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Abstract: The activated persulfate degradation of piroxicam, a non-steroidal anti-inflammatory drug
(NSAID) belonging to oxicams, was investigated. Persulfate was activated with thermal energy
or (UV-A and simulated solar) irradiation. Using 250 mg/L sodium persulfate at 40 ◦C degraded
almost completely 0.5 mg/L of piroxicam in 30 min. Increasing piroxicam concentration from 0.5 to
4.5 mg/L decreased its removal. The observed kinetic constant was increased almost ten times from
0.077 to 0.755 min−1, when the temperature was increased from 40 to 60 ◦C, respectively. Process
efficiency was enhanced at pH 5–7. At ambient conditions and 30 min of irradiation, 94.1% and
89.8% of 0.5 mg/L piroxicam was removed using UV-A LED or simulated solar radiation, respectively.
Interestingly, the use of simulated sunlight was advantageous over UV-A light for both secondary
effluent, and 20 mg/L of humic acid solution. Unlike other advanced oxidation processes, the presence
of bicarbonate or chloride in the range 50–250 mg/L enhanced the degradation rate, while the presence
of humic acid delayed the removal of piroxicam. The use of 0.5 and 10 g/L of methanol or tert-butanol
as radical scavengers inhibited the reaction. The coupling of thermal and light activation methods
in different aqueous matrices showed a high level of synergy. The synergy factor was calculated as
68.4% and 58.4% for thermal activation (40 ◦C) coupled with either solar light in 20 mg/L of humic
acid or UV-A LED light in secondary effluent, respectively.

Keywords: piroxicam; AOPs; synergy; persulfate; coupling AOPs; wastewater treatment; NSAIDs;
sulfate radicals; LED

1. Introduction

In recent decades, the emergence of micropollutants in the water cycle has become a global issue
of environmental concern. These emerging harmful substances are naturally occurring compounds, as
well as synthetic compounds such as pharmaceuticals, steroids, chemicals, pesticides, and others [1].

Nowadays, pharmaceuticals are attracting more and more interest because they affect the quality
of drinking water, ecosystems, and can pose a risk to human life [2]. Pharmaceutical compounds
are detected mainly in urban wastewater [3], wastewater treatment plants (WWTPs) [4,5], hospital
effluents and in the agricultural sector [6–8], while their concentration ranges from a few ng/L to several
µg/L [9–11]. Despite their low concentration, they are resistant to biological degradation because
conventional WWTPs cannot achieve high rates of removal of micropollutants [12,13]. Thus, they
pose a threat to humans and animals that lead to the accumulation of flora and fauna of the local
ecosystem [14–17].

Among different pharmaceutical compounds, non-steroidal anti-inflammatory drugs (NSAIDs)
constitute a large group consumed by a large portion of the population. One of the most popular
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NSAIDs is piroxicam (PIR), a substance belonging to the family of oxicams. It is widely used to treat
and relieve pain under swelling conditions such as osteoarthritis [18], and it is detected in various
environmental matrices [19,20].

Due to the inadequate treatment of pharmaceuticals in conventional WWTPs, it is essential to
research and develop new processes that can be applied to existing WWTPs to increase their efficacy
and remove persistent pollutants. Advanced oxidation processes (AOPs) are oxidation technologies
applied usually but not exclusively to the aqueous phase, and they are based on the production of
reactive oxygen species (ROS), such as hydroxyl radicals, using an oxidizing agent or external energy.
ROS react with the target pollutant by converting it into a less harmful compound in comparison with
the original compound or even to carbon dioxide [21].

A new type of oxidizing agent has sparked the interest of researchers during recent years.
Sodium persulfate (SPS) (Na2S2O8) is highly stable at room temperature, has a high solubility,
moderate cost, non-selective character and it is solid at ambient temperatures making it easy to
store and transport [22–24]. Moreover, upon activation, the main radical product, sulfate radical,
has a higher lifespan and selectivity in comparison with hydroxyl radicals. [25]. Nevertheless, SPS
should be activated to increase the degree of removal of the pollutant due to low oxidation potential
(E = 2.01 V) [22]. The benefit of using SPS is that it can be activated by different factors such as heat,
ultraviolet (UV) radiation, ultrasounds, presence of transition metals, and even carbon-based materials
like graphene and biochars [26–28].

In a recent work, Frontistis [29] examined the decomposition of piroxicam (PIR) under UV-C/SPS
process [29]. It was found that the presence of oxidant reduced the treatment time for the decomposition
of 1 mg/L PIR in pure water from 20 min to 4 min. However, the observed kinetic constant decreased
approximately 14 times, i.e., from 0.55 to 0.04 min−1 from ultrapure to secondary effluent. The same
behavior was observed in the case of iron-activated persulfate [30], where in the presence of organics
the kinetic constant decreased from 0.15 to 0.07 min−1. Recently, Ioannidi et al. [31] demonstrated that
even UV-A light could activate persulfate and degrade the endocrine disruptor propyl paraben. Light
emitted diodes (LED) can be used as the light source, thus providing a green approach compared to
conventional low or medium pressure UV-C lamps, while the use of solar light that contains almost
5–7% of UV-A radiation may become a viable option.

As a continuation, this work focused on the removal of piroxicam using heat- and (UV-A or
simulated solar) light-activated persulfate with particular emphasis on the degree of synergy between
the two methods to achieve higher drug degradation rates and to avoid disadvantages associated with
the use of (i) homogeneous Fenton process (i.e., iron precipitation and the need for separation and
neutralization) and/or (ii) UV-C lamps (low water transmittance, high energy demand and presence of
mercury). The effect of several operating parameters such as SPS concentration, pH, temperature, type
of irradiation, and the use of different water matrices was evaluated.

2. Materials and Methods

2.1. Chemicals

Piroxicam (PIR, C15H13N3O4S, CAS number 36322-90-4), and sodium persulfate (SPS, Na2S2O8,
CAS number 7775-27-1) were purchased from Sigma-Aldrich (Darmstadt, Germany). Sodium chloride
(NaCl, CAS number 7647-14-5), sodium bicarbonate (BIC, NaHCO3, CAS number 144-55-8), methanol
(CH3OH, CAS number 67-56-1), tert-butanol ((CH3)3COH, CAS number 75-65-0) and humic acid (HA,
CAS number 1415-93-6) were also supplied from Sigma-Aldrich.

2.2. Water Matrices

Two different water matrices were used to evaluate the removal of piroxicam. More specifically,
(i) ultrapure water (UPW): conductivity = 0.061 mS/cm, pH = 6 obtained from a purification system
(EASY-pureRF-Barnstead/Thermolyne, Waltham, MA, USA); (ii) secondary treated effluent taken from
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the University of Patras treatment plant (WW): pH = 8, conductivity = 815 mS/cm, alkalinity = 182 mg/L,
chemical oxygen demand = 21 mg/L, total organic carbon = 7 mg/L, total suspended solids = 1.8 mg/L,
chloride = 79 mg/L, sulfate = 28 mg/L and nitrate = 5.8 mg/L. Besides these matrices, UPW was added
HA, BIC or NaCl to assess the effect of organic and inorganic ions on the removal of piroxicam.

2.3. Heat Activated Persulfate Experiments

Initially, a fresh stock of 19 mg/L PIR was prepared and then diluted to the desired concentration.
Two hundred mL of an aqueous solution containing the desired amount of PIR was mixed with the
appropriate water matrix and then poured into a glass, double-layered, cylindrical vessel that was
open to the atmosphere (open-air equilibrium). The reactor was mounted on a magnetic stirrer to
achieve homogenous mixing throughout the conduction of the experiment. To control the temperature,
the reactor was connected to a thermostatic bath (Grant LFV6, Grant Instruments Ltd., Royston, UK).
When the temperature reached the required value (25–60 ◦C), the desired amount of SPS was added,
and the reaction began. About 1.2 mL of the reaction mixture was periodically withdrawn from the
reactor, quenched with 0.3 mL of methanol, filtered with a 0.22 mm PVDF syringe filter and analyzed
using high performance liquid chromatography (HPLC). Most of the experiments were performed in
duplicate and mean values are quoted as results, whose deviation never exceeded 5%.

2.4. Light Activated Persulfate Experiments

Two types of radiation sources were used to simulate ultraviolet and solar light, specifically (i)
a 10 W LED lamp that emits predominantly at 365 (±5) nm (UV-A), (ii) a solar simulator (Newport,
model LCS-100, Irvine, CA. USA) equipped with a 100 W xenon, ozone-free lamp and an AM1.5G filter
(Newport, Irvine, CA. USA). By means of chemical actinometry, the photon flux in the UV-A part of the
spectrum was measured and found equal to 11.3 W/m2 for the UV-A LED lamp and 10.5 W/m2 for the
solar simulator. Both lamps were left to warm up for 10 min prior to the beginning of the experiment.

2.5. High Performance Liquid Chromatography

High performance liquid chromatography (HPLC Aliance 2695, Waters, Milford, MA, USA) was
employed to monitor the concentration of piroxicam. The separation was achieved on a Kinetex XB-C18
100A column (2.6 µm, 2.1 mm × 150 mm) and a 0.5 µm inline filter (Krudkatcher Ultra) both purchased
from Phenomenex (Torrance, CA, USA). The mobile phase, consisting of 75:25 UPW: acetonitrile, eluted
isocratically at 0.25 mL/min and 45 ◦C. Detection was achieved through a photodiode array detector
(Waters 2996 PDA) in which the detection wavelength was set at 360 nm, and the analysis of each
sample lasted for 10 min [29,30]. The limit of detection was 3.52 µg/L and the limit of quantitation was
11.75 µg/L.

2.6. Process Synergy

Usually, the simultaneous application of two or more advanced oxidation processes can help
reduce the amount of harmful substances due to the increased production of reactive species. The
percentage of synergy (S) is the normalized difference between the kinetic constant of the combined
process (kcombined) and the sum of the individual processes ki, as shown below [32]:

S =
kcombined −

∑n
1 ki

kcombined
× 100 (%)

where S


> 0, synergistic effect
= 0, cumulative effect
< 0, competitive effect

(1)
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In the present study, emphasis was placed on coupling thermal activation with either radiation
source (UV-A LED lamp) or simulated solar light, in different water matrices, to evaluate the degree of
PIR removal. In this respect, Equation (1) is re-arranged as follows:

S =
kcombined − kheat−activated SPS − klight−activated SPS

kcombined
× 100 (%) (2)

where kheat-activated SPS is the constant of thermal activation and klight-activated SPS is the constant of either
light activation.

In addition to the definition of synergy shown in Equation (1), one can also define the percentage
of enhancement (E), as follows [33]:

E =
kcombined − kheat−activated SPS

kcombined
× 100 (%) (3)

3. Results

3.1. Effect of SPS Concentration

Initially, a series of experiments were conducted to test the effect of oxidant on the degradation of
piroxicam under mild temperature (40 ◦C), as shown in Figure 1.
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Figure 1. Effect of sodium persulfate (SPS) concentration on 0.5 mg/L prioxicam (PIR) degradation at
40 ◦C in ultrapure water (UPW) and inherent pH.

Thermolysis (i.e., in the absence of SPS) results in only about 25% PIR degradation after 60 min
at 40 ◦C, therefore the direct thermal degradation is not a viable option and the implementation of
AOPs is essential. The addition of SPS enhances PIR degradation, which is favored at higher oxidant
concentrations in agreement with previous studies [34,35]. Complete PIR removal can be achieved
after 30 min using 250 mg/L SPS, while at the same time 55% removal is recorded at 50 mg/L SPS.

Excessive use of SPS should be avoided because self-scavenging reactions may occur, resulting in
decreased performance of the process [36,37]. However, this phenomenon was not observed during
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this study, most likely due to the low amount of oxidant. The cost of the whole process is affected
by the amount of oxidizing agent. Moreover, large quantities of persulfate generate high amounts of
sulfate ions that are classified as pollutants at high concentrations. Bearing in mind that optimization
was not the goal of this work, all subsequent experiments were performed at a concentration less or
equal to 250 mg/L [30,36,37].

3.2. Effect of the Initial Concentration of Piroxicam

Since NSAIDs are detected in a range of low concentrations in environmental matrices, it is crucial
to investigate the effect of their initial concentration on process efficiency. For this reason, another set
of experiments were performed at 50 ◦C and four different initial concentrations of piroxicam between
0.5 and 4.5 mg/L and the results are shown in Figure 2. As clearly shown, longer oxidation times are
needed for the complete PIR degradation at higher initial concentrations.
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Observed kinetic constants according to Equation (4).

Assuming that PIR degradation follows a pseudo-first-order kinetic expression [38], the observed
(apparent) rate constant can be computed as follows:

−
dC
dt

= kobsC ↔ ln
C

CO
= −kobst (4)

Using the data from Figure 2 and applying the linearized form of Equation (4), kinetic constants
are shown in Table 1, while the linear plot is depicted in the inset of Figure 2. It is evident that higher
concentrations of PIR result in lower kinetic constants, which implies that the reaction is not true
first-order, in which case the constant should be independent of the initial concentration [39,40].
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Table 1. Summarized data from Figures 1–10, experimental conditions and apparent kinetic constants.

[PIR] (mg/L) Irradiation Temp (◦C) SPS (mg/L) Water Matrix kobs × 10−3 (min−1)

0.5 - 40 - UPW 4.0
0.5 - 40 50 UPW 28.8
0.5 - 40 100 UPW 77.1
0.5 - 40 250 UPW 113.4
0.5 - 50 100 UPW 228.0
1 - 50 100 UPW 139.0

1.5 - 50 100 UPW 83.7
4.5 - 50 100 UPW 60.3
0.5 - 40 100 UPW 754.0
0.5 - 60 - UPW 5.0
0.5 - 40 100 UPW pH 3 25.7
0.5 - 40 100 UPW pH 5 75.1
0.5 - 40 100 UPW pH 8 37.1
0.5 - 40 100 UPW pH 9 9.3
0.5 Solar 25 - UPW 4.0
0.5 UV-A LED 25 - UPW 4.0
0.5 Solar 25 250 UPW 61.5
0.5 UV-A LED 25 250 UPW 115
0.5 - 25 250 UPW 14.4
0.5 - 25 250 WW 21.7
0.5 Solar 25 250 WW 206.3
0.5 UV-A LED 25 250 WW 74.7
0.5 - 25 250 20 mg/L HA 9.5
0.5 Solar 25 250 20 mg/L HA 31.6
0.5 UV-A LED 25 250 20 mg/L HA 17.1
0.5 Solar 25 250 50 NaCl 197.0
0.5 Solar 25 250 125 NaCl 175.6
0.5 Solar 25 250 250 NaCl 167.1
0.5 Solar 25 250 50 BIC 103.1
0.5 Solar 25 250 125 BIC 154.4
0.5 Solar 25 250 250 BIC 141.2
0.5 Solar 25 250 10 g/L t- butOH 4.7
0.5 Solar 25 250 10 g/L MeOH 6.6
0.5 - 40 250 20 mg/L HA 17.6
0.5 Solar 40 250 20 mg/L HA 155.7
0.5 - 40 250 WW 24.0
0.5 UV-A LED 40 250 WW 237.0
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3.3. Effect of Activation Temperature

PIR removal was studied in the range 40–60 ◦C and the results are shown in Figure 3. Evidently,
degradation is favored at higher activation temperatures, leading to complete removal after only 5 min
at 60 ◦C. The observed kinetic constants are computed equal to 0.077, 0.223 and 0.755 min−1 at 40, 50
and 60 ◦C, respectively.

Thermal or light activation of SPS acts along the same pathway. Either means of activation breaks
down the persulfate anion into sulfate radicals by consuming energy as shown in Equation (5) [22,26,27].

S2O2−
8 + energy → 2SO−•4 (5)
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Absorbing thermal energy, persulfate salts produce two sulfate radicals with an activation energy
of 119–129, 134–139 and 100–116 kJ/mol at inherent, alkaline and acidic conditions, respectively [22].
From previous studies [41], it was found that the reaction temperature plays a key role because higher
temperatures result in higher rates of pollutant removal and higher solubility of the substance.

However, it is essential to reach the right balance between the reaction temperature and the degree
of pollutant removal since higher temperatures are unavoidably more energy-consuming.

3.4. Effect of pH

Since environmental samples and pharmaceutical wastewaters may have different pH values,
another set of experiments were conducted to determine the effect of pH on the efficiency of the process.
From Figure 4, the beneficial effect of working at inherent pH conditions is obvious since the observed
kinetic constants decrease substantially as pH shifts from its inherent value of 6.3 to acidic or alkaline
conditions. At alkaline conditions, sulfate radicals are transformed rapidly to hydroxyl radicals which
have greater redox potential but shorter lifespan in comparison with sulfate radicals. The lifetime of
hydroxyl and sulfate radicals has been estimated in the order of 10−3 and 40–50 µs, respectively [26,42].

SO−•4 + H2O → SO2−
4 + OH• + H+ (6)

SO−•4 + OH− → SO2−
4 + OH• (7)

On the other hand, and although sulfate radicals are the dominant species at acidic conditions,
they are partly wasted to the production of non-reactive HSO−4 , thus leading to lower degradation rates.

SO−•4 + H+
→ HSO−4 (8)

In contrast, under inherent conditions both sulfate and hydroxyl radicals are active leading to a
more efficient degradation process for the pollutant in question. At the same time, it is well known
that the redox potential of active species is a function of pH. Therefore, in homogeneous systems,
the observed yield depends on the selectivity of the produced reactive species towards the target
compounds, as well as on the redox potential in the current conditions [43].

3.5. Effect of Light Activation

Despite the encouraging results presented above, a significant disadvantage of SPS thermal
activation is the increased cost. In this light, the use of artificial or natural radiation to activate SPS
could be an attractive option. Figure 5 shows PIR degradation using the two different sources of
radiation under ambient conditions (25 ◦C). Either seems capable of effectively activating SPS and,
consequently degrading PIR; its 30-min removal is 94.1% and 89.8% with the UV-A LED and solar
light, respectively.

Blank experiments were also performed showing that photolysis alone (i.e., without SPS) does not
contribute significantly to degradation and is independent of the light source; this is rather expected
since no reactive radicals are formed, while both radiation sources have similar photon fluxes [44]. A
dark experiment was also performed in the presence of SPS leading to partial PIR degradation (i.e.,
34.2% after 60 min).

The advantageous usage of ultraviolet radiation is known from previous studies [45,46]. The
absorbance spectrum of PIR is depicted in Figure 5b and shows a maximum in the UV-A region.
Therefore, piroxicam can be decomposed in two distinct ways: (i) direct (UV-A) photo-degradation,
where the pollutant directly absorbs photons and (ii) through reactive radicals derived from the
ultraviolet activation of SPS.

Therefore, the decay of piroxicam can be described as follows:

d[PIR]
dt

= −(k photolysis[PIR] + kHO•,PIR[HO •][PIR] + kSO−•4 ,PIR[SO−•4 ][PIR]) (9)
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or in a simplified form
d[PIR]

dt
= −klight−activated SPS [PIR] (10)

where
klight − activated SPS = kphotolysis+kHO•,PIR[HO •] + kSO−•4 ,PIR[SO−•4

]
(11)

These results are in line with a recent study of our group that demonstrated that the UV-A
spectrum of solar radiation could activate SPS [31]. Recently, Wang et al. [47] demonstrated that visible
light (420 nm) could activate persulfate and this was employed to inactivate E. coli cells.

3.6. Effect of Water Matrix

To gain a better insight of process efficiency, more complex matrices must be used to simulate
environmental samples and provide a more realistic approach. In this regard, experiments in secondary
treated effluent (WW) containing various inorganic and organic components were performed. As can
be seen from Figures 5 and 6, the solar light activated persulfate process performs better in WW than
in UPW leading to complete PIR removal in 20 min. This implies possible interactions amongst the
water constituents (organic and/or inorganic), the oxidant and the pollutant that seem to promote PIR
degradation. Although such interactions are usually complex and difficult to differentiate, an attempt
was made to shed light on the effect of organic and inorganic species.

Further experiments were performed in UPW spiked with 20 mg/L humic acid (this resulted in
8.4 mg/L of total organic carbon, comparable to the organic content inherently present in WW). Humic
acid simulates the resistant natural organic matter that typically exists in surface and ground waters, as
well as in secondary effluents [45,48]. As can be seen in Figure 7, the presence of humic acid impedes
PIR degradation relative to the experiments in UPW or WW and this seems to be the case for both
radiation sources. For instance, the extent of PIR degradation under simulated solar irradiation was
83% after 60 min in UPW spiked with HA, 95% after 60 min in UPW and 100% after 20 min in WW. The
detrimental effect of humic acid is due to its action as a scavenger of reactive radicals and competition
with persulfate for the available photons [49]. Nevertheless, the better performance of solar radiation
observed in the experiments of the secondary effluent compared with the experiments with humic acid
deserves further investigation.

From the results shown in Figures 5–7, the role of inorganic matrix species seems to be important
and this is more pronounced for the experiments with solar light persulfate activation. In this respect,
UPW was added chloride or bicarbonate in the range 50–250 mg/L and the results, in terms of the
observed kinetic constants, are depicted in Figure 8 and Table 1. The addition of either anion enhances
PIR degradation for the whole range of concentrations tested.

Regarding the effect of chloride, the kinetic constant slightly decreases from 0.197 min−1 to
0.167 min−1 when its concentration increases from 50 to 250 mg/L, yet this is about three times greater
than that without salt. The addition of chloride may have either beneficial or antagonistic effects and
has caused controversy among the scientific community [50,51]. Chloride ions interact with sulfate
and hydroxyl radicals leading to the formation of chloride radicals as follows:

SO−•4 + Cl− → Cl• + SO2−
4 (12)

HO• + Cl− → HOCl−• (13)

HOCl−• + H+
→ Cl• + H2O (14)

Chloride radicals may contribute, besides sulfate and hydroxyl radicals, to the degradation of
the pollutant; nonetheless, high concentrations of chloride ion may behave as radical scavengers
leading to a detrimental effect [43]. Indeed, the presence of 200 mg/L chloride increased the apparent
kinetic constant of piroxicam electrochemical oxidation by almost ten times [52]. A similar behavior
was observed by Outsiou et al. [53], where the addition of more than 50 mg/L chloride increased the
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removal of bisphenol A using SPS activated by a bimetallic carbon xerogel catalyst. On the contrary,
the presence of chloride did not have any particular effect on the destruction of piroxicam using
iron-activated persulfate [30]. However, the effect of chloride needs further investigation as several
studies have linked its presence to the formation of organochlorine compounds that are potentially
carcinogenic [52].

Bicarbonate, a major compound in terms of the concentration of ions present in environmental
samples, is usually responsible for reduced treatment efficiency due to its scavenging reaction with
active oxidizing agents [40]. However, recent research suggests that the effect of bicarbonate on
different advanced oxidation processes is not necessarily negative but depends on the experimental
conditions [32]. The presence of bicarbonate, depending on the pollutant under consideration, may
lead to an increase in degradation efficiency [54].

As seen in Figure 8, the presence of bicarbonate also enhances piroxicam degradation and this
may be associated with the formation of carbonate radicals. Although the latter are less reactive
than hydroxyl and sulfate radicals, they are selective electrophilic reagents that may exhibit different
reactivities, depending on the characteristics of organic pollutants. It is worth noting that the addition
of bicarbonate increased solution pH to 8.1. However, the increase in piroxicam removal cannot
be explained by the pH change. As mentioned in Section 3.4, removal was favored at pH values
between 5 and 6.3. For a specific pH value, the relative distribution of the three radicals according
to Equations (15) and (16) is likely to be affected by the initial bicarbonate concentration and this
eventually dictates the oxidizing capacity and behavior of the system [51,55].

HCO−3 + SO−4 → CO−3 + SO2−
4 + H+ (15)

HCO−3 + HO → CO−3 + H2O (16)

Recently, Frontistis [30] investigated the degradation of 0.5 mg/L piroxicam using 2 mg/L Fe2+

and 20 mg/L SPS at inherent pH. The researcher observed only a slight decrease in the presence of
100–250 mg/L bicarbonate. In another study of our group that examined the electrochemical oxidation
of piroxicam over boron doped diamond anode [52], the presence of 100 mg/L bicarbonate increased
the observed kinetic constant almost 4.5 times, i.e., from 0.138 min−1 to 0.624 min−1 in comparison
with ultrapure water.

3.7. Effect of Radical Scavengers

To shed light on the mechanism of piroxicam oxidation, experiments were conducted using an
excess of tert-butanol or methanol since these alcohols are often used as radical scavengers. More
specifically, tert-butanol has a greater affinity to hydroxyl radicals k(t-ButOH,HO

•
) = 5.2× 108 M−1

·s−1 than
sulfate radicals k(t-ButOH,SO4

−•
) = 106 M−1

·s−1 while methanol can scavenge both radicals k(MeOH,HO•)

= 8 × 108 M−1
·s−1, k(MeOH,SO4

−•
) = 107 M−1

·s−1) [56,57].
As seen in Figure 9, the use of either alcohol at 0.5 or 10 g/L practically quenches degradation;

this indirectly implies that, although sulfate and hydroxyl radicals are both responsible for piroxicam
decomposition, hydroxyl radicals are most likely the predominant species in the conditions studied [58].

3.8. Coupling Thermal and Light Activation Methods

In a final series of experiments, the simultaneous application of thermal and light activation of SPS
was evaluated. Thermal activation was implemented at 40 ◦C to minimize energy consumption and it
was coupled with either UV-A LED or simulated solar light. The combined thermal and solar light
activation process (SPS + SOLAR + T) was tested for PIR degradation in UPW spiked with 20 mg/L
HA (Figure 10a), while the combined thermal and UV-A LED process (SPS + UV-A LED + T) for PIR
degradation in WW (Figure 10b). Figure 10 also shows the respective individual runs, i.e., only thermal
activation at 40 ◦C or light activation at 25 ◦C. The theoretical sum of the two processes is illustrated by
a dotted line.
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In either case, complete PIR degradation was achieved in less than 15–20 min when thermal and
light activation methods were applied simultaneously. PIR removal was considerably faster than the
respective methods applied individually, as well as their theoretical sum represented by the dotted
line. Based on Equations (2) and (3) and the values shown in Table 1, the degrees of synergy and
enhancement are computed equal to 68.4% and 88.7%, respectively, for the experiments of Figure 10a,
and 58.4% and 89.9%, respectively, for the experiments of Figure 10b. These results clearly demonstrate
that the combined application of the two activation methods has a beneficial synergistic rather than a
mere cumulative (additive) effect.

4. Conclusions

The scope of this study was to investigate the degradation of the NSAID piroxicam using various
persulfate-based oxidation processes, while considering the effects of different operating parameters.
The main conclusions derived from this work are as follows:

• Both thermal and light activated sodium persulfate can achieve high levels of piroxicam degradation.
• The process is favored at near neutral pH. Although both sulfate and hydroxyl radicals seem to

contribute to the decomposition of piroxicam, hydroxyl radicals were the dominant species.
• Secondary effluent has an unexpectedly beneficial effect on the process, in comparison with

experiments in ultrapure water.
• Inorganic ions like chloride and bicarbonate enhance process efficiency.
• Coupling thermal and light activation methods results in synergistic enhancement with obvious

implications for reducing the cost of treatment and minimizing environmental footprint.
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19. Lolić, A.; Paíga, P.; Santos, L.H.M.L.M.; Ramos, S.; Correia, M.; Delerue-Matos, C. Assessment of non-steroidal
anti-inflammatory and analgesic pharmaceuticals in seawaters of North of Portugal: Occurrence and
environmental risk. Sci. Total Environ. 2015, 508, 240–250. [CrossRef]

20. Mainero Rocca, L.; Gentili, A.; Caretti, F.; Curini, R.; Pérez-Fernández, V. Occurrence of non-steroidal
anti-inflammatory drugs in surface waters of Central Italy by liquid chromatography–tandem mass
spectrometry. Int. J. Environ. Anal. Chem. 2015, 95, 685–697. [CrossRef]

21. Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Thomaidis, N.S.; Xu, J. Progress in the biological and chemical
treatment technologies for emerging contaminant removal from wastewater: A critical review. J. Hazard.
Mater. 2017, 323, 274–298. [CrossRef] [PubMed]

22. Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere
2016, 151, 178–188. [CrossRef] [PubMed]

23. Frontistis, Z.; Mestres, E.M.; Konstantinou, I.; Mantzavinos, D. Removal of cibacron black commercial dye
with heat- or iron-activated persulfate: Statistical evaluation of key operating parameters on decolorization
and degradation by-products. Desalin. Water Treat. 2016, 57, 2616–2625. [CrossRef]

24. Devi, P.; Das, U.; Dalai, A.K. In-situ chemical oxidation: Principle and applications of peroxide and persulfate
treatments in wastewater systems. Sci. Total Environ. 2016, 571, 643–657. [CrossRef]

25. Ghanbari, F.; Moradi, M.; Gohari, F. Degradation of 2,4,6-trichlorophenol in aqueous solutions using
peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals. J. Water Process. Eng.
2016, 9, 22–28. [CrossRef]

26. Ike, I.A.; Linden, K.G.; Orbell, J.D.; Duke, M. Critical review of the science and sustainability of persulphate
advanced oxidation processes. Chem. Eng. J. 2018, 338, 651–669. [CrossRef]

27. Wacławek, S.; Lutze, H.V.; Grübel, K.; Padil, V.V.T.; Černík, M.; Dionysiou, D.D. Chemistry of persulfates in
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