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Abstract: Developing indicators to monitor environmental change in wetlands with the aid of Earth 
Observation Systems can help to obtain spatial data that is not feasible with in situ measures (e.g., 
flooding patterns). In this study, we aim to test Sentinel-2A/B images suitability for detecting small 
water bodies in wetlands characterized by high diversity of temporal and spatial flooding patterns 
using previously published indices. For this purpose, we used medium spatial resolution Sentinel-
2A/B images of four representative coastal wetlands in the Valencia Region (East Spain, 
Mediterranean Sea), and on three different dates. To validate the results, 60 points (30 in water areas 
and 30 in land areas) were distributed randomly within a 20 m buffer around the border of each 
digitized water polygon for each date and wetland (600 in total). These polygons were mapped 
using as a base map orthophotos of high spatial resolution. In our study, the best performing index 
was the NDWI. Overall accuracy and Kappa index results were optimal for −0.30 threshold in all 
the studied wetlands and dates. The consistency in the results is key to provide a methodology to 
characterize water bodies in wetlands as generalizable as possible. Most studies developed in 
wetlands have focused on calculating global gain or loss of wetland area. However, inside of 
wetlands which hold protection figures, the main threat is not necessarily land use change, but 
rather water management strategies. Applying Sentinel-2A/B images to calculate the NDWI index 
and monitor flooded area changes will be key to analyse the consequence of these management 
actions. 

Keywords: remote sensing; wetlands; NDWI; Kappa index; overall accuracy  
 

1. Introduction  

Wetlands, and especially coastal wetlands, are listed amongst the most threatened ecosystems 
suffering from anthropogenic activities [1]. These ecosystems provide a wide range of ecosystem 
services. Among others, they are an important freshwater reserve and a source for groundwater 
recharge, and in coastal areas they provide defence against marine intrusion. Wetland hydrologic 
regime (e.g., flooded area and flooding duration) has a direct effect on nutrient dynamics at a 
watershed scale, but it also impacts greenhouse gas emissions and carbon cycles in the wetlands 
themselves [2]. The crucial role of flooding extent to wetland functioning and carbon storage has been 
underlined by several studies [3]. The spatial and temporal variation in flooded areas can be high, 
and it is due to hydrological processes (e.g., precipitation, evapotranspiration), but also to human 
activities [3]. Impacts on hydrological processes can affect other ecosystems functions such as 
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groundwater recharge and nutrient cycling [4] or species distributions and composition [5]. So, 
monitoring spatial-temporal dynamics of flooded areas is both important for water management and 
biodiversity conservation [6]. 

In recent years, monitoring programs relied on in situ detectors to collect data used by regulatory 
agencies and research institutions. However, gauge measurements offer little information about 
spatial patterns like flooding status [6,7]. On the other side, remotely sensed data can provide spatial 
maps with different accuracy depending on the sensor [7]. Remote sensing has already proved to be 
a useful tool to acquire spatial and temporal information about wetlands [8,9] and it has the potential 
to provide the information needed for accurate wetland inventory, assessment, and monitoring [5]. 
Detection and analysis of wetlands using satellite images are based mainly on supervised and 
unsupervised classification and the definition of water indices and their subsequent classification 
using thresholds [10,11]. For supervised classification, several algorithms can be found such as 
random forest [12], support vector machines [13], and artificial neural networks [14]. The 
development of Earth Observation (EO) satellites of high spatial resolution and the emergence of 
Unmanned Aerial Vehicle (UAV) contributed to the definition of new approaches to map wetlands 
at sub-meter scale such as object-oriented algorithms [15]. The high resolution of images registered 
by UAVs allow to monitor and to extract the flooding surface with detail and to develop ecological 
indicators [16]. 

For the approach based on water indices, a simple global threshold can be applied to classify 
water pixels using atmospherically corrected satellite images of different data and places [17]. Images 
from satellite sensor of low spatial resolution such as AVHRR (Advanced Very High Resolution 
Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) have been used to 
monitor flood extent by differentiating flooded/non-flooded or mixed pixels [6,7]. Studies using these 
sensors focused mainly on relatively large wetlands covering at least 50 km2, and to a lesser extent to 
smaller wetlands (<25 km2) [7]. Other sensors with higher spatial resolution, such as those on-board 
Landsat MSS/TM/ETM+ and SPOT, have been used for smaller wetlands monitoring [3]. The coarser 
spatial resolution sensors have the advantage of a higher temporal resolution and more frequent 
observations than higher spatial resolution sensors. According to Huang et al. [7] in arid, semi-arid, 
and Mediterranean environments, about 30% of Ramsar-listed seasonal wetlands are small-sized, 
with a minimum size of 10 ha, which can show a patchy distribution of water bodies. From 2015 
onward, Sentinel-2A/B images are available (ESA), with high temporal resolution and bands of 10 m 
that allow to explore the suitability of these images to extract small-sized water bodies that cannot be 
mapped using Landsat and MODIS images. 

In recent years, there is a growing interest in developing indicators to monitor environmental 
change in wetlands through remote sensing [18]. Some of the original constraints (e.g., insufficient 
spatial and temporal resolution) of this technique have been overcome with the last satellites 
launching. However, we still have the constraint of developing indicators that can be global, and non-
specific for a type of wetland or location. 

The aim of this study is to test Sentinel-2A/B images suitability for detecting small water bodies 
in wetlands characterized by high diversity of temporal and spatial flooding patterns using 
previously published indices. 

2. Materials and Methods 

2.1. Study Area 

Mediterranean wetlands are ecosystems identified for priority protection by the European 
Union (EU) [19]. These ecosystems have been studied as prototypes of coastal wetlands where urban 
and agricultural pressure compete directly with environmental water uses [20]. The Mediterranean 
is one of the regions with the highest pressure on wetlands, and especially in coastal areas [21,22]. 
We selected 4 representative coastal wetlands in the Valencia Region (East Spain, Mediterranean Sea), 
from North to South: Prat Cabanes-Torreblanca, Sagunto, Safor, and Pego-Oliva (Figure 1). These 
wetlands are included in both the Valencian Wetlands Inventory, and in the Spanish Wetlands 
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Inventory (included in 2011 by Resolution of 9 March Dirección General de Medio Natural y Política 
Forestal (Spanish Official Gazette (BOE), Number 71, 24 March 2011)). Pego-Oliva and Prat Cabanes-
Torreblanca are also declared Natural Parks. The importance of these wetlands is also recognized at 
international level, all of them are Special Protection Areas (SPAs) for birds and Sites of Community 
Importance (SCIs) (Habitats Directive, European Council Directive 92/43/EEC). In addition, Prat 
Cabanes-Torreblanca and Pego-Oliva are Ramsar Sites (Ramsar Convention).  

 

Figure 1. Wetlands location in the Valencian Region (East Spain). 

These wetlands are set on detrital aquifers formed from the Quaternary fluvial sedimentation 
that filled the coastal plains and separated from the sea with beach barriers. Detrital aquifers are, in 
turn, fed by Mesozoic karstic aquifers in the near limestone reliefs. The wetlands are fed by 
groundwater discharges and depend on them to keep permanent surface of water [23]. Phreatic level 
is subject to seasonal variations but usually emerges very close to the surface. Groundwater 
upwelling creates water ponds, known as “ullals”, in the wetland environment. The wetland 
discharge is mainly due to natural drainage to the sea through rivers and to groundwater pumping 
for several purposes. Specifically, the shallow phreatic level in these unconfined aquifers causes 
problems of root asphyxia to citrus crops and flooding of urban areas. To prevent this problem, 
freshwater from the aquifer is pumped into the sea through irrigation channels [24]. The cycle of the 
wetlands and the size of flooded areas is highly dependent on precipitation, which rapidly infiltrates 
in the karstic aquifers and discharges to the detrital aquifers [23,25]. However, anthropogenic 
management is also very important. The precipitation regime is characterized by a very marked 
seasonality, the highest rainfall in autumn, and secondarily in spring; during the summer there is a 
strong drought [26]. The average annual precipitation shows a spatial gradient, Pego-Oliva 
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(southernmost area) annual average is 841.3 mm, while Prat Cabanes is 447 mm (northernmost area). 
Table 1 shows annual precipitation data from the closest meteorological station [27]. 

Table 1. Annual precipitation data (mm) and location of meteorological stations. Available in: 
http://riegos.ivia.es/datos-meteorologicos. 

 Year Coordinates 
Wetland 2016 2017 2018 UTM X UTM Y 

Prat Cabanes 231.09 414.74 200.54 768076.000 4447370.000 
Sagunto 226.60 662.61 234.38 732200.000 4392210.000 

Safor 285.29 791.36 405.74 738207.000 4316410.000 
Pego-Oliva 380.57 924.31 360.97 767731.000 4298290.000 

Water depth in the flooded areas of these wetland range from wet soil to 70 cm [28], only the 
“ullals” have higher depths. Table 2 shows the diversity of habitats present in these wetlands and 
included in the EU Habitats Directive (Council Directive 92/43/EEC) according to the European 
Nature Information System [29].  

Table 2. Natura 2000 Habitat types present in the study areas according to the European Union (EU) 
Habitats Directive Annex I classification (source: https://eunis.eea.europa.eu/index.jsp). Empty cell 
means the habitat is not present in that wetland. 

Code Annex I Habitat types 
Prat 

Cabanes Sagunto Safor Pego-
Oliva 

Cover (ha) 
1150 Coastal lagoons 19.40 79.74  12.55 

1410 Mediterranean salt meadows (Juncetalia 
maritimi) 

97.00 46.49  150.60 

1420 
Mediterranean and thermo-Atlantic 

halophilous scrubs (Sarcocornetea fruticosi) 19.40 27.25   

1510 Mediterranean salt steppes (Limonietalia)  4.82   

3150 
Natural eutrophic lakes with Magnopotamion 

or Hydrocharition -type vegetation   248.97 25.10 

3160 Natural dystrophic lakes and ponds   186.73 12.55 
3170 Mediterranean temporary ponds 19.40    

3280 
Constantly flowing Mediterranean rivers with 

Paspalo-Agrostidion species and hanging 
curtains of Salix and Populus alba 

  62.24 25.10 

5330 Thermo-Mediterranean and pre-desert scrub  0.35  125.5 0 

6110 Rupicolous calcareous or basophilic grasslands 
of the Alysso-Sedion albi 

   25.10 

6220 Pseudo-steppe with grasses and annuals of the 
Thero-Brachypodietea 

   62.75 

6420 Mediterranean tall humid grasslands of the 
Molinio-Holoschoenion 

194.00  0.37 62.24 150.60 

6430 Hydrophilous tall herb fringe communities of 
plains and of the montane to alpine levels 

  62.24 12.55 

7210 Calcareous fens with Cladium mariscus and 
species of the Caricion davallianae 

388.00 133.60 622.43  

2.2. Image Processing 

Sentinel-2A/B images processed at level 1C were obtained from Copernicus 
(https://scihub.copernicus.eu/dhus/#/home) and EarthExplorer (https://earthexplorer.usgs.gov). The 
atmospheric correction was done with Sen2Cor tool (version 02.05.05) using SNAP software (ESA, 

https://eunis.eea.europa.eu/index.jsp
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version 6.0.0). The following reference parameters were defined: aerosol and MID LAT (Auto); ozone 
(value 0, determined automatically by the processor); Bidirectional Reflectance Distribution Function 
(BRDF) correction (value 21, standard recommended value); BRDF lower (value 0.22, standard value 
of the lower limit of the correction factor BRDF); visibility (40 km, appropriate value for the Iberian 
Peninsula); altitude (2 m above sea level). Images of high spatial resolution were used for validation 
(Table 3) [11,30]. These images were obtained from the Valencian Cartography Institute (ICV) 
Orthophoto 2017 and 2018 CC BY 4.0 © Institut Cartogràfic Valencià, Generalitat (spatial resolution 
0.25 m, http://www.icv.gva.es/va/) and Google Earth ©. The dates of these images were the closest to 
Sentinel-2A/B image acquisitions.  

Table 3. List of images used in the study by date. 

Wetland 
Orthophoto Sentinel-2A/B 

Data Spatial 
Resolution 

Data 

Prat Cabanes-Torreblanca 
28 July 2018 0.25 m 30 July 2018 
5 July 2017 0.25 m 5 July 2017 

Sagunto 
8 July 2018 0.25 m 5 July 2018 

18 June 2017 0.25 m 15 June 2017 
17 November 2016 n. i.* 17 November 2016 

Safor 
13 June 2018 0.25 m 20 June 2018 

18 August 2017 0.25 m 4 August 2017 
11 November 2016 n. i.* 7 November 2016 

Pego-Oliva 
13 June 2018 0.25 m 20 June 2018 

11 November 2016 n. i.* 7 November 2016 
* n. i. no information available for Google Earth images. 

The official cartography of these protected areas (Valencian Wetland Inventory) was used to 
delimitate each wetland (Figure 2). The methodology was applied to the polygons classified as 
natural areas in the SIOSE (Information System on Land Use in Spain) cartography. For each date 
and area, we delimited the water and non-water polygons. Water polygons smaller than 100 m2 were 
excluded, considering the maximum spatial resolution of Sentinel-2A/B bands used in this study. The 
water and non-water polygons were delineated through visual examination using as a base map 
high-resolution image (orthophoto) and was done with the software ArcGis 10.5 (ESRI 2016. ArcGIS 
Desktop: Release 10.5 Redlands, CA: Environmental Systems Research Institute). In Figure 3 
delineated polygons can be observed (blue colour). The visual delimitation was possible thanks to 
the high spatial resolution of the orthophotos (0.25 m).  

http://www.icv.gva.es/va/
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Figure 2. Wetlands area according to the official delimitation of the protected area (Valencian Wetland 
Inventory). Spatial Reference System: European Terrestrial Reference System 1989, UTM coordinates 
Zone 30S. 

The spectral information was extracted from the Sentinel-2A/B images to calculate the seven 
spectral indices shown in Table 4 for each wetland polygon (Figure 2). The choice of indices was 
based on literature review. These indices classify as water/non-water according to a threshold value, 
but different authors propose different thresholds for the same indices. We aimed to define a unique 
threshold that can be as global as possible with optimum results. So, for each date and area we tested 
all the thresholds from −0.50 to 0.50 with a 0.05 step, except for the AWEI(NSH) (Automated Water 
Extraction Index, No Shadow) and the AWEI(SH) (Automated Water Extraction Index, shadow) 
indices whose thresholds ranged from −50 to −5000, and the step is detailed in the results section. 

Table 4. Calculated spectral indices. 

INDEX EQUATION SOURCE SENTINEL-2 BANDS 
NDWI [(GREEN − NIR) / (GREEN + NIR)] [31]  [(B03 − B08) / (B03 + B08)] 

MNDWI 
[(GREEN – SWIR) / (GREEN + 

SWIR)] [32] [(B03 − B11) / (B03 + B11)] 

CEDEX (NIR / RED) − (NIR / SWIR) [33] (B05 / B04) − (B05 / B11) 
RE-NDWI [(GREEN − NIR) / (GREEN + NIR)] [34]  [(B03 − B05) / (B03 + B05)] 

AWEI(SH) BLUE + 2.5× GREEN − 1.5 × (NIR + 
SWIR) − 0.25− SWIR [17]  [B02 + 2.5 × B03 − 1.5 × (B08 + 

B011) − 0.25 × B12] 
AWEI 
(NSH) 

4 × (GREEN−MIR) − (0.25 × NIR + 
2.75 × SWIR) [17]  

[4 × (B03 − B11) − (0.25 × B08 + 
2.75 × B12)] 

B_BLUE (BLUE − NIR) / (BLUE + NIR) This 
study 

(B02 − B08) / (B02 + B08) 
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To validate the results obtained from the Sentinel-2A/B images, we designed a random sampling 
of 60 points for each date and wetland. The ground control points were distributed randomly within 
a 20 m buffer around the border of each digitized water polygon. These features were mapped using 
as a base map orthophotos of high spatial resolution. A large number of both water points nearshore 
(30 points for each wetland and date, 300 in total) and surrounding non-water land points (30 points 
for each wetland and date, 300 in total) were selected in these areas with high spectral variability, 
which makes a total of 600 points for validation. We selected the number of points according to the 
general guideline provided by Congalton and Green [35], who recommended a minimum of 50 
samples for each map class for maps of less than 1 million acres in size and fewer than 12 classes. For 
all these points, we compared the classification of each index (7 indices in Table 4) and each threshold, 
with the ground-truth images, to assess correct classifications. Overall accuracy and Kappa index 
were calculated for each random sampling. Overall accuracy was obtained by dividing the number 
of pixels correctly classified by the total number of pixels sampled [35]. Kappa index was calculated 
according to Congalton’s [36] equation. The best index and threshold were selected according to 
overall accuracy and Kappa index results.  

3. Results  

Overall accuracy and Kappa index results are represented in Figures 3, 4, 6, and 7 with a colour 
scale. Shaded in yellow appear the indices and thresholds with poorest performance, that is when 
the classification system from the Sentinel-2A/B images fails to meet the reality defined from the 
ground-truth images. Shaded in red appear the indices and thresholds with best performance (closer 
to 1), that is when the classification system from the Sentinel-2A/B images matches the reality defined 
from the ground-truth images.  

In Figure 3, the overall accuracy results are presented for all seven tested indices. The tested 
thresholds ranged are detailed in the methodology section (step detailed in Figure 3). The best overall 
accuracy result (0.89) is for NDWI index with −0.30 threshold. The other indices showed lower overall 
accuracy results for all the tested thresholds (≤0.85). 

 

Figure 3. Overall accuracy of tested indices at different thresholds. 
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In Figure 4 the Kappa index results are presented for the seven tested indices. The tested 
thresholds are the same that for overall accuracy. The best Kappa index result (0.77) is for NDWI 
index with −0.30 threshold. The other indices showed lower Kappa index results (≤0.70) for all the 
tested thresholds.  

 

Figure 4. Kappa index of tested indices at different thresholds. 

The performance of the indices can be graphically observed in detail in Figure 5. This figure 
shows a compilation of images of the indices for their optimal thresholds in a specific area of the 
outlined water bodies. According to these results, the NDWI index has the best performance for 
identifying wetland water bodies. One of the factors that could explain the different indices 
performance can be the lower spatial resolution (20 m) for the bands B5, B11, and B12 used for the 
indices MNDWI, CEDEX, RE-NDWI, AWEI(SH), and AWEI(NSH). In addition, it was detected that 
the reflectance values of the bands 11 and 12 on water areas were more variable than B3 and B8 used 
in the NDWI index.  

For further analysis of the NDWI performance, Figures 6 and 7 show detailed overall accuracy 
and Kappa index results for each wetland and date.  
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Figure 5. Delimited water bodies in two wetlands are represented: (1) Safor wetland 2017 and (2) Prat 
Cabanes-Torreblanca wetland 2018. (A): orthophoto, (B): NDWI index (threshold −0.30), (C): mNDWI 
index (threshold −0.35), (D): CEDEX index (threshold +0.4), (E): Re-NDWI (threshold −0.15), (F): Awei 
sh index (threshold −1500), (G): Awei nsh index (threshold −3000) and (H): NDWI/BLUE-NIR index 
(threshold −0.45). 

 

Figure 6. Overall accuracy of NDWI index tested at four studies areas and 3 years for the threshold 
range (−0.50 to 0.50). 
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Figure 7. Kappa index of NDWI index tested at four studies areas and 3 years for the threshold range 
(−0.50 to 0.50). 

Overall accuracy results are optimal for −0.30 threshold, with 0.89 average value and maximum 
values of 0.97 in Safor wetland (2017/2018) and Prat Cabanes-Torreblanca (0.93 in 2018 and 0.95 in 
2018) (Figure 6). Kappa index results show the highest average value (0.77) for −0.30 threshold. Kappa 
index results are even better in Cabanes-Torreblanca and Safor wetlands. However, in Sagunto and 
Pego-Oliva wetland the average Kappa index is lower (0.67 and 0.65 respectively). Considering that 
the objective is to provide a methodology to characterize water bodies in wetlands as global as 
possible, this analysis supported the choice of the NDWI index and −0.30 threshold. These results 
have been obtained for the areas with highest variability, that is the water bodies borders, and could 
be even more accurate in central areas of land/water covers with less variation in reflectance values.  

In Figure 8 we compare the delimited wetland bodies of water in blue color (A, C, E, G) versus 
the result of the NDWI index for the threshold −0.30 (B, D, F, H) in the four studied wetlands. Since 
water sampling points are marked in yellow and non-water in red, we can observe false negatives 
and false positives results. A good performance of the NDWI and −0.30 threshold can be appreciated 
in pixels that are further from the border (more homogenous areas). In contrast, false positive and 
false negative pixels were found in the border areas. In the randomly selection of ground truth points 
within these areas (20 m to the border to each side), some of them were selected randomly at a 
distance lower than 10 m of the border, and the pixel size of Sentinel-2A/B bands used in NDWI index 
was 10 m. The classification result of those pixels depends on the area percentage that corresponds 
to each class. For example, a water ground truth point can be located in a non-water (land) class pixel 
since the percentage of non-water class for that pixel is higher than for water area (see most of the 
false negative and false positive in Figure 8). 
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Figure 8. Delimited wetland bodies of water in blue color outline (A,C,E,G) versus the result of the 
NDWI index for the threshold −0.30 in light blue (B,D,F,H). Water sampling points in yellow and 
non-water in red. False negatives and false positives are marked. (A–B): Prat Cabanes-Torreblanca 
wetland (2018), (C–D): Sagunto wetland (2017), (E–F): La Safor wetland (2017) and (G–H): Pego-Oliva 
wetland (2018). 
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4. Discussion  

Sentinel-2A/B images spatial resolution allowed to detect smaller water bodies than previously 
published works [3,6]. The minimum water body surface detected was 100 m2. In Figure 9, we show 
the water bodies identified by Sentinel-2A/B in Safor wetland for the three studied dates. The highest 
flooded surface was 41.93 ha in August 2017 and the lowest 16.57 ha in November 2016. Precipitation 
is one of the main variables that determine the extent of the flooded area in this type of wetlands, and 
2017 was the rainiest period studied (Table 1). The flooded surface is not necessarily a continuum but 
the addition of water bodies that can be connected or not. The average size of flooded areas is around 
1500 m2, so the use of Sentinel-2A/B images is key for detecting these water bodies and avoid 
underestimating the water surface. It is important to highlight that the NDWI index is not able to 
detect the water layer underlying marsh vegetation (e.g., Phragmites australis) but free water layers. 
The Ramsar Convention established a Wetland Type Classification System that identifies 42 types 
grouped into three main categories: marine and coastal, continental, and artificial. Thus, a certain 
wetland area is identified with a main type of wetland according to its predominance, but it may 
have more than one type present, this being the most common. The selected study areas are coastal 
wetlands, and in Table 2 we summarize the habitats present. The main free water layers are coastal 
lagoons, natural eutrophic lakes, and natural dystrophic lakes and ponds. Figure 9 shows the habitats 
present in Safor wetland, water areas are characterized by its size, morphology, vegetation, and 
period of permanence of the water layer. For instance, natural lakes (locally known as “ullals”) have 
a permanent water surface along the year, but grasslands are vegetation only periodically inundated. 
This great variability makes it difficult to monitor the status of these wetlands, mainly due to the 
small size of some surfaces that makes detection and quantification difficult [37]. Following the 
described methodology, we have been able to detect all these water surfaces under different 
inundation conditions.  

 
Figure 9. Delimited water bodies with the NDWI index in Safor wetland. 

In our study the best performing index was the NDWI index [31]. This result is in line with 
previous studies indicating the high performance of this index for extracting water surfaces [11,38–
40]. The results obtained in our study are significant in at least two major aspects. The first one is 
related to the proposal of a stable and generalizable threshold to delineate water surfaces in the 
studied coastal wetlands. These results differ from earlier findings indicating that the threshold 
values for classifying water from non-water are unstable and vary according to date, location, and 
the subpixel land-cover components [17,41,42]. Other authors applied other indices such as Awei(sh) 
and MNDWI to improve NDWI performance. However, this improvement is only observed in areas 
including dark built surfaces and buildings, because the NDWI often does not distinguish between 
water areas and built-up land [17,32]. It is important to remark that before applying the NDWI index 
it is necessary to delimitate the natural wetland area. These ecosystems usually hold protection 
figures and have an official cartography that can be used as delimitation. Some studies reported that 
limited spatial resolution of some satellite images (Landsat TM, 30 m, MODIS, 250 m, AVHRR 1 km, 
SPOT vegetation 1 km) can contain a mixture of land-cover types being this effect more significant in 
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edge pixels [41] and generating difficulties for mapping homogeneous coastal wetlands [43,44]. Ji et 
al. [41] demonstrated that the threshold for extracting water surfaces depends on the subpixel land-
cover components. Some authors suggest the categorization of surface water for image classification 
[42,44]. In this study, the higher spatial resolution of the Sentinel-2A/B bands (10 m for band 3, Green, 
and band 8, NIR) allowed to define with more accuracy the boundary of water surfaces avoiding 
pixels with a mixture of covers (soil, vegetation, water). The minimum surface water areas detected 
on this study could not be extracted using moderate spatial resolution images such as Landsat [45]. 
Other studies have also observed a better performance with Sentinel-2A/B images than Landsat 
images [46]. 

The second aspect of this study that should be highlighted is the threshold sign. Early research 
on this topic proposed a threshold of 0 for the water indices NDWI and MNDWI [31,32]. Values 
greater than 0 were classified as water pixels and values lower than 0 as non-water pixels [31,32]. 
However, what stands out in our analysis was that the best performing thresholds were negative 
values. This finding is consistent with other studies where values lower than 0 were set for extracting 
water bodies [38–41]. Ji et al. [41] reported that the mixture of land covers distributed in the same 
pixel had a strong impact on the NDWI values obtaining negative and variable thresholds according 
to the relative proportions of soil and vegetation. The negative values for extracting water surfaces 
may be explained considering the spectral response of the analyzed wetlands. Water quality has a 
significant effect on reflectance, high values of chlorophyll a generate higher reflectance values for 
the NIR band (B3) than for the GREEN band (B8) (Table 2). Consequently, the negative values of the 
selected threshold are congruous with the spectral response of the water in the analyzed wetlands. 
In the studied areas, eutrophic and dystrophic lakes water can be classified as complex waters with 
variable concentration of chlorophyll a and other colored substances such as humic acids.  

The majority of studies developed in wetlands have focused on calculating global gain or loss of 
wetland area and have found that agricultural and urban land use conversion are the main causes of 
wetland loss [47]. This is critical to the success of the no-net-loss wetland conservation international 
strategy. Additionally, inside of wetlands which hold protection figures, land use change in the 
surrounding area has a direct effect on water management strategies. In the studied areas, especially 
in Safor wetland, agricultural and urban use coexist with natural use, and that strongly condition 
water management. Nowadays, Safor wetland hydrology is anthropogenically manipulated to 
prevent crop root asphyxia, and to avoid flooding of urban areas. In the wet seasons, water is pumped 
through irrigation channels into the sea to decrease the phreatic level [24]. This manipulation can 
produce important impacts in the hydrologic cycle of the wetland that have not been studied. 
Applying Sentinel-2A/B images to monitor flooded area changes trough the NDWI index will be key 
to analyze the consequence of these management actions. This data can be used to assist both wetland 
managers and practitioners to make decisions about priority management interventions to maintain 
the ecological character of a wetland. As other studies have already pointed out [5], the use of Earth 
Observation tools is key for addressing the information gaps faced by wetland managers and 
practitioners. 

5. Conclusion  

The results of this study indicated the potential of NDWI index calculated from Sentinel-2A/B 
images (bands 3 and 8) to extract open water bodies in delimited wetlands. It was observed that a 
−0.30-threshold generated acceptable results to classify the studied coastal wetlands. This threshold 
results are proper along the year under different flooding and vegetation conditions, allowing to 
distinguish water and non-water (soil, vegetation) polygons. The spatial resolution of these images 
allowed to detect water bodies of reduced size (the average size of flooded areas is around 1500 m2) 
compared to previous missions of medium and low resolution. In the studied wetlands, the flooded 
surface is not necessarily a continuum but the addition of water bodies that can be connected or not 
depending partly on the pluviometry regime. The information derived from Sentinel-2A/B bands can 
be very useful to monitor these ecosystems, offering valuable information for managers of these 
areas, specially to study the effect of hydrologic cycle manipulation. 
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