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Abstract: The issue of whether land use changes will balance out sediment yields induced by climate
predictions was assessed for a Carpathian basin (Raba River, Poland). This discussion was based on
the Macromodel DNS (Discharge–Nutrient–Sea)/SWAT (Soil and Water Assessment Tool) results for
the RCP 4.5 and RCP 8.5 scenarios and LU predictions. To track sediment yield responses on the
sub-basin level the studied area was divided into 36 units. The response of individual sub-basins to
climate scenarios created a mosaic of negative and positive sediment yield changes in comparison
to the baseline scenario. Then, overlapped forest and agricultural areas change indicated those
sub-basins where sediment yields could be balanced out or not. The model revealed that sediment
yields could be altered even by 49% in the selected upper sub-basins during the spring-summer
months, while for the lower sub-basins the predicted changes will be less effective (3% on average).
Moreover, the winter period, which needs to be re-defined due to an exceptional occurrence of frost
and snow cover protecting soils against erosion, will significantly alter the soil particle transfer among
the seasons. Finally, it has been shown that modeling of sediment transport, based on averaged
meteorological values and LU changes, can lead to significant errors.
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1. Introduction

Land use (LU) and atmospheric factors, such as precipitation and temperature, exert a huge
impact on the amount of sediment yield on practically every basin. Studies conducted in many regions
of the world [1–7] have proven that surface runoff is a serious threat to soil resources in the world [8,9].
This phenomenon is particularly dangerous in arable lands because the maintenance of long-term crop
production depends on the soil’s production capacity, which is negatively affected by leaching of the
topsoil and organic matter, and increased water outflow [10–13]. Until recently, in temperate zones,
frost and snow cover were playing a similar role during winter as vegetation cover for the rest of the
year. Nowadays, even in mountainous areas, frost and snow are becoming rarer and the erosive effect
of rain is increasing during this period [14–16]. The problem is even more acute in sub-mountain and
mountainous areas, where large slopes accelerate the leaching of soil particles. The correct identification
of such areas is not simply easy because even relatively small river basins can display huge variability
in terms of land and climate features that greatly affect sediment yield calculations [17,18]. Forecasts
indicate that both climate and LU change will be very dynamic this century [19–22]. In turn, changes
in LU will depend on local economics, population migration, arable land quality, and their location

Water 2020, 12, 1499; doi:10.3390/w12051499 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-2136-5119
https://orcid.org/0000-0002-5483-193X
https://orcid.org/0000-0003-4302-5059
http://www.mdpi.com/2073-4441/12/5/1499?type=check_update&version=1
http://dx.doi.org/10.3390/w12051499
http://www.mdpi.com/journal/water


Water 2020, 12, 1499 2 of 23

relative to urban and protected areas, as well as national and international policies [23]. Both of these
stressors will interact by summation or balancing, depending on the region, basin, or even sub-basin
area. However, knowledge about their combined impact is still limited due to the small amount
of comprehensive research [13,17,18,24–30]. The mountainous area, where the Raba River basin is
located, is very specific in terms of land use forecasts, meteorological phenomena, intensity of water
erosion [31], as well as activities to mitigate this process [32]. Until now, most similar studies have
been conducted in catchments where the main problem was the development of cities/agriculture.
Meanwhile, forecasts for the Raba basin are quite opposite. Forests are slowly beginning to dominate
the landscape of this area [33–35], taking the place of agriculture, and the falling number of inhabitants
contributes to a reduction of urban area impact on the environment, despite the proximity of a large
urban agglomeration—the Krakow Metropolitan Area.

The goal of this study is to answer the question of whether LU changes will be able to compensate
for sediment yield increase predicted by the future climate change scenarios on the individual sub-basin
scale. The modeling tool used in this study, the Macromodel DNS (Discharge–Nutrient–Sea) combined
with the SWAT module (Soil and Water Assessment Tool), enabled also the discussion on seasonal
trends of this process.

2. Materials and Methods

2.1. Study Area Description

The Raba River basin has a surface of 151,700 ha and is located in the southern part of Poland in
the area of the Polish Carpathian Mts. The approximately 132 km long river is divided into two parts
(Figure 1) by an impoundment reservoir (60.1 km) which makes the main source for drinking water
for approx. half a million people [36,37]. The relative parts of the basin are very different in terms
of terrain slope, soil type, and land use (Figure 2a–c) with the mountainous part located upstream
from the reservoir, and a sub-montane following the downstream reach of the river. Therefore, in this
modeling approach the studied area was divided into two separate zones, i.e., the upper and lower
Raba River basins. Since the entire Raba River basin is located in an area particularly vulnerable to
water erosion [12,38–40] the issue of sediment runoff has been studied previously, especially in the
direct basin of the reservoir [41–43]. However, no approach has been attempted to address this issue
on the sub-basin level, except for sediment load prediction for the upper part of the basin [44].
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Figure 2. The Raba River basin along with: (a) terrain slope, (b) land use, and (c) type of soils arranged
in terms of susceptibility to erosion.

The entire Raba River basin has been divided into 36 sub-basins (Figure 1) as described in
Section 2.2. The upper Raba River consists of 17 sub-basins (No. 20–36) with the total area of nearly
74,900 ha. Almost 43% of this part is covered by slopes over 25% and overgrown by forest. The lower
slopes are used mostly for agricultural activities (over 40% of area) (Figure 3). Only one sub-basin,
No. 35, is covered mostly by urban land use. The lower Raba River part consists of 19 sub-basins
(No. 1–19) with a total area of 76,800 ha. Since the majority of this area is covered with smaller slopes,
agriculture dominates its cover (72%) with a small share of forest (17%). However, the presence of
sub-basins with dominant one type of the land-use should be noted. For instance, No. 4 with 100% of
its area covered by agriculture, or No. 2 and 10 where urban land use prevails (Figure 3).
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2.2. Macromodel DNS/SWAT Description

To address changes in sediment yield provoked simultaneously by climate and LU scenarios in
the studied basin the Macromodel DNS/SWAT, developed at the Institute of Meteorology and Water
Management – National Research Institute (IMGW-PIB), was used [45–49]. Briefly, the Macromodel
provides a platform where the SWAT module is integrated with other models (e.g., hydrological and
meteorological), and in-situ/remote basin data. SWAT [50,51] is a physical model for continuous-time
simulation using distributed-parameters developed to evaluate the effects of land use and alternative
management decisions on water resources and point- and non-point-source pollution in river basins [50].
It is a watershed-scale deterministic model that operates at a daily time step using Digital Elevation
Model (DEM), soil properties, LU information, and climate data as major inputs. The basin partition
based on the hydrographic network, was further sub-divided into hydrological response units (HRUs),
composed of unique combinations of land use, soil type, and slope [52]. Therefore, land use changes
for variant scenarios were applied using a SWAT model (version 2012) functionality which allows for
dynamic changes during simulation imitating the surface changes for individual types of land use [53].
To analyze the surface runoff in each sub-basin, the MUSLE (Modified Universal Soil Loss Equation)
module [54,55] was used, which is a modified version of the Universal Soil Loss Equation (USLE) [56]:

sed = 11.8×
(
Qsur f × qpeak × areaHRU

)0.56
×KUSLE ×CUSLE × PUSLE × LSUSLE ×CFRG (1)

where: sed is the sediment yield on a given day (metric tons), Qsurf is the surface runoff volume (mm
H2O/ha), qpeak is the peak runoff rate (m3/s), areaHRU is the area of the HRU (ha), KUSLE is the USLE soil
erodibility factor (0.013 metric ton m2hr/(m3-metric ton cm)), CUSLE is the USLE cover and management
factor, PUSLE is the USLE support practice factor, LSUSLE is the USLE topographic factor, CFRG is the
coarse fragment factor.

2.2.1. Model Set Up and Simulation

A SWAT model for the Raba River basin was set up and parameterized using the GIS interface of
SWAT (ArcSWAT). The following data was used to build the Macromodel DNS/SWAT:

• map of Poland hydrographical divisions, scale of 1:10,000 (source: IMGW-PIB, resolution: 5 m);
• digital elevation model (DEM), scale of 1:20,000 (source: IMGW-PIB, resolution: 10 m);
• land use map—based on Corine Land Cover (CLC 2012), and agrotechnical data from the Local

Data Bank (Figure 2b) (source: Copernicus Programme, resolution 20 m);
• soil map—detailed data on soil types, scale of 1:5000 (Figure 2c) (source: Institute of Soil Science

and Plant Cultivation, resolution 2.5 m);
• meteorological data (1992–2016, e.g., precipitation and temperature) for 75 stations located directly

in the basin, and within 20 km from its borders (source: IMGW-PIB);
• surface water quality data for suspended sediment (source: Polish State Monitoring System).

Hydrological and meteorological data have been introduced for the period of 27 years (1991–2017).
However, due to the fact that data from sewage treatment plants and surface water quality in Poland
have been available since 2005, calibration and validation of the model including sediment could have
been carried out for a period of 13 years (2005–2017). The first 2 years of the simulation were used to
condition the model [52].

2.2.2. Model Calibration/Validation

Calibration, verification, and validation of the model were performed using the SWAT-CUP
program developed by [57]. In this study, the SUFI-2 algorithm was used to investigate sensitivity
and uncertainty in streamflow prediction. Sensitivity analysis performed with the Latin Hypercube
One-factor-at-a-Time (LH-OAT) sampling approach [58–60] was used to identify the most influential
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model parameters for simulating the observed data. It gives two types of results, the value of statistics
“t”, and the level of significance “p”. The smaller the value of “p”, the more sensitive the parameter.
In turn, the value of “t” indicates the intensity and direction of change of a given parameter (positive
values mean its increase and negative values a decrease) (Table 1).

Table 1. Calibration of Soil and Water Assessment Tool (SWAT) parameters for the upper and lower
Raba River Basin sorted by t-statistics.

Parameter Name Definition t-Stat p-Value

Upper Raba

SURLAG.hru Surface runoff lag coefficient −1.04 0.30

USLE_K(1).sol USLE equation soil erodibility (K) factor −0.70 0.48

SOL_K(1).sol Saturated hydraulic conductivity −0.45 0.66

PRF_BSN.bsn Peak rate adjustment factor for sediment routing in the main channel −0.40 0.69

CH_K2.rte Effective hydraulic conductivity in the main channel alluvium −0.31 0.76

ESCO.hru Soil evaporation compensation factor −0.25 0.81

SPEXP.bsn Exponent parameter for calculating sediment reentrained in channel
sediment routing 0.04 0.97

CH_COV1.rte Channel erodibility factor 0.11 0.91

CH_COV2.rte Channel cover factor 0.15 0.88

ADJ_PKR.bsn Peak rate adjustment factor for sediment routing in the subbasin 0.81 0.42

SPCON.bsn Linear parameter for calculating the maximum amount of sediment
that can be reentrained during channel sediment routing. 0.89 0.37

SOL_AWC(1).sol Available water capacity of the soil layer 1.37 0.17

CH_N2.rte Manning’s “n” value for the main channel 5.51 0.00

USLE_P.mgt USLE equation support practice 7.49 0.00

CN2.mgt Initial SCS runoff curve number for moisture condition 16.20 0.00

HRU_SLP.hru Average slope steepness 20.80 0.00

Lower Raba

GW_DELAY.gw Groundwater delay time −1.47 0.14

USLE_P.mgt USLE equation support practice −1.17 0.24

SURLAG.hru Surface runoff lag coefficient −1.02 0.31

USLE_K(1).sol USLE equation soil erodibility (K) factor −0.32 0.75

SPEXP.bsn Exponent parameter for calculating sediment reentrained in channel
sediment routing 0.04 0.97

CH_COV2.rte Channel cover factor 0.08 0.94

RES_SED.res Initial sediment concentration in the reservoir 0.62 0.54

CN2.mgt Initial SCS runoff curve number for moisture condition 0.87 0.39

SPCON.bsn Linear parameter for calculating the maximum amount of sediment
that can be reentrained during channel sediment routing 0.89 0.37

ADJ_PKR.bsn Peak rate adjustment factor for sediment routing in the subbasin 1.08 0.28

CH_COV1.rte Channel erodibility factor 1.17 0.24

RES_RR.res average daily principal spillway release 1.17 0.24

PRF_BSN.bsn Peak rate adjustment factor for sediment routing in the main channel 1.46 0.15

ALPHA_BF.gw Baseflow alpha factor 1.62 0.11

RES_NSED.res Normal sediment concentration in the reservoir 2.42 0.02

HRU_SLP.hru Average slope steepness 5.84 0.00

Model calibration and validation were performed with use of the flow data obtained from the
IMGW-PIB, and total suspended sediment concentrations from the state monitoring system. Due to
the fact that the state monitoring frequency is relatively low (12 times per year) the LOAD ESTimator
program (LOADEST) [61] was used to assist in the development of the regression model for reliable
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estimation of constituent load (calibration). Explanatory variables within the regression model included
functions of streamflow, decimal time, and additional user-specified data variables. The formulated
regression model then was used to estimate loads over a user-specified time interval (estimation).
Mean load estimates, standard errors, and 95 percent confidence intervals, were developed on a
monthly and seasonal basis [62,63]. Due to the dual character of the Raba River basin, described in
Section 2.1, the calibration process was performed for the two parts of the basin separately using
various parameters, ordered by sensitivity, described in Table 1.

For the upper part, the basin calibration was performed in the calculation profile of Myślenice,
while the profile of Proszówki was selected for the lower part (Figure 1). These are the points closing the
upper and lower Raba area for which monitoring data for flows and sediment were performed by Polish
State Environmental Monitoring. The results obtained for both profiles were used to calibrate and
verify the model. Validation of the model was performed for the Stradomka River, which is a right-bank
tributary of the Raba River and is also subjected to suspended sediment state monitoring measurements
(Figure 1). To evaluate the fit of the model to the monitoring results, four statistical measures were
used, determination coefficient (R2), efficiency coefficient of the Nash-Sutcliffe model (NSE), percent
bias (PBIAS), and Kling-Gupta efficiency (KGE), which were described in detail [44,64–67] as well as
appropriate ranges of values for these measures (Table 2). However, it should be remembered that,
as recommended by the authors [68–70], these ranges of values should not be used rigidly, but in a
flexible way, as there may be objective reasons that impede or prevent satisfactory assessment in some
basins. These objective reasons include, among others, the specificity of the research area (described in
more detail in Section 2.1) which translates into greater uncertainty in monitoring data constituting the
basis for building the model.

Table 2. Classification of value ranges for statistical measures used during calibration, verification, and
validation, based on: [68–70].

Performance Rating
R2 NSE PBIAS% KGE

Flow/Sediments Flow/Sediments Sediments Flow Flow/Sediments

very good >0.65 0.75 < NSE ≤ 1 <±25 <±10 >0.75

good 0.5–0.65 0.5 < NSE ≤ 0.75 ≤±25 Pbias < ±40 ≤±10 Pbias < ±15 0.5–0.75

satisfactory 0.2–0.5 0 < NSE ≤ 0.5 ±40 ≤ Pbias < ±70 ±15 ≤P bias < ±25 0–0.5

nonsatisfactory <0.2 NSE ≤ 0 Pbias ≥ ±70 Pbias ≥ ±25 <0

Four statistical measures (R2, NSE, PBIAS, and KGE) indicated model performance of Raba
basin in flow simulation and sediment with a monthly time step for both used calculation profiles;
Proszówki (Lower Raba), and Myślenice (Upper Raba). For flow calibration, statistical measures R2

and KGE obtained values 0.62 and 0.73, and 0.70 and 0.80 (Table 3), respectively, which classify the
model performance as good and very good. According to NSE, which obtained values 0.51 and 0.73,
respectively, the performance of the model can be considered good (Table 3). Only PBIAS obtained
21% on the Proszówki profile, which, however, still qualifies it as satisfactory. For sediment calibration
in the Myślenice calculation profile according to R2 and NSE, which obtained values of 0.34 and 0.1,
respectively, the performance of the model can be considered satisfactory. In turn, according to PBIAS
and KGE, which obtained the value of respectively 2% and 0.58, the model’s performance can be
considered very good and good. Better results were obtained on the Proszówki calculation profile
where, according to all four statistical measures, the performance of the model can be considered
very good (R2—0.77) and good (NSE—0.71, PBIAS—27% and KGE—0.69) (Table 3). To verify the
model’s prediction accuracy, it was also validated in the Stradomka calculation profile. For the flow,
according to R2, PBIAS and KGE, the model’s performance can be considered good. Only NSE obtained
a satisfactory value. In turn, for sediment, according to R2, NSE, and KGE, the performance of the
model can be considered satisfactory, and according to PBIAS as good (Table 3).
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Table 3. The Raba River Model calibration and validation results for monthly simulations.

Calculation Profile Type Interval R2 NSE PBIAS% KGE

calibration

Myślenice
flow 1993–2017 0.62 0.51 21 0.7

sediment 2005–2017 0.34 0.1 −2 0.58

Proszówki
flow 1993–2017 0.73 0.73 4 0.8

sediment 2005–2017 0.77 0.71 27 0.69

validation

Stradomka
flow 1993–2017 0.57 0.46 −14 0.72

sediment 2005–2017 0.45 0.35 39 0.19

Due to the dual character of the analyzed basin, the statistical measures for the Myślenice calculation
profiles displayed poorer model performance than for Proszówki (Table 3 and Figure 4). In the upper
Raba River basin, the average annual rainfall amplitude is higher than in the lower part, which is
associated with an altitude increase. In addition, short, but heavy rainfalls causing rapid flooding and
anomalously wet seasons (AWS) are also more common in this part [71–74]. This precipitation often
covers only a small part of the basin (e.g., one of the sub-basins). However, it is reflected in both flow
and sediment yield simulations. Moreover, the low frequency of sediment monitoring by the Polish
State Environmental Monitoring (SEM) makes it difficult to match the simulated sediment yield values
with the values calculated from the monitoring data. The monitoring results of sediment are prone to
errors, which is 15% of expanded uncertainty for analyzed measurements according to SEM. However,
as reported by other studies [75], uncertainty can reach up to 70%, especially in mountainous areas.
Such values affect, among the others, the obtained R2 values. Since this parameter is very sensitive to
outliers, which are particularly common in case of sediment monitoring.
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It should also be remembered that statistical measures such as NSE are very sensitive to rapid
water swells and criticized for many years for excessive sensitivity to high values [76], which explains
why KGE was also used for analysis, as a more resistant parameter, displaying good and very good
results for current analyzes. The calibrated and validated model has been adopted as the baseline
scenario and served as the reference point for subsequent analysis.

2.3. Scenarios

In order to discuss the sediment yield issues at the sub-basin level two types of variants scenarios
have been prepared:

• climate scenarios—taking into account the forecasted temperature and rainfall changes in the
Raba River basin developed on the basis of RCP 4.5 and 8.5;

• land use scenarios (LU)—taking into account the forecast changes in land use of the Raba River
basin (increase in forest and urban areas) developed as part of the FORECOM project [77].

2.3.1. Climate Scenarios

To account for predicted climate changes (precipitation and temperature) for two future time
horizons (2021–2050 and 2071–2100) based on RCP 4.5 and RCP 8.5, the results of bias-corrected
temperature and precipitation projections from an ensemble of EuroCORDEX regional climate models
and CMIP5 general circulation models were used [78–80]. These changes will be unevenly distributed
both in the country and individual catchments, and even individual parts of these drainage basins.
However, high data resolution allowed for obtaining climate change forecasts for Myślenice (Upper
Raba outflow profile) and Proszówki (the Lower Raba outflow profile). Thanks to this, different climate
forecasts were separately introduced into the model for the sub-basins belonging to the Upper and
Lower Raba [81]. These forecasts indicate that in the near (2021–2050) and long term (2071–2100),
significant changes in average annual temperature and precipitation can be expected throughout
the country. The amount of precipitation and temperature values strongly depend on the seasons.
Therefore, the analyses were conducted with a monthly time step taking into account the division into
seasons, winter (December, January, and February), spring (March, April, and May), summer (June,
July, and August) and autumn (September, October, and November) (Figure 5). For the needs of the
current study four climate scenarios for temperature and precipitation were prepared:

• C1.1—RCP 4.5 for the short-time perspective 2021–2050;
• C1.2—RCP 4.5 for the long-time perspective 2071–2100;
• C2.1—RCP 8.5 for the short-time perspective 2021–2050;
• C2.2—RCP 8.5 for the long-time perspective 2071–2100.

Under these scenarios, an increase of the average annual temperature by 1.2 ◦C could be expected
both in the upper and lower Raba River basin parts. However, during the winter period it could reach
1.5 ◦C, and even 4.6 ◦C under the RCP 8.5 long-term predictions (Figure 5). For the remaining seasons,
the temperature predictions did not display clear seasonal variability although such a pattern visible
in the case of precipitation. The rainfall increase, even by 26% in the RCP 8.5 long-term forecasts, is
to be expected during winter and spring in both parts of the basin. While the summer precipitation
forecasts underline the difference between the upper and lower Raba basin parts, especially under
the long-term forecasts. During this period precipitation in the upper Raba will decrease by 0.3–3%,
while at the same time on the lower Raba precipitation an increase of even by 6% will be observed.
In general, climate scenarios have shown that the winter and spring months will be characterized by
the largest increases in precipitation and temperature, especially in the long term. Analysis of these
forecasts indicates that the biggest changes will occur in winter. Especially in the case of long-term
forecasts, which may lead to a complete disappearance of snow cover in the analyzed area.
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2.3.2. Land Use Scenarios (FOREST and URBAN)

Two LU scenarios were based on the FORECOM project, implemented to improve understanding
of past, present, and future forest and urban cover changes in the Swiss Alps, and the Polish Carpathians
in the context of climate changes. Two variant scenarios adopted in the current study were based on
the DYNA-Clue model for the two Carpathian localities (Szczawnica and Niedźwiedź) for the future
time horizon of 2060 [82]. The FORECOM project developed two forecasts:

• trend forecast—assuming the continuation of the dynamics of forest surface changes and land use
established for the period of 1970–2013. In this forecast, forest and urban areas are projected to
increase by 23% and 10%, respectively;

• liberal forecast—assuming that the directions of future land use changes will be primarily
determined by free market mechanisms (with the main role played by the profitability of specific
activities such as agriculture, forestry, or housing in the basin area). In this forecast, forest and
urban areas are projected to increase by 30% and 15%, respectively.

Both forecasts assume that the growth of forest areas and areas of dispersed development will
take place at the expense of areas that are currently used for agriculture.

The process of limiting agricultural land use in the studied area was started by post-war
afforestation of former agricultural land and natural succession initiated at that time. The decrease
in the area used as arable land results, as in the case of the development of urbanized areas,
from socio-economic changes that have taken place since 1989. In the initial period of transformation,
it was associated with the difficult economic situation of farmers, and problems resulting from changes
in the profitability of production and the lack of demand for agricultural produce. In addition, EU
structural programs supported the development of forest areas, which led to further abandonment
of agricultural use. The fastest and most intensive afforestation process takes place on arable land
located at higher land slopes where agricultural activity is difficult and soils are of poor quality [33].
The two forecasts (trend and liberal) from the FORECOM project used the starting point assigning the
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catchment to the appropriate group and land slope size for each sub-basin. For the purposes of the
FOREST variant scenario, two groups of slopes were created that defined the border between trend
forecast and liberal forecast. Sub-basins for which land slopes fall within the range of <20% have
been classified as group I. In this area, moderate growth of forest areas has been simulated in line
with the trend forecast which means a 23% increase in forest areas compared to the baseline scenario.
Sub-basins for which land slopes fall within the range of >20% were classified in group II. In this
area, a more dynamic growth of forest areas was simulated in accordance with the liberal forecast,
which means a 30% increase in forest areas compared to the baseline scenario (Figure 6). In both cases,
the growing forest areas replaced the agricultural areas.Water 2020, 12, x FOR PEER REVIEW  11 of 24 
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The URBAN variant scenario for the use of the catchment area allowed to simulate the forecasted
increase in residential med/low density areas in the catchment area of the Raba River. The results
obtained in the FORECOM project are consistent with the results of research and forecasts developed
for both Poland and Europe, where a constant decrease in population has been observed for many
years [83,84]. A large part of this area is still occupied by arable land, but over time, this type
of land use is gradually losing importance and disappearing, giving way to residential med/low
density areas which makes an attractive alternative to crowded city centers. Their development is
determined by the growing Krakow Metropolitan Area (Figure 7). According to previous research
(FORECOM) [33,82,85,86], urbanized and forested areas will be the two main types of land use that
will replace agricultural areas in the next 50 years. This increase, however, will not be uniform
throughout the catchment area. To account for these differences, the Statistics Poland—GUS forecasts
for municipalities located in the Raba catchment area and two forecasts (trend forecast and liberal
forecast) for urban areas developed in the FORECOM project were used to build the URBAN variant
scenario. In order to assign the sub-basin to the appropriate FORECOM forecast, GUS data on future
population migrations in the Małopolskie voivodeship were used [87]. The data for municipalities
were then transferred to individual sub-basins using the proportion taking into account their area and
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GUS data. It was assumed that the projected increase in the number of inhabitants would translate
into an increase in residential med/low density areas.
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All sub-basins were classified into three groups. The sub-basins for which a decrease of inhabitant
number is forecasted were classified as group I (Figure 7). For these sub-basins no changes were made
to the size of urban areas. Sub-districts on which a moderate increase of inhabitant number is forecasted
have been qualified to group II. For sub-basins that were in this group, a trend forecast was used, i.e., an
increase in residential med/low density areas by 10% compared to the baseline scenario. Sub-basins on
which the largest increase of inhabitant number is forecasted have been qualified to group III. They are
mostly sub-basins located within the reach of the Krakow Metropolitan Area. For sub-basins that are
of this group, a liberal forecast was used, i.e., an increase in residential med/low density areas by 15%
compared to the baseline scenario. The increase in residential med/low density areas in both groups II
and III was at the expense of areas used for agriculture. The method of allocating sub-basins to the
appropriate group is shown in Figure 7.

3. Results

The obtained Macromodel DNS/SWAT results enabled discussion of sediment yield temporal
and spatial distribution in the Raba River basin. The detailed model response for each sub-basin for
each of the scenario variables (temperature, precipitation, urban, and forest area predictions) and their
combination have been included in the Mendeley Data [88]. As for the baseline scenario, considered
as the reference point for subsequent examination of the climate and land use changes, important
differences between seasons and sub-basins have been revealed (Figure 8, Table 4). Highest average
sediment yields have been observed for the spring period, both in the upper and lower parts of the
basin (0.92 +/− 0.27 t/ha and 0.57 +/− 0.34 t/ha, respectively). They were followed by the summer
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sediment yield elevated values (0.58 +/− 0.30 t/ha and 0.41 +/− 0.23 t/ha, respectively) to reach minima
during the autumn-winter period (at the range of 0.28–0.29 and 0.21–0.25, respectively). Although
statistically significant differences (Kruskal-Wallis and Bonferroni tests, 95% confidence level) between
the upper and lower parts of the Raba River basin have been detected only for the spring season,
notably higher sediment yields in the upper part are also visible during the summer period. However,
it should be noted that extremely high sediment yields have also been detected in one of the lower
sub-catchments (No. 17).
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Table 4. Baseline scenario sediment yields (t/ha) for the upper and lower parts of the Raba River basin.

Min Sub-Basin No. Max Sub-Basin No. Average Standard Deviation

baseline scenario

lo
w

er
R

ab
a spring 0.16 1 1.55 17 0.57 0.34

summer 0.13 10 1.03 17 0.41 0.23

autumn 0.08 10 0.53 4 0.21 0.12

winter 0.09 1 0.6 4 0.25 0.12

up
pe

r
R

ab
a spring 0.44 21 1.38 25 0.92 0.27

summer 0.16 20 1.07 31 0.58 0.3

autumn 0.11 35 0.48 31 0.28 0.12

winter 0.11 35 0.43 25 0.29 0.08

The climate forecasts (Section 2.3.1) imposed on the baseline scenario further emphasized
differences between seasons and sediment yield origins. The implications of the RCP 4.5 and RCP
8.5 predictions for the two-time perspectives (2021–2050 and 2071–2100) have been assessed for
individual sub-basins as a sediment yield change in relation to the baseline calculations (Figure 9).
The largest increases of the sediment yields have been observed in the upper part of the basin during the
spring and winter periods. Particularly, in sub-basins No. 25, 30, and 32, where the predicted sediment
yield is expected to grow by 0.15–0.30 t/ha (scenarios C1.1 and C2.2, respectively). The increase in
sediment values has been also predicted for the selected lower sub-basins, especially during the winter
period for No. 4 and 17 (0.21–0.26 t/ha). Sub-basin No. 17 stands out also during the summer period
(scenario C1.1) displaying the biggest changes across the scenarios, from 0.21 t/ha in C1.1, to −0.18 t/ha
in C2.2. Generally, the summer period is distinguished by a decrease of sediment yields, particularly
noticeable in the C2.2 scenario, reaching values of −0.36 t/ha in sub-basin No. 25.
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As for the land use scenarios (LU, Section 2.3.2), a noticeable sediment yield reduction in the
majority of the Raba River sub-basins has been observed when compared to the baseline scenario
(Figure 10). Substantial average decreases have been observed in the upper part of the basin, especially
in sub-basin No. 34, during the spring and summer periods (0.22 +/− 0.09 t/ha and 0.13 +/− 0.06 t/ha,
respectively). As for the autumn and winter periods, the impact of LU scenarios on sediment yields
was much smaller and remained below 0.1 t/ha. However, the presence of areas without any changes
in sediment yield under LU scenarios should also be noted. Such a situation concerned sub-basins
No. 35 (Upper Raba), and No. 4, 9, 10, and 15 (Lower Raba) characterized by a very small share of
forest area, or its complete lack of.
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Since the assumed climate and land use changes are predicted to occur simultaneously, the final
modeling approach focused on superimposition of previously described scenarios. As comparing
seasonal average values for the upper and lower portions of the Raba River basin (Table 5) the general
decrease of the sediment yields for the upper part has been noted in the range of 0.03–0.25 t/ha, except
for the winter period under all scenarios. The scenario combination for the lower part resulted in a
slight increase of sediment yields (0.01–0.06 t/ha) for the majority of the modeled cases. However, an
average decrease by 0.01 has been also observed under RCP 4.5 scenarios (C1.1+LU and C1.2+LU)
during the summer and autumn periods. Particularly, a large decrease of the seasonal average value in
this part of the basin has been detected for the summer period under long term RCP 8.5 predictions
(C2.2+LU).

Table 5. Sediment yield changes (t/ha) for the upper and lower parts of the Raba River basin under
combination of climate change and land use scenarios.

Average Sd Average Sd Average Sd Average Sd

C 1.1 + LU C 1.2 + LU C 2.1 + LU C 2.2 + LU

lo
w

er
R

ab
a spring 0.02 0.05 0.03 0.05 −0.004 0.06 0.06 0.07

summer 0.01 0.05 −0.01 0.05 0.01 0.04 −0.08 0.07

autumn −0.01 0.02 −0.01 0.02 0.01 0.03 0.01 0.04

winter 0.03 0.03 0.04 0.06 0.02 0.03 0.04 0.08

up
pe

r
R

ab
a spring −0.16 0.1 −0.1 0.12 −0.21 0.11 −0.15 0.11

summer −0.12 0.19 −0.17 0.17 −0.14 0.18 −0.25 0.19

autumn −0.05 0.07 −0.04 0.07 −0.03 0.07 0.01 0.1

winter 0.01 0.03 0.09 0.05 0.01 0.03 0.07 0.06

To answer the main question of this study, the results obtained for the combined climate change
and land use scenarios were compared with the baseline scenario for each sub-basin, taking into
account the increase or decrease in sediment yield. The negative results (sediment yield change below
zero; green color Figure 11) signify the ability of the LU scenario to compensate for the sediment yield
changes induced by climate change. While, positive results (sediment yield change above zero; red
color Figure 11) indicate a lack of such a response in individual sub-basins. During the spring season,
significant differences (Kruskal-Wallis and Bonferroni tests, 95% confidence level) have been detected
between the upper and lower Raba River parts under all four scenarios. Moreover, in the majority of
the upper sub-basins, the LU changes counterbalanced climate change effects, except for sub-basins
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No. 31, 33 and 35). The same pattern has been detected during the summer period with all the upper
sub-basins showing positive effects of the LU changes on total sediment yield. Moreover, such an effect
has been also observed for all lower sub-basins under the RCP 8.5 long-term scenario (C2.2 + LU),
except for sub-basin No. 3. For the autumn months, the Macromodel predictions display again the
ability of the LU changes to compensate for climate RCP 4.5 scenarios (C1.1 + LU and C1.2 + LU) for
almost the entire Raba River basin. While for the winter period, the majority of sub-basins, in both
parts, displayed positive sediment yield changes, signifying that future LU modifications will not
counterbalance climate change effects.
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Figure 11. Sediment yield changes (t/ha) resulting from superimposing the land use scenario over
climate change scenarios: green color depicts sub-basins with the decrease and red color depicts
sub-basins with the increase of the sediment yield.

4. Discussion

The Raba River basin has been selected as a modeling venue to assess the combined effects of
climate and land use change scenarios on sediment yield at the sub-basin level. This basin covers an
area elevated from 145 a.s.l. to 1272 a.s.l., and therefore, provides a unique opportunity to study a
wide spectrum of land and climate features. The baseline scenario for all the 36 sub-basins revealed
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high sediment yields for the upper part of the area, especially for sub-basins No. 29–32 (Figure 8),
where slopes exceed 25% (Figure 2a), and agricultural use is about 40% on average in these sub-basins
(Figure 3). Although precipitation averaged 1400 mm in this part of the basin, clay soils dominated
these sub-basins (Figure 2c), and therefore, are less prone to water erosion and prevented over-excessive
leaching of particles. The average sediment yields for these sub-basins reached 1.38 t/ha, while the
highest value (1.55 t/ha) was detected at sub-basin No. 17, located in the lower part of the Raba River
basin. Although only 10% of its area is covered by high slopes (>25%) and average rainfall reaches
1000 mm, 80% of this area is used for agricultural activities (with 20% covered by potato crops), its soil
cover (light dusty clay, light loamy sand, and dusty soil; Figure 2c) appears to be more vulnerable
to water erosion. As a combination of land features can account for the record sediment yields,
the impact of climate attributes is more visible when seasonal differences are discussed (Figure 8). High
levels of precipitation and torrential rainfall during the spring-summer period amplify sediment yield
differences between the upper and lower parts of the basin. When a decrease in heavy rain frequency
and intensity is observed during autumn, the sediment yield values are considerably reduced, to reach
a minimum during winter due to soil freezing, snow cover presence, and low precipitation. Comparing
the obtained results to previous analyses related to sediment load and its seasonal variability in the
closing profile of the upper Raba catchment [44], it can be concluded that sediment loads and sediment
yields do not coincide in particular seasons. As observed previously, the winter sediment loads can
reach elevated values, while the winter yields are low (Figure 8). Such differences between phenomena
occurring on the catchment surface (yields), and in the river itself (loads), could be associated with the
specificity of the Carpathian catchment where deposition processes intensively occur; additionally
supported by numerous, but mostly overfilled and improperly managed, anti-erosion structures
(Figure 1) [89,90]. They temporarily interrupt the journey of large amounts of sediments washed away
to surface waters during the spring and summer precipitation increase. Therefore, during autumn,
deposition rapidly increases sediment amounts in such structures. While in winter, along with the
frequent occurrence of so-called anomalously wet seasons (AWS) and the local flow increase [72],
previously stored sediments begin to move down river. In addition, the erosion of the riverbed is
rapidly increasing behind the sediment barriers. It causes an increase in sediment load especially in
sub-basins No. 20, 26, 27, 30, 32, and 34.

The spring sediment yield maxima are supposed to be further exacerbated under the adopted
climate change scenarios in both time perspectives (Figure 9). Since the predicted temperature changes
show a similar increasing pattern for both parts of the basin (Figure 5), this change will be provoked
mainly by precipitation increase, especially in the long-term perspective (2071–2100) (by over 25%
for RCP 8.5). This is particularly evident in sub-basins No. 25, 30, 32, and 33 where spring sediment
yield increased by 0.33 t/ha, compared to the baseline scenario. A similar or even higher precipitation
increase has been predicted for the winter season. Thus, the winter sediment yields will require
particular attention in this basin. While the forecasts indicate a large increase in rainfall in winter and
spring, this increase will be much smaller during summer, and in the case of the long-term forecasts for
the Upper Raba, rainfall will decrease even by 3% (Figure 5). Such a summer decrease is characteristic
of all mountain areas in this region of Europe, and the higher the analyzed sub-basin is located above
sea level, the higher decrease of precipitation should be expected [78]. Therefore, the summer sediment
yield decrease is noticeable in many Raba River sub-basins (Figure 9), especially for the long-term RCP
8.5 prediction, with the highest decrease of 62 t/ha in sub-basin No. 31.

In land use scenarios (LU), in which the increase of forest and urban areas was predicted to occur
at the expense of arable lands, the maximum sediment yield reduction is expected in spring and
summer (Figure 10). The analyses showed that even a 15% increase of the residential medium- and
low-density areas has a negligible impact on the size of the sediment yield. Therefore, its reduction will
result almost exclusively by the growth of forest areas [91–93]. According to the modeled scenario such
changes will be noticeable in the entire Raba River basin, but the most intense changes will concern its
upper part (Figure 6). Particularly, sub-basins No. 24–28, 30, 32, 34, and 36 will display a reduction in
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spring and summer sediment yields, reaching even 0.37 t/ha (sub-basin No. 34). The predicted 30%
increase of forest areas may therefore reduce sediment yields by more than 35% in selected sub-basins,
which proves a very good effectiveness of the model’s forest soil loss mitigation function.

The concurrent discussion of how the combined climate and land use changes impact sediment
yields on the basin scale is still not very common in scientific publications. Moreover, due to variability
of precipitation, temperature, and land use projections, related to geographic and economic factors,
it is difficult to indicate the uniform relationship between these projections and basin response.
Nevertheless, the results from very contrasting areas in China [17], the USA [25] or the UK [18] indicate
that most likely changes in land use are the key driving force of changing sediment yield. Such a pattern
is also clearly visible in the Raba River basin. However, its extent varies greatly in both parts. In its
upper, the applied liberal land use forecast, i.e., the increase in forest area by as much as 30%, generally
compensated for the sediment yield changes induced by the climate predictions (Figure 11), except
for winter. Even in case of the spring months, when sediment production is abundant in sub-basins
with high slopes, intense agriculture, and exposed to high precipitation, the yield reduction can reach
10.5–23.2% on average, depending on the scenario. Since the predicted temperature increases are
almost uniform among the seasons, the precipitation variations should also be taken into consideration
when the effectiveness of land use changes is further discussed. Especially, when the RCP 8.5 long-term
summer precipitation decrease, causing over 40% reduction of the sediment yield, is followed by
the autumn precipitation increase (Figure 5). This situation results in sediment yield growth which
cannot be further attenuated by the forest area increase (sub-basins No. 24, 26, 28, 31–33, and 35).
As for the lower part of the Raba River basin the opposite trend could be observed. In the majority of
the sub-basins, the land use changes did not compensate for the sediment yields induced by climate
change, except for the selected scenarios when only minimal rainfall increases were predicted (summer
under C1.2 scenario, and autumn under C2.1, and C2.2; Figure 5). Since, this part of the basin has
mainly an agricultural character, with fertile soils and highly prone to erosion (loess), the predicted
growth of the forest area share will not be effective to balance out washing of sediments.

The most unique situation in the studied basin is, however, created by the winter predictions.
The obtained results clearly show that regardless of the chosen scenario, the imposed land use changes
will not compensate for the sediment yields induced by the climate predictions in the majority of
the sub-basins. Although the lack of plant cover during this period, protecting soil particles against
washing out during the vegetation period, is usually accounted for by this phenomenon [16,94,95],
meteorological conditions should also be taken into consideration. The predicted temperature increase
during the winter months will reduce the time-span of snow accumulation in the higher altitudes and
eventually will replace snowfall with rainfall in the entire basin. This situation, combined with the
lower infiltration of soils and energy-limited evapotranspiration in low temperatures will increase
runoff induced soil leaching [96–98]. The final response of the upper part of the Raba River basin
shows a distinct increase of sediment yield, especially in the long-term forecasts, reaching 23–30% on
average. While, in the lower part of the basin, such an increase is less pronounced (16–18%). As for
the sub-basins displaying that land use changes could still be effective in attenuating sediment yield
increase induced by climate change (Figure 10), it should be noticed that both sub-basin groups differ
notably in terms of their response to climate change. As visible in Figure 9, the selected upper part
sub-basins (No. 21, 23, 24, 34, and 36) display a relatively small sediment yield increase when compared
to the rest. Since the sediment yield changes exerted by the land use are uniform for the entire basin,
therefore, the impact of climate-induced change will be more decisive. Likewise, in the lower part,
the distinctive sub-basins (No. 2, 6–8, 11–12, and 15) are marked by relatively low sediment yield
change, and subsequently is even lowered when the land use scenario is applied. Therefore, it can be
concluded that while from spring to autumn land use changes have a decisive impact on sediment
yields, winter climate changes exert greater importance.
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5. Conclusions

The example of the Raba River (Carpathian Mts., Poland) demonstrates that even relatively small
river basins can display huge variability in terms of land and climate features, which greatly affect
sediment yield calculations. Therefore, it seems to be very purposeful to divide the modeled area
into smaller units (sub-basins), which could bring even more specific answers to factors controlling
the overall basin sediment leaching response. This may especially occur when the river basin can
be divided into parts with contrasting features, which here encompass the Carpathian upper part
and the sub-montane lower portion of the Raba River basin. The general land use forecasts for this
region predict gradual afforestation of the studied basin at the expense of agricultural areas, and
a reduced impact of urban areas due to decreasing number of inhabitants. However, the extent of
these phenomena is much more visible in the upper part of the basin. Moreover, the temperature
and precipitation predictions display noticeable differences, with higher variability of changes for the
mountainous part of this area, which is specific to the Carpathian Mts. The response of 36 individual
sub-basins to climate scenarios created a mosaic of negative and positive sediment yield changes in
comparison to the baseline scenario [88]. The overlapped land use predictions allowed us to indicate
those sub-basins where land use changes could balance out sediment yields under climate change
predictions, and those where it will not be possible. The general response for the combined scenarios
revealed that sediment yields could be altered even by 49% in the selected upper sub-basins during the
spring-summer months, while for the lower sub-basins the predicted changes would be less effective,
up to 3% on average.

Since these effects are based on the assumed replacement of agricultural areas by forests, it should
be noted that it will be a continuously progressive process and not necessarily feasible in all parts
of the basin. Moreover, future research should focus on simulations relating the sediment yield to
the forest growth and structure. In addition, it must be remembered that replacing agriculture with
forest areas is possible in practice, in a limited area. While it is possible on weak and infertile soils on
high slopes, this solution will not be possible on fertile lowland catchments due to economic issues.
The seasonal changes taken into consideration here also prove that special attention must be paid
to the winter months. Under the adopted climate changes the frost and snow cover protecting soils
against erosion will become exceptional even in the mountainous part of the basin, while completely
disappearing in the sub-mountain part in the long-term perspective. These phenomena will also
significantly affect the soil particle transport within the studied basin. It seems to be therefore extremely
important to underline that sediment transport modeling, based on the averaged values of temperature,
precipitation, and land use changes, can lead to significant errors in the scale of the entire basin.
Therefore, it is highly recommended to individualize forecasts at the sub-basin level, as performed
here. Moreover, the extent and magnitude of land-use and land management practices vary depending
on the needs of local communities, which also prompts a downscaled assessment based on modeling
tools. The approach proposed in this current article is the first of its kind in the Carpathian Mts., and
must be continued with further analyses for the mountain/sub-mountain basins.
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48. Wilk, P.; Orlińska-Woźniak, P.; Gębala, J. Mathematical description of a river absorption capacity on the
example of the middle Warta catchment. Environ. Prot. Eng. 2018, 44, 99–116. [CrossRef]

49. Szalińska, E.; Wilk, P. Sediment quantity management in polish catchment-river-sea systems–should we
care? Econ. Environ. 2018, 3, 25–37.

50. Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.;
Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation.
Trans. ASABE 2012, 55, 1491–1508. [CrossRef]

51. Abbaspour, K.C. SWAT-CUP 2012. SWAT Calibration and Uncertainty Program—A User Manual; Swiss Federal
Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2013.

52. Niraula, R.; Meixner, T.; Norman, L.M. Determining the importance of model calibration for forecasting
absolute/relative changes in streamflow from LULC and climate changes. J. Hydrol. 2015, 522, 439–451.
[CrossRef]

53. Marhaento, H.; Booij, M.J.; Rientjes, T.H.M.; Hoekstra, A.Y. Attribution of changes in the water balance
of a tropical catchment to land use change using the SWAT model. Hydrol. Process. 2017, 31, 2029–2040.
[CrossRef]

54. Williams, J.R. Sediment routing for agricultural watersheds 1. JAWRA J. Am. Water Resour. Assoc. 1975,
11, 965–974. [CrossRef]

55. Lu, C.M.; Chiang, L.C. Assessment of Sediment Transport Functions with the Modified SWAT-Twn Model
for a Taiwanese Small Mountainous Watershed. Water 2019, 11, 1749. [CrossRef]

56. Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Losses-a guide to Conservation Planning. In Agriculture
Handbook; US Department of Agriculture: Washington, DC, USA, 1978; p. 537.

57. Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.R.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale
hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale
SWAT model. J. Hydrol. 2015, 524, 733–752. [CrossRef]

58. Park, G.A.; Park, J.Y.; Joh, H.K.; Lee, J.W.; Ahn, S.R.; Kim, S.J. Evaluation of mixed forest evapotranspiration
and soil moisture using measured and swat simulated results in a hillslope watershed. KSCE J. Civ. Eng.
2014, 18, 315–322. [CrossRef]

59. Khoi, D.N.; Thom, V.T. Parameter uncertainty analysis for simulating streamflow in a river catchment of
Vietnam. Glob. Ecol. Conserv. 2015, 4, 538–548. [CrossRef]

60. Liu, Y.; Jiang, H. Sediment Yield Modeling Using SWAT Model: Case of Changjiang River Basin.
In Proceedings of the 6th Annual 2018 International Conference on Geo-Spatial Knowledge and Intelligence,
Wuhan, China, 14–16 December 2018; Volume 234, p. 012031.

61. U.S. Geological Survey. Web Page for the LOADEST Software Package. Available online: https://water.usgs.
gov/software/loadest/ (accessed on 21 April 2020).

62. Krishnan, N.; Raj, C.; Chaubey, I.; Sudheer, K.P. Parameter estimation of SWAT and quantification of
consequent confidence bands of model simulations. Environ. Earth Sci. 2018, 77, 470–486. [CrossRef]

http://dx.doi.org/10.1007/s11368-020-02600-8
http://dx.doi.org/10.5194/hess-22-1033-2018
http://dx.doi.org/10.37190/epe180407
http://dx.doi.org/10.13031/2013.42256
http://dx.doi.org/10.1016/j.jhydrol.2015.01.007
http://dx.doi.org/10.1002/hyp.11167
http://dx.doi.org/10.1111/j.1752-1688.1975.tb01817.x
http://dx.doi.org/10.3390/w11091749
http://dx.doi.org/10.1016/j.jhydrol.2015.03.027
http://dx.doi.org/10.1007/s12205-014-0193-z
http://dx.doi.org/10.1016/j.gecco.2015.10.007
https://water.usgs.gov/software/loadest/
https://water.usgs.gov/software/loadest/
http://dx.doi.org/10.1007/s12665-018-7619-8


Water 2020, 12, 1499 22 of 23

63. Lee, S.; Sadeghi, A.M.; Hively, W.D.; Lang, M.W.; Sharifi, A. Comparative analyses of hydrological responses
of two adjacent watersheds to climate variability and change using the SWAT model. Hydrol. Earth Syst. Sci.
2018, 22, 689–708. [CrossRef]

64. Menard, S. Coefficients of determination for multiple logistic regression analysis. Am. Stat. 2000, 54, 17–24.
65. Gupta, H.V.; Kling, H. On typical range, sensitivity, and normalization of Mean Squared Error and

Nash-Sutcliffe Efficiency type metrics. Water Resour. Res. 2011, 47. [CrossRef]
66. Le, H.M.; Sutton, J.R.; Bui, D.D.; Bolten, J.D.; Lakshmi, V. Comparison and Bias Correction of TMPA

Precipitation Products over the Lower Part of Red–Thai Binh River Basin of Vietnam. Remote Sens. 2018,
10, 1582. [CrossRef]

67. Knoben, W.J.; Freer, J.E.; Woods, R.A. Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta
efficiency scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [CrossRef]

68. Patil, S.D.; Stieglitz, M. Comparing spatial and temporal transferability of hydrological model parameters.
J. Hydrol. 2015, 525, 409–417. [CrossRef]

69. Xing, L.; Zuo, J.; Liu, F.; Zhang, X.; Cao, Q. February. Simulation of agricultural non-point source pollution
in Xichuan by using SWAT model. In IOP Conference Series: Earth and Environmental Science; IOP Publishing:
Bristol, UK, 2018; Volume 113, p. 012167.

70. Libera, D.A.; Sankarasubramanian, A. Multivariate bias corrections of mechanistic water quality model
predictions. J. Hydrol. 2018, 564, 529–541. [CrossRef]
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