Monitoring of self-potential has been proposed as a method for
earthquake prediction (see, e.g., [18,19]). In hydrogeological application, self-potential measurements
can be used to estimate hydrogeological parameters such as the hydraulic conductivity, the depth
and the thickness of the aquifer (see, e.g., [20–22]). It is shown that the seismoelectric method has
high potential to image oil and gas reservoirs or vadose zones (see, e.g., [23,24]). Furthermore,
the seismo-electromagnetic method can provide supplemental information on crucial reservoir
parameters such as porosity, permeability and pore fluid properties (see, e.g., [25–29]). Electrokinetics
is associated with the relative movement between the mineral solid grains with charged surfaces and
the pore fluid and it is linked to electrical double layer (see, e.g., [30,31]).

An important parameter of electrokinetics in porous media is the streaming potential coupling
coefficient (SPCC), since this parameter controls the amount of coupling between the fluid flow and the
electrical flow. Additionally, pore spaces in many subsurface porous media are saturated with water
and another immiscible fluid phase such as gas, oil. Therefore, to apply electrokinetics effectively in
interpretation and modeling measured data, one needs to better understand the SPCC under partially
saturated conditions. There have been many studies on dependence of the SPCC of porous materials
on water electrical conductivity (see, e.g., [32–35]), on temperature (see, e.g., [36,37]), on mineral
compositions (see, e.g., [38,39]), on fluid pH (see, e.g., [40,41]), on hysteresis (see, e.g., [42,43]) or on
porous material textures (see, e.g., [34,44]). The saturation dependence of the SPCC is not yet well
understood and inconsistent in both published theoretical and experimental work as shown in Figure 1
in [45]. For example, there have been theoretical models in literature (see Table 1, for example) on the
SPCC as a function of water saturation (see, e.g., [45–56]). Wurmstich and Morgan [46] and Darnet
and Marquis [49] suggested that the relative SPCC should increase with decreasing water saturation.
However, it was indicated that the relative SPCC varies linearly with water saturation [48]. Revil and
Cerepi [50] and Saunders et al. [53] showed the decrease of the relative SPCC with decreasing
water saturation. The contradiction on the saturation dependence of the SPCC is also shown in
experimental work. For example, Guichet et al. [48] carried out the streaming potential measurement
during drainage under gas in a water-wet sand column and observed a monotonic decrease in the
relative SPCC. Nevertheless, Allegre et al. [57] observed a different behavior in which the relative
SPCC initially increases before decreases with a decrease of water saturation in the similar experiments
performed by [48]. In addition, a monotonic behavior of the relative SPCC in dolomite core samples
was shown in [50,52]. As reported in published work, the surface conductivity plays an important
role in streaming potential especially at low fluid electrical conductivity. However, it is not yet taken
into consideration in available models (Table 1). Note that the non-monotonic behavior of the SPCC
as a function of the water saturation was also predicted in [45,55]. Vinogradov and Jackson [58]
highlighted the possible existence of hysteresis effect in the SPCC that was later studied deeper by the
authors of [45].

Capillary tube models are a simple representation of the real pore space that have been used
to provide valuable insight into transport in porous media (see, e.g., [55,59–65]). Thanh et al. [64]
developed a model using the capillary tube model for the SPCC under saturated conditions and the
model was well validated by published data. Recently, Soldi et al. [59] developed an analytical model
to estimate the effective excess charge density for unsaturated flow.

In this work, we propose a physically based model for the SPCC and the relative SPCC during the
flow of water and air in porous media under partially saturated conditions. Additionally, we also obtain
an expression for the characteristic length scale Λ at full saturation. From the obtained expressions,
we obtain the relation between the SPCC and the effective excess charge density. The proposed model
for the SPCC, relative SPCC, and characteristic length scale are related to fluid electrical conductivity,
specific surface conductivity, water saturation, irreducible water saturation, and microstructural
parameters of porous medium. In particularly, we take into account the surface conductivity of
porous media in this work. The model predictions are then successfully validated by published data.
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We believe that the model proposed in this work can be useful to study physical phenomena in the
unsaturated zone such as infiltration, evaporation, or contaminant fluxes.

Table 1. List of the published models describing the dependence of the relative SPCC on water
saturation. Notes: Crel is the relative SPCC; aw is the hydrodynamic resistance factor; b R represents
the excess charge in the pore water of porous media; β is the mobility of the ions and Rs is the quotient
between R and Se; cSwn and ns are the normalized water saturation and the exponent related to the
excess of mobile counterions in the electrical boundary layer, respectively; and dβ and γ are two
fitting parameters.

Expression Reference

Crel(Sw) =
1−w

σr(Sw)
[46] a

Crel(Sw) =
kr

σr(Sw)
[47]

Crel(Sw) = Sw [48]
Crel(Sw) =

1
σr(Sw)

[49]

Crel(Sw) =
β(+)(

√
R2+1+R)+β(−)(

√
R2+1−R)

β(+)(
√

R2+1+Rs)+β(−)(
√

R2+1−Rs)
[50] b

Crel(Sw) =
kr

Swσr(Sw)
[51,52]

Crel(Sw) = Sns
wn [53] c

Crel(Sw) =
Se

σr(Sw)
[54,59]

Crel(Sw) = Se[1 + β(1− Se)γ] [66] d

2. Theory

The streaming current in porous media is generated by the relative movement between solid
grains and the pore water under a pressure difference across the porous media and is directly related
to the existence of an electric double layer (EDL) at the interface between the water and solid surfaces
(see, e.g., [30]). This streaming current is counterbalanced by a conduction current, leading to a
so-called streaming potential. In other words, the electric current and the water flow are coupled
in porous media. Therefore, the water flowing through porous media creates a streaming potential
(see, e.g., [67]). The SPCC under steady state conditions is defined when the total current density is
zero as (see, e.g., [68,69])

CS =
∆V
∆P

, (1)

where ∆V (V) is the generated voltage (i.e., streaming potential) and ∆P (Pa) is the applied fluid
pressure difference across a porous material. There are two key expressions for the SPCC in porous
media that can be found in literature. The classical one is called Helmholtz–Smoluchowski (HS)
equation that links the SPCC with the zeta potential at the solid-liquid interface and fluid properties [70].
The HS equation at fully saturated conditions is given by

Csat
S =

εrε0ζ

ησw
, (2)

where εr (no units) is the relative permittivity of the fluid, ε0 (F/m) is the dielectric permittivity in
vacuum, η (Pa s) is the dynamic viscosity of the fluid, ζ (V) is the zeta potential, and σw (S/m) is the
pore fluid electrical conductivity. This simple formulation predicts well the electrokinetic coupling for
any kind of geometry (capillary, sphere, or porous media) as long as the surface conductivity can be
neglected (see, e.g., [71,72]). Note that numerous experimental results on the SPCC were reported in
literature using Equation (2) for capillaries (see, e.g., [73]), glass beads (see, e.g., [74–76]) and sandstones
(see, e.g., [32,33,74,75,77–79]). The modified HS equation was expanded from the classical HS equation
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when one considers the surface conductivity of solid surfaces (see, e.g., [31,44]). The modified HS
equation is given by

Csat
S =

εrε0ζ

η(σw + 2 Σs
Λ )

. (3)

Σs (S) the specific surface conductance and Λ (m) is a characteristic length scale that describes the size
of the pore network and is the so-called “lambda parameter” or Johnson length [80].

Beside the HS equation or modified HS equation, the SPCC can be expressed via the effective
excess charge density dragged by the water in pores of porous materials as follows (see, e.g., [51,81–84]),

Csat
S = − koQ̂V

ησ
. (4)

where Q̂V (C/m3), ko (m2), and σ (S/m) are the effective excess charge density, permeability,
and electrical conductivity of porous media at saturation, respectively.

As mentioned above, under partially saturated conditions, the SPCC is a function of water
saturation Sw. Therefore, one can write CS = CS(Sw). The relative SPCC at water saturation Sw is
defined as (e.g., [48,50,51])

Crel =
CS(Sw)

Csat
S

. (5)

In the following subsections, we present the electrokinetic properties at microscale (for one single
capillary, denoted “r”) and macroscale (for the representative elementary volume, denoted “REV”).

2.1. Pore Scale

The electrokinetic behaviour of a capillary is now considered. Under a thin double layer
assumption in which the thickness of the double layer is much smaller than the pore size and that
is normally valid in most natural systems (see, e.g., [72]), the streaming current in a water occupied
capillary tube of radius r (m) due to charge transport by water is given by (see, e.g., [60])

is(r) = −
πεrεoζ

η

∆P
Lτ

r2, (6)

where ∆P (Pa) is the pressure difference across the capillary and Lτ (m) is the real length of the tortuous
capillary (see Figure 1). Because the length of the porous media Lo (m) is related to the real length of
the tortuous capillary Lτ by the relation Lτ= τ Lo in which τ (no units) is the tortuosity of the capillary
(see, e.g., [85]). Note that the length of the capillaries in this work is assumed to be independent of
the capillary radius and therefore τ is the same for all capillaries (see, e.g., [54]). Equation (6) is now
rewritten as

is(r) = −
πεrεoζ

η

∆P
Loτ

r2. (7)

The conduction current in the water occupied capillary tube under an electrical potential difference
(∆V) is given by

ic(r) = Gtube∆V, (8)

where Gtube (S) is the electrical conductance of the water occupied capillary. The electrical conductivity
of a single capillary is given by the sum of the bulk and surface electrical conductivities. Note that the
capillary may be occupied by either water or air. In capillaries occupied by water, surface conductivity
occurs only at the interface between water and the solid, in which case Σs (S) denotes the specific
surface conductance of this interface. In capillaries occupied by air, surface conductivity again occurs
at the interface between a thin wetting phase layer (i.e., an irreductible water film) and the solid.



Water 2020, 12, 1588 5 of 22

Consequently, in capillaries occupied by air, Σsa (S) denotes the specific surface conductance due to
solid-water interfaces [54,61]. Therefore, Equation (8) is given by

ic(r) =


[

σwπr2

Loτ + Σs2πr
Loτ

]
∆V for a water occupied capillary

Σsa2πr
Loτ ∆V for an air occupied capillary

(9)

2.2. REV Scale

In order to develop the model for the SPCC under partially saturated conditions, we consider a
representative elementary volume (REV) of a porous medium as a cube with a length Lo (see Figure 1).
As stated in literature (see, e.g., [86–88]), a porous medium exhibits fractal properties and can be
conceptualized as a bundle of tortuous capillaries with different sizes from a minimum pore radius
rmin (m) to a maximum pore radius rmax (m). It has been proved that the number of pores with radius
from r to r + dr in porous media is given by (see, e.g., [64,88])

− dN = DrD
maxr−D−1dr, (10)

where D (no units) is the fractal dimension for pore space. The negative sign implies that the number
of pores decreases with the increase of pore size. Note that this is an equivalent pore size distribution
that allows to reproduce the behavior of real porous media by simplifying the complexity of real pore
networks. The pore fractal dimension D can be determined by a box-counting method (see, e.g., [88,89]).
Additionally, D can also be estimated from the following the relation (see, e.g., [88,89]),

D = 2− lnφ

lnα
, (11)

where φ (no units) is the porosity of porous media and α = rmin/rmax (no units).

Figure 1. Conceptual model of a porous medium as a bundle of capillaries following a fractal
distribution. At a given capillary pressure, the capillary is either filled by water or by air depending on
its radius.

We consider the REV under at varying saturation conditions. Then, contribution to the water flow
depends on the effective saturation that is given by

Se =
Sw − Swirr
1− Swirr

, (12)

where Sw (no units) and Swirr (no units) are the water saturation and irreducible water
saturation, respectively.

We assume that the REV is initially fully saturated and then drained when it experiences a
pressure head h (m). For a capillary tube, the pore radius rh (m) is linked to the pressure head h by [90]

h =
2Tscosβ

ρwgrh
, (13)
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where Ts (N/m) is the fluid surface tension, β (o) is the contact angle, ρw (kg/m3) is the fluid density,
and g (m/s2) is the acceleration due to gravity. A capillary becomes fully desaturated if its radius
r (m) is greater than the radius rh given by Equation (13). Therefore, it is reasonable to assume that
capillaries with radii r between rmin and rh will remain fully saturated.

For porous media containing only large and regular pores, the irreducible water saturation can
often be neglected. For porous media containing small pores, the irreducible water saturation can
be quite significant. This amount of water is taken into account in the model by setting irreducible
water radius of capillaries rwirr (m). Consequently, the following assumptions are made in this work;
(1) for rmin ≤ r ≤ rwirr, the capillaries are occupied by water and are immobile (i.e., no film flow).
Therefore, water does not contribute to the streaming current. However, water is electrically conductive,
so it contributes to the conduction current. (2) For rwirr < r ≤ rh, the capillaries are occupied by water
that is mobile, so they contribute to both the streaming current and the conduction current. (3) For
rh < r ≤ rmax, the capillaries are occupied by air, so does not contribute to the streaming current
but contribute to the conduction current. In this work, film bound water, which adheres to the pore
wall because of the molecular forces acting on the hydrophilic rock surface, in the capillaries with
radius greater than rwirr is ignored in water saturation calculations. Therefore, the water saturation is
defined as

Sw =

∫ rh
rmin

πr2Lτ(−dN)∫ rmax
rmin

πr2Lτ(−dN)
=

r2−D
h − r2−D

min

r2−D
max − r2−D

min
. (14)

The irreducible water saturation is determined as

Swirr =

∫ rwirr
rmin

πr2Lτ(−dN)∫ rmax
rmin

πr2Lτ(−dN)
=

r2−D
wirr − r2−D

min

r2−D
max − r2−D

min
. (15)

From Equations (14) and (15), one has

rh = rmax

[
α2−D + Sw(1− α2−D)

] 1
2−D , (16)

and

rwirr = rmax

[
α2−D + Swirr(1− α2−D)

] 1
2−D (17)

where α = rmin/rmax.
The streaming current through the REV is the sum of the streaming currents over all water

occupied capillaries with radius between rwirr and rh and given by

Is =
∫ rh

rwirr

is(r)(−dN) =

−
∫ rh

rwirr

πεrεoζ

η

∆P
Loτ

DrD
maxr1−Ddr =

− πεrεoζ

η

∆P
Loτ

D
2− D

rD
max(r

2−D
h − r2−D

wirr ).

(18)

The conduction current through the REV is given by

Ic =
∫ rh

rmin

ic(r)(−dN)dr +
∫ rmax

rh

ic(r)(−dN)dr =∫ rh

rmin

∆V
[

σwπr2

Loτ
+

Σs2πr
Loτ

]
(−dN)dr +

∫ rmax

rh

∆V
Σsa2πr

Loτ
(−dN)dr.

(19)
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Evaluating integrals in Equation (19) yields

Ic =
∆VDπrD

max
Loτ

[
σw(r2−D

h − r2−D
min )

2− D
+

2Σs(r1−D
h − r1−D

min )

1− D
+

2Σsa(r1−D
max − r1−D

h )

1− D

]
. (20)

Under steady-state conditions, the total streaming current Is (A) is equal to the total conduction
current Ic (A) through the REV in magnitude. Therefore, the following is obtained,

Is = −Ic. (21)

Combining Equations (18), (20), and (21) yields

∆V =
εrε0ζ∆P (r2−D

h −r2−D
wirr )

2−D

η

[
σw(r2−D

h −r2−D
min )

2−D +
2Σs(r1−D

h −r1−D
min )

1−D +
2Σsa(r1−D

max −r1−D
h )

1−D

] (22)

The SPCC at saturation is defined as

CS =
∆V
∆P

=
εrε0ζ

(r2−D
h −r2−D

wirr )
2−D

η

[
σw(r2−D

h −r2−D
min )

2−D +
2Σs(r1−D

h −r1−D
min )

1−D +
2Σsa(r1−D

max −r1−D
h )

1−D

] (23)

Substituting Equations (16) and (17) into Equation (23) and doing some arrangements,
the following is obtained,

CS(Sw) =
εrε0ζ(Sw − Swirr)

η

σwSw + 2Σs
rmax

2−D
1−D

[
(Sw(1−α2−D)+α2−D)

1−D
2−D −α1−D

]
1−α2−D + 2Σsa

rmax
2−D
1−D

[
1−(Sw(1−α2−D)+α2−D)

1−D
2−D

]
1−α2−D

 .
(24)

The wetting layer of water contributes to the surface electrical conductivity even in capillaries
occupied by air. Following the work in [54], we assume that the presence of air does not modify surface
conductivity at the solid water interface and Σsa = Σs. Consequently, Equation (24) becomes

CS(Sw) =
εrε0ζ(Sw − Swirr)

η
[
σwSw + 2Σs

rmax
2−D
1−D

1−α1−D

1−α2−D

] . (25)

Equation (25) indicates that the SPCC under partially saturated conditions is related to the zeta
potential, the fluid relative permittivity, viscosity, water saturation, irreducible water saturation,
fluid electrical conductivity, and the surface conductance at the solid water interface. Additionally,
Equation (25) is related to the microstructural parameters of a porous medium (D, α, rmax).

In case of full saturation and zero irreducible water saturation (Sw = 1 and Swirr = 0), Equation (25)
reduces to

CS(Sw = 1) =
εrε0ζ

η
[
σw + 2Σs

rmax
2−D
1−D

1−α1−D

1−α2−D

] . (26)

Equation (26) has been well validated by the authors of [64] for consolidated porous samples.
Note that Equation (26) has the similar form as proposed by Morgan et al. [68] or Waxman and
Smits [91]:

CS(Sw = 1) =
εrε0ζ

η [σw + Fσs]
, (27)

where F is the formation factor and σs is the surface conductivity.
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In the case of zero irreducible water saturation and negligible surface conductivity (Swirr = 0 and
Σs = 0), Equation (25) reduces to the HS equation (see Equation (2))

CS(Sw) =
εrε0ζ

ησw
. (28)

Equation (28) indicates that the SPCC does not depend on water saturation in this very specific
case (i.e., Swirr = 0 and Σs = 0). This prediction is the same as that stated by [54] (see his Figure 3a).

2.3. Relative Streaming Potential Coupling Coefficient

From Equation (25), the relative SPCC is obtained as

Crel =
CS(Sw)

CS(Sw = 1)
=

Sw−Swirr
1−Swirr[

σwSw+
2Σs

rmax
2−D
1−D

1−α1−D
1−α2−D

]
[
σw+

2Σs
rmax

2−D
1−D

1−α1−D
1−α2−D

]
. (29)

For negligible surface conductivity, Equation (29) becomes

Crel =
(Sw − Swirr)

(1− Swirr)Sw
=

Se

Sw
. (30)

Equations (29) and (30) indicate the dependence of Crel (no units) on water saturation Sw (no units).
In addition, Equation (30) shows that when the surface conductivity is negligible, Crel only depends
on Sw and Swirr (no units) regardless of σw (S/m), D (no units), rmax (no units), and α (no units).

2.4. The Relation Between SPCC and Effective Excess Charge Density

The effective excess charge density Q̂REV
v (C/m3) carried by the water flow in the REV is calculated

based on the same approach proposed by [59,92]

Q̂REV
v =

1
vD AREV

∫ rh

rwirr

Q̂r
vv(r)πr2(−dN), (31)

where vD (m/s) is the Darcy velocity, AREV (m2) is the cross-sectional area of the REV, Q̂r
v (C/m3) is

the effective excess charge density carried by the water flow in a single water occupied capillary of
radius r (m), and v (m/s) is the average velocity in the capillary. As shown by [59], vD is given as

vD =
∆Pkkrel

ηLo
, (32)

where k (m2) and krel (no units) are the permeability and relative permeability of the REV, respectively.
Under the thin EDL assumption, Q̂r

v is given by [92]

Q̂r
v = −8εrε0ζ

r2 . (33)

Additionally, v is given by (see, e.g., [59])

v(r) =
∆Pr2

8ητLo
. (34)

Substituting Equations (32)–(34) into Equation (31) and doing some arrangements, one obtains

Q̂REV
v = − εrε0ζ

τkkrel

πD
(2− D)AREV

rD
maxr2−D

max (Sw − Swirr)(1− α2−D). (35)
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In addition, the electrical conductivity of the REV at saturation is calculated as

σ =
Lo

AREV RREV
, (36)

where RREV (Ω) is the resistance of the REV that can be deduced from Equation (20) using Ohm′s law:

1
RREV

=
Ic

∆V
=

DπrD
max

Loτ

[
σw(r2−D

h − r2−D
min )

2− D
+

2Σs(r1−D
h − r1−D

min )

1− D
+

2Σsa(r1−D
max − r1−D

h )

1− D

]
. (37)

Using Σs = Σsa and applying the same above mentioned approach, Equation (37) is rewritten as

1
RREV

=
DπrD

maxr2−D
max (1− α2−D)

Loτ(2− D)

[
σwSw +

2Σs

rmax

2− D
1− D

1− α1−D

1− α2−D

]
. (38)

Combining Equations (36) and (38), the following is obtained,

σ(Sw) =
πDr2

max(1− α2−D)

AREVτ(2− D)

[
σwSw +

2Σs

rmax

2− D
1− D

1− α1−D

1− α2−D

]
. (39)

From Equations (25), (35), and (39), one has

CS(Sw) = −
Q̂REV

v (Sw)kkrel(Sw)

ησ(Sw)
. (40)

Equation (40) is the same as that reported in literature using different approaches such as the
volume-averaging upscaling (see, e.g., [51,55,83]). However, in this work, we obtain that based on the
fractal theory for porous media and the capillary tube model.

From Equation (39), the relative electrical conductivity is obtained as

σrel(Sw) =
σ(Sw)

σ(Sw = 1)
=

σwSw + 2Σs
rmax

2−D
1−D

1−α1−D

1−α2−D

σw + 2Σs
rmax

2−D
1−D

1−α1−D

1−α2−D

. (41)

Comparing Equations (29) and (41) yields the following

Crel =
Se

σrel(Sw)
. (42)

Equation (42) is exactly the same as that proposed by the authors of [54,59].

2.5. Johnson Length

Comparing Equations (3) and (26), a new expression for the characteristic length scale (Johnson
length) Λ (m) under fully saturated conditions is obtained as

Λ = rmax
(1− D)(1− α2−D)

(2− D)(1− α1−D)
= rmax

(1− D)(1− φ)

(2− D)(1− α1−D)
. (43)

It should be noted that α2−D = φ.
There have been published models relating the Λ (m) to the grain diameter d (m). One is presented

by [93,94]

Λ =
d

2m(F− 1)
≈ d

2mF
, (44)
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where F (no units) is the formation factor, m (no units) is the cementation exponent of porous media.
For spherical grain based samples, m is stated to be 1.5 (see, e.g., [95]).

Equation (43) is related to microstructural properties of porous materials (D, φ, α, rmax).
Therefore, it indicates more mechanisms affecting the Λ (m) than Equation (44). There is no empirical
constants in Equation (43), but there are two in Equation (44) (F and m).

The effective pore radius is linked to the characteristic length scale by [96]

re f f = Λ

√
8
a

, (45)

where a (no units) is a constant and normally taken as to 8/3 for spherical grain based samples [94,96].
Combining Equations (43) and (45), the re f f (m) can be expressed in terms of microstructural parameters
of porous materials as follows:

re f f = rmax
(1− D)(1− φ)

(2− D)(1− α1−D)

√
8
a

. (46)

Combining Equations (44) and (45), the re f f (m) is expressed in terms of F and m as follows,

re f f =
d

2m(F− 1)

√
8
a
≈ d

2mF

√
8
a

. (47)

3. Results and Discussion

3.1. Relative Streaming Potential Coupling Coefficient

Figure 2 shows the variation of the relative SPCC with water saturation predicted from
Equation (30) for three values of irreducible water saturation Swirr. It is seen that Crel increases
with increasing water saturation Sw as observed in literature (see, e.g., [48,50,58]). When Swirr = 0, Crel
is always equal 1, meaning that the SPCC does not depend on water saturation as predicted by [54].
In addition, Crel is very sensitive with Swirr (Crel decreases with an increase of Sirr at the same water
saturation). The reason is that at the same water saturation there are less capillaries occupied by water
that is mobile for the electrokinetic effect when Sirr increases.

Figure 3 shows the variation of the relative SPCC (Crel) with fluid electrical conductivity (σw)
based on Equation (29) for three different values of D (1.3, 1.6, and 1.9). Input parameters for modeling
are Σs = 10 × 10−9 S that is a typical value reported in literature (see, e.g., [97–99]), Swirr = 0.2, Sw =
0.3, rmax = 50.10−6 m and α = 0.01. It is seen that the relative SPCC increases with increasing electrical
conductivity at low electrical conductivity for all three values of D. However, at high fluid electrolyte
conductivity (σw ≈ 1 S/m), the relative SPCC becomes independent of D that is linked to grain texture
of porous media. The reason is that at high fluid electrical conductivity the surface conductivity
is negligible, the Crel is now determined by Equation (30) and is independent of σw and D (see the
dashed line in Figure 3). Additionally, it is seen that Crel decreases with an increase of D at low fluid
electrical conductivity.
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Figure 2. The variation of the relative SPCC with water saturation for the zero surface conductivity
(Σs = 0) predicted from Equation (30) at three values of Swirr (0, 0.1, and 0.2).

Figure 3. The variation of the relative SPCC with fluid electrical conductivity predicted from
Equation (29) for three values of D: 1.3, 1.6, and 1.9 (see the solid lines) with Σs = 10 × 10−9 S,
Swirr = 0.2, Sw = 0.3, rmax = 50.10−6 m and α = 0.01. The dashed line is predicted from Equation (30).

If pore size distribution is not known, one can estimate the maximum pore radius with the
knowledge of the mean grain diameter d of porous materials as [100]

rmax =
d
8

[√
2φ

1− φ
+

√
φ

1− φ
+

√
π

4(1− φ
)− 1

]
, (48)

Equation (48) has been justified by a good agreement with experimental data as shown in the
recent work (see, e.g., [64,65]). Equation (48) will be used to determine rmax in later modelings.

Vinogradov and Jackson [58] measured Crel as a function of Sw for the St. Bees sample saturated
with brine/nitrogen and brine/undecane (see symbols in Figure 4). When the sample is saturated
with brine/nitrogen, Crel is observed to approach zero at the irreducible water saturation (Swirr = 0.3)
as indicated in Figure 4a. The brine used in [58] was a simple 0.01 M solution of NaCl. Therefore,
to estimate the fluid elecrical conductivity, we use the relation σw = 10× C f = 0.1 S/m for a NaCl
solution in the range of electrolyte concentration C f between 10−6 M and 1 M temperature between
15 ◦C and 25 ◦C [101]. With fluid electrical conductivity of 0.1 S/m, the surface conductivity is not
safely neglected for the same system of the sample and fluid as reported in [33] in which the surface
conductivity is negligible for σw larger than 1 S/m. Therefore, we use Equation (29) to reproduce the
experimental data in Figure 4a (see the solid line) with Swirr = 0.3, d = 130 µm, φ = 0.19, σw = 0.1 S/m
which are obtained from [58], Σs = 10×10−9 S (typical value for silica based rocks in contact with
NaCl solutions) and α = 0.01 (best fit). A good agreement between the model and experimental data
is observed. Note that D is determined from Equation (11) with the knowledge of φ and α; rmax is
determined from Equation (48) with the knowledge of φ and d.
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(a)

(b)

Figure 4. The variation of the relative SPCC with water saturation for St. Bees#1 (see symbols) taken
from [58]: (a) saturated with brine/nitrogen; (b) saturated with brine/decane. The solid lines are
predicted from Equation (29) with Swirr = 0.3, d = 130 µm, φ = 0.19, σw = 0.1 S/m, Σs = 10×10−9 S and
α = 0.01.

However, Vinogradov and Jackson [58] observed that the relative SPCC gets the non-zero value
at the irreducible water saturation as shown in Figure 4b for brine/undecane. That observation may
be due to the movement of brine along with the undecane within the wetting layers of the pores [102].
That effect is important at low brine saturation (wetting phase). The small volumes of flowing brine are
hard to be measured and therefore the brine saturation seems to be unchanging. However, the brine
contains a very high density of excess electrical charge [44,58]. Consequently, the streaming current
is considerable, leading to a non-zero streaming potential at the irreducible water saturation. One
can note that the proposed model is valid for porous media saturated by water (brine)/air (nitrogen).
The reason is that the model is developed based on assumption of water-wet capillaries saturated with
water and a nonwetting phase such as air as mentioned in Section 2.

Figure 5 shows experimental data of Crel as a function of Sw for a sand column saturated with
brine/argon (see symbols) obtained from [48]. The experimental data is explained by the model given
by Equation (29) (see the lines). To see how sensitive the model is with Σs and α, three different values
of Σs (0, 30 × 10−9 S and 60 × 10−9 S) and three different values of α (0.01, 0.001, and 0.0001) are
applied for modeling (see Figure 5a,b, respectively). Input parameters for modeling are Swirr = 0.41,
d = 300 µm, φ = 0.4, σw = 0.01 S/m that are taken from [48]. In Figure 5a, α = 0.01 is used and
in Figure 5b, Σs = 30 × 10−9 S is used. It is seen that the model is very sensitive with Σs and α.
A good agreement between the experimental data and the model is obtained with α = 0.01 and
Σs = 30 × 10−9 S. Note that α = 0.01 are normally relevant for unconsolidated samples of sand grains
(see, e.g., [64,65,88]) and Σs = 30 × 10−9 S is of the same order of magnitude as those reported in
published work (see, e.g., [76,97,103]).
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(a)

(b)

Figure 5. The variation of the relative SPCC with water saturation for a sand column saturated with
brine/argon (see symbols) taken from the work in [48]. The lines are predicted from Equation (29) for
three different values of Σs = 0, 30 × 10−9 S and 60 × 10−9 S (a) and three different values of α = 0.01,
0.001 and 0.0001 (b). Input parameters for modeling are Swirr = 0.41, d = 300 µm, φ = 0.4, σw = 0.01 S/m
that are reported by [48]. In panel (a), α = 0.01 is used and in Figure 5b, Σs = 30 × 10−9 S is used.

Figure 6 shows experimental data of Crel as a function of Sw for the samples E39 and E3
saturated with brine/nitrogen obtained from the work in [50] and the sample of Brauvilliers limestone
saturated with brine/nitrogen obtained from the work in [83] (see symbols in Figure 6a,b, respectively).
Equation (30) is applied to explain the experimental data because the fluid electrical conductivities
in both cases are reported to be large enough to ignore the surface conductivity (σw = 0.93 S/m and
1.33 S/m). The solid lines are obtained from Equation (30) in which Swirr = 0.4 and Swirr = 0.29 are
reported by the authors of [50,83], respectively. It is seen that the model predictions are in good
agreement with the published data.

Figure 7 shows the dependence of the SPCC on the fluid electrical conductivity for two glass bead
packs (S1a with d = 56 µm and S5 with d = 512 µm) saturated with NaCl solutions (see symbols) taken
from [99] at full saturation. Equation (26) is used to explain the observed behavior, in which φ is taken
as 0.4 [99], Σs = 10−9 S and α = 0.01 are used for the best fit. D and rmax are determined in the same
way as previously mentioned with the knowledge of φ, α and d. The dependence of the zeta potential
on fluid electrical conductivity is based on the empirical expression ζ = −9.67 + 19.02 log10(σw) (mV)
given by [33]. It is seen that the model can reproduce the main trend of the published data. Additionally,
two empirical laws between the SPCC (mV/MPa) and electrolyte concentration C f (mol/L) proposed
by Vinogradov et al. [33] for sandstone (CS(Sw = 1) = −1.36C−0.9123

f ) and by Cherubini et al. [104] for

Carbonate rocks (CS(Sw = 1) = −1.41C−0.862
f ) are used to reproduce the experimental data reported

by [99] (see Figure 7). Recall that the relation σw = 10C f is also used to deduce C f from σw. As seen in
Figure 7, the empirical laws overestimate experimental data even they can explain the decrease of the
SPCC with an increase of σw. The reason is that those laws were obtained by fitting experimental data
with big data scattering (e.g., see Figure 10 of [33]). Therefore, the empirical laws may not work well for
two single silica-based samples in a large range of electrical conductivity reported by [99]. In addition,
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the difference in expressions proposed by the authors of [33,104] indicates that the empirical law is
largely mineral-dependent.

(a)

(b)

Figure 6. The variation of the relative SPCC with water saturation for (a) two dolomite core samples
(E39 and E3) saturated with brine/nitrogen (see symbols) taken from the work in [50] in which Swirr =
0.4; (b) the sample of Brauvilliers limestone saturated with brine/gas (see symbols) taken from the
work in [83] in which Swirr = 0.29. The solid lines are predicted from Equation (30).

Figure 7. The variation of the SPCC at full saturation with the fluid electrical conductivity for two
glass bead pack (S1a and S5) saturated with NaCl solutions (see symbols) taken from the work in [99].
The solid lines are predicted from Equation (26) and two empirical laws proposed by Vinogradov et al.
[33] and by Cherubini et al. [104].

3.2. Johnson Length

Figure 8 shows the variation of the characteristic length scale with porosity predicted from
Equation (46) at three different values of α (0.01, 0.025, and 0.05) for d = 50 × 10−6 m. It is shown that
the characteristic length scale is sensitive to the porosity φ and the ratio α between rmin and rmax.
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Figure 8. The variation of the characteristic length scale with porosity at three different values of α

(0.01, 0.025 and 0.05) for d = 50 × 10−6 m.

In Figure 9, we show (a) the comparison between effective pore radii predicted from the proposed
model given by Equation (46) and those predicted from Equation (47) presented by [94,96] for a set
of glass bead packs (see Table 2), and (b) the comparison between effective pore radii predicted from
the proposed model given by Equation (46) and those from measurements of the mercury injection
capillary pressure (MICP) for the same set of samples (see Table 2). It is seen that the proposed model
given by Equation (46) is very good agreement with that presented by [94,96] or experimental data
from the MICP measurements. It should be noted that in Equation (46), α is taken as 0.025 due to the
best fit, D and rmax are determined from (11) and Equation (48) as previously mentioned with the
knowledge of α, φ and d (see Table 2). For modeling of Equation (46) and Equation (47), d and m are
obtained from [94,96] and re-shown in Table 2, F is determined by the relation F = φ−m [105], and a is
taken as 8/3.

Figure 9. Comparison of predicted and measured effective pore radii for a set of glass bead packs
reported in [94,96]. (a) Predicted effective pore radius given by Equation (46) against the pore radius
associated with the grain diameter given by Equation (47). (b) Predicted effective pore radius given by
Equation (46) against the mean pore radius from MICP measurements reported in [96].
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Table 2. Properties for a set of glass bead packs reported in [94,96]. Symbols of d (µm),
φ (no units), m (no units), and rmean (µm) stand for the grain diameter, porosity, cementation exponent,
and mean pore radius of glass bead samples from mercury injection capillary pressure (MICP)
measurements, respectively.

Sample d φ m rmean Source
(µm) (no units) (no units) from MICP (µm)

A 20 0.4009 1.49 3.12 [94]
B 45 0.3909 1.48 6.65 [94]
C 106 0.3937 1.50 14.04 [94]
D 250 0.3982 1.50 43.7 [94]
E 500 0.3812 1.46 72.3 [94]
F 1000 0.3954 1.47 180.2 [94]
G 2000 0.3856 1.49 252.6 [94]
H 3350 0.3965 1.48 459.3 [94]
I 3000 0.3978 1.56 463.1 [96]
J 4000 0.3854 1.55 419.7 [96]
K 5000 0.3756 1.57 476.2 [96]
L 6000 0.3566 1.62 480.0 [96]
M 256 0.3987 1.51 29.6 [96]
N 512 0.3890 1.56 76.9 [96]
O 181 0.3824 1.54 28.1 [96]

Similarly, Glover and Dery (2010) [76] applied Equation (47) for a set of glass bead packs to obtain
the effective pore radii of the samples (see his Table 1). The properties and the effective pore radii
obtained by [76] for all samples are re-shown in Table 3. From that, the variation of effective pore
radii with grain diameter is shown in Figure 10 (see symbols). The observation can be reproduced by
Equation (46) (see solid line), in which α is taken as 0.025, D and rmax are obtained in the same manner
as previously mentioned with the knowledge of α, φ, and d (see Table 3). It is seen that the model
provides a fairy good agreement with experimental data.

Figure 10. Comparison of measured and predicted effective pore radii for a range of glass bead packs
reported by [76]. In the model: α = 0.025, φ and m are reported in [76], a = 8/3 and F = φ−m.
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Table 3. Properties for a set of glass bead packs reported in [76]. Symbols of d (µm), φ (no units),
m (no units), F (no units), and re f f (µm) stand for the grain diameter, porosity, cementation exponent,
formation factor, and effective pore radius of the glass bead samples, respectively.

Sample d φ m F re f f Source
(µm) (no units) (no units) (no units) (µm)

1 1.05 0.411 1.5 3.80 0.16 [76]
2 2.11 0.398 1.5 3.98 0.31 [76]
3 5.01 0.380 1.5 4.27 0.68 [76]
4 11.2 0.401 1.5 3.94 1.64 [76]
5 21.5 0.383 1.5 4.23 2.94 [76]
6 31.0 0.392 1.5 4.07 4.40 [76]
7 47.5 0.403 1.5 3.91 7.02 [76]
8 104 0.394 1.5 4.04 14.86 [76]
9 181 0.396 1.5 4.01 26.04 [76]
10 252 0.414 1.5 3.75 38.53 [76]
11 494 0.379 1.5 4.28 66.64 [76]
12 990 0.385 1.5 4.18 136.62 [76]

4. Conclusions

We develop a physically based model for the SPCC as well as the relative SPCC during the flow
of water and air in porous materials under partially saturated conditions by considering a bundle of
tortuous capillaries with a fractal pore size distribution. From the obtained expressions, we obtain
the familiar relation between the SPCC and the effective excess charge density that has been reported
in literature using another approach. The proposed model for the SPCC and relative SPCC is related
to fluid electrical conductivity, water saturation, irreducible water saturation, and microstructural
parameters of porous media. In particular, the surface conductivity of porous media has been taken
into account in the model. In addition, we also obtain an new expression for the characteristic length
scale Λ at full saturation. The proposed model is then successfully validated using experimental data
in literature. We believe that the models proposed in this work can be useful to study hydrogeological
processes in the unsaturated zone such as infiltration, evaporation, or contaminant fluxes.
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