
water

Article

Laboratory Assessment of Water Permeability Loss of
Geotextiles Due to Their Installation in
Pervious Pavements

Carmen García-Casuso 1,2, Pablo Lapeña-Mañero 1,* , Elena Blanco-Fernández 3,
Ángel Vega-Zamanillo 4 and José Miguel Montenegro-Cooper 1

1 Department of Civil Engineering, Universidad Católica de la Santísima Concepción,
Concepción 4090541, Chile; mcgarciacs@gmail.com (C.G.-C.); jmontenegro@ucsc.cl (J.M.M.-C.)

2 Formerly GITECO Research Group, Universidad de Cantabria, 39005 Santander, Spain
3 GITECO Research Group, Universidad de Cantabria, 39005 Santander, Spain; elena.blanco@unican.es
4 GCS Research Group, Universidad de Cantabria, 39005 Santander, Spain; angel.vega@unican.es
* Correspondence: plapena@ucsc.cl

Received: 10 April 2020; Accepted: 18 May 2020; Published: 21 May 2020
����������
�������

Abstract: During the last decades, the importance of sustainable development in society has increased
considerably. Sustainable Urban Drainage Systems (SUDS) are a group of techniques that aim to
improve the management of rain and run-off water while reducing their pollution. Many of these
systems incorporate geotextiles in their structures, which act as a layer separation and water filter.
Some authors defend the idea that by simply being installed, geotextiles partially or totally lose their
separation and filtering capacities. This study proposes a testing methodology that can reproduce
this effect and obtain a reduction factor for the water permeability of the material after its installation,
which is defined here as the ‘new condition factor’. The procedure simulated the real installation
conditions in the laboratory by causing the specimen to undergo both mechanical and hydraulic
damage and subsequently measuring the loss of water permeability that it provoked on the geotextile.
Two different nonwoven geotextiles were tested in order to validate the procedure and to obtain
initial results that could confirm the need for the new condition factor in the design of pervious
pavements with geotextiles. Analysis of variance (ANOVA) was used to determine the statistical
significance of the test variables.
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1. Introduction

The importance of sustainable development in society has increased considerably during the last
decades. This growing interest in sustainable development is associated with the consequences of past
behaviors that currently affect our society.

The “heat island effect” is a clear example of this lack of environmental awareness in the design of
urban infrastructure. In natural conditions, the soil helps in the regulation of atmospheric temperature
and humidity, but conventional pavements create a waterproof barrier that significantly reduces this
natural regulation. This effect creates a microclimate in urban areas that impacts the quality of life of
its population and modifies the water cycle [1].

Waterproofing urban surfaces also reduces its capability of efficiently managing rainwater, leading
to higher volumes of run-off water. Usually, this water also drags contaminants present on the
pavement surface, spreading the contaminant and creating diffuse pollution. The installation of
conventional pavements also increases the frequency of flooding within the urban nuclei. Floods not
only create significant economic damage, but they also generate a sensation of vulnerability in the
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affected societies. Different factors might affect the quantity of contaminants present in run-off water
and can make it inadequate for being disposed directly into the environment. Among these factors,
population growth in urban areas, the increase in the number of parking lots, and the intensive use of
motor vehicles stand out.

One possible solution to the problems of climate regulation and run-off water management
in urban areas is the usage of what is known as Sustainable Urban Drainage Systems (SUDS) in
Europe, Water Sensitive Urban Design (WSUD) in Australia, or Low Impact Development (LID) in the
United States and Japan. SUDS are a group of techniques that aim to improve the management of
run-off water while reducing its ability to spread pollutants. Improvement in the quality of run-off

water reduces the intensity of treatment needed for its reuse, sometimes even making it possible to
eliminate the treatment, depending on its future usage [2,3]. Reuse offers great benefits for society,
both environmentally and economically.

Many of these systems, such as pervious pavements, incorporate geotextiles into their structures,
as they have separating and filtering functions. The role that geotextiles play in the makeup of
pavement seems to be uncertain, both on traditional and on the pervious pavements used in SUDS.
Table 1 shows different guides for permeable pavement design. Most of these guides do not explicitly
recommend the usage of geotextiles and, in most cases, it is considered optional.

Table 1. Different recommendations on the use of geotextiles in pervious pavements [4].

Guide Geotextile

Melbourne Water – WSUD Engineering Procedures: Stormwater Yes
Technical Manual for Water Sensitive Urban Design in Greater Adelaide, South Australia, Optional

Gold Coast City Council, Porous and Permeable Paving Guidelines Yes
Boral Masonry, Hydrapave Permeable Paving System Brochure Optional

Adbri Masonry, Permeable Paving Design Guidelines No
Interlocking Concrete Pavement Institute of America: Permeable Paving Design Guidelines Optional
Concrete Masonry Association of Australia (CMAA): Permeable Paving Design Guidelines Optional

State of New Jersey, Standard for Pervious Pavement Systems Yes
Concrete Manufacturers Association of South Africa, Concrete Block Paving Design Guidelines No

Interpave UK: Permeable pavements: guide to the design, construction, and maintenance of
concrete block permeable pavements Optional

City of Portland Stormwater Management Manual No
Essex County Council, Sustainable Drainage Systems: Design and Adoption Guide Optional

North Shore City Council, Permeable Pavement Design Guidelines Optional
California Stormwater Quality Association, Pervious Pavements BMP Handbook, SD-20 Optional

Following a literature review [4–10] it can be concluded that there is no consensus amongst the
different investigations and design guides on the benefits of including geotextiles in the design of
pervious pavements, on their functions, on the position that they should have or even on whether
their installation is more harmful than beneficial, mainly because they introduce potential slip surfaces
into the road structure [4,9]. Among the reported benefits of the installation of geotextiles in pervious
pavements includes the widely accepted ability to filter run-off water, and retaining both small-sized
solids and liquid contaminants. Some authors recommend the installation of geotextiles because of
their filtration capabilities [2,3,10], while others consider that this benefit is not sufficient to justify their
inclusion [5].

2. Scope and Objectives

During the construction of pavement, geotextiles undergo a series of processes that might affect
their future performance. Amongst these processes, the most important include the mechanical actions
produced by the compaction works and the clogging of its pores by the fine fraction of the material
placed over it [11]. The modification of geotextile properties just by its installation in the road structure
is known as the new condition, and there is no standardized method to quantify it.
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Most of the mechanical damage suffered by geotextiles used in the construction of pavements
occurs during the construction, installation, and compaction stages. Although there is also some
mechanical damage experienced during their lifespan, this is generally less important, as the loads are
significantly lower than during construction. There exist standardized laboratory methods to evaluate
the mechanical damage on a geotextile caused by granular material under repetitive loading. However,
the conditions of the tests differ significantly from those in the construction of the pavement.

The effects of the fine particles in the clogging of the pores can be divided into two different stages.
In the first stage, usually in low moisture conditions, some of the fine material reach the geotextile
surface and settle on it. The second stage occurs when water is poured on top of the aggregates and
drags the finer particles that end up on the surface of the geotextile. This water mixed with the fine
particles from the aggregates usually creates a crust on the surface of the geotextile.

Beecham et al. [12] and Shackel [13] indicated that a correction factor that modifies the initial water
permeability of the geotextiles is needed in the design of pervious pavements. However, this correction
factor should differ depending on the position of the geotextile in the road structure. Figure 1 shows
typical geotextile configurations of pervious pavements proposed by different guides [14].
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Figure 1. Pervious pavement configurations.

Geotextiles can be located between sub-base and the sub-grade (configuration 1), between the
base and the sub-base (configuration 2) or in both positions (configuration 3) (Figure 1). Laboratory
tests could be performed only to configurations 1 and 3 to accomplish valid results for all three cases.
This simplification is possible because the damage on the geotextile located in the upper position
(between the base and the sub-base) is not affected by the inclusion of a geotextile in the lower position
(between the sub-base and the sub-grade), as the fines that can potentially clog its pores come only
from the base layer. However, in a configuration with both geotextiles, the upper one acts as a filter for
the lower one, changing its working conditions, and thus making it necessary to test it in two different
scenarios. Therefore, the present study aimed to design a laboratory procedure to determine the new
condition factor for the water permeability of a geotextile in the described scenarios.

3. Materials and Methods

A laboratory testing methodology was designed to study the water permeability loss of a geotextile
through the construction of the pavement in which it is incorporated.

3.1. Initial Considerations

For the study of a possible initial correction, the first step was to identify the factors that might
influence the initial water permeability of the geotextile. This fundamentally included the type of
geotextile, the position of the geotextile in the pavement structure, the granular material used for road
construction, and the pavement construction processes.
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The granular material used for the laboratory tests should be carefully selected to match the
nature and the particle size distribution of the aggregates used on roads. This is determinant on not
only the mechanical damage suffered by the geotextile that is in direct contact with it, but also on the
presence and generation of fines, and hence on the clogging potential of the simulated layer.

The testing procedure devised aims to reproduce in the laboratory the conditions that a geotextile
is exposed to during pavement construction, in order to measure its loss of water permeability.
The proposed methodology was divided into four stages, with the first and fourth stages measuring
the water permeability normal to the plane of the geotextile, before and after the damage simulation.
The second stage simulates the mechanical damage to the geotextile occurring during compaction, and
the third stage simulates the hydraulic damage or clogging that takes place when the fines generated
in the first stage and naturally present in the aggregates move through the granular layers and build
up on the geotextile with the addition of water. This third stage is not covered in the existing testing
standards and is expected to have a significant effect on the loss of water permeability of the geotextile.

3.2. Geotextiles

Two different polypropylene nonwoven geotextiles were used in this study (Figure 2). The initial
properties of both geotextiles are outlined in Table 2.
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Table 2. Initial properties of the tested geotextiles.

Property Geotextile A Geotextile B

Characteristic opening (µm) 1 126 151
Mass per surface unit (g/m2) 1 200 124

Water permeability normal to the plane (mm/s) 2 150 163
1 obtained from the technical specifications provided by the manufacturer. 2 measured in the laboratory for
this study.

3.3. Granular Material

The particle size distribution utilized corresponded to the material used in the sub-base of pervious
pavements in Spain. In the General Technical Specification Standard for Road and Bridges Works
(“Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes”, PG-3) [15], this is
called ZAD-20. ZA stands for “Zahorra Artificial”, defined in the PG-3 as a granular material, with a
continuous particle size distribution, made up of totally or partially crushed aggregates with a particle
size distribution stated in the standard for every material. The letter D means that the material is used
in pervious pavements. Lastly, the number is the maximum nominal particle diameter in millimeters.
In the Spanish code, this is the only material recommended for its usage as a sub-base layer for pervious
pavements, and thus it was used in this study. The particle size distribution chart for the coarser and



Water 2020, 12, 1473 5 of 16

finer boundaries prescribed in the PG-3 are shown in Figure 3. For this study, synthetic samples made
to match the particle size distribution of both boundaries were used for the sub-base. These particle
size distributions were chosen to reproduce the extreme behaviors of the multiple options that could
be used in real pavement constructions.
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Usually, ZAD-20 is not used for the base layer of pervious pavements. It is common in the usage
of a crushed limestone aggregate with a continuous particle size distribution between 6 and 12 mm.
This material was used as granular material for the base in all test configurations in the present study.

3.4. Test Procedure

In the following paragraphs, the proposed procedure to determine the water permeability loss of
geotextiles due to their installation in pervious pavements is presented.

3.4.1. Stage 1: Determination of the Initial Water Permeability Normal to the Plane

The water permeability normal to the plane for an untested probe of geotextile is determined
using the ISO 11058 standard test [16]. This is a standardized procedure, and there is no need for
modification of the procedure. For this study, samples of 50 mm in diameter were subjected to falling
head, vertical flow tests with an initial water height over the specimen of 250 mm. The equipment
used to perform the tests and a schematic drawing modified from the standard are shown in Figure 4.



Water 2020, 12, 1473 6 of 16Water 2020, 12, x FOR PEER REVIEW 6 of 16 

 

 
Figure 4. Equipment used to perform water permeability normal to the plate test. (a) Photography of 
the equipment; and (b) schematic drawing of the test arrangement (modified from [16]). 

3.4.2. Stage 2: Simulation of Mechanical Damage 

In order to simulate the installation conditions, a modified version of the ISO 10722 [17] test is 
used. Originally, this test consists of placing a sample of geotextile with defined dimensions (300 × 
300 mm) between two layers of synthetic gravel. Once placed in the test rig according to the standard, 
a loading plate is centered on the sample, which applied a cyclical pressure ranging from a minimum 
of 10 ± 10 kPa and a maximum of 500 ± 10 kPa, at a frequency of 1 Hz during 200 load cycles. For this 
study, a load of 485 kPa was used. The value was similar to the maximum load prescribed in the ISO 
10722, to better reproduce the high loads produced during the compaction of the road but with a 
small margin, to avoid problems associated with reaching the maximum capacity of the equipment. 

To adapt the test to real installation conditions, both the nature and the particle size of the gravel 
used are modified to match the characteristics of the real aggregates used in road construction. This 
modification also implies a change in loading conditions. The final configuration of the mechanical 
damage stage is shown in Figure 5. 

 
Figure 5. Modified ISO 10722 test carried out in the laboratory. (a) Photography; and (b) schematic 
drawing (modified from [17]). 
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3.4.2. Stage 2: Simulation of Mechanical Damage

In order to simulate the installation conditions, a modified version of the ISO 10722 [17] test is used.
Originally, this test consists of placing a sample of geotextile with defined dimensions (300 × 300 mm)
between two layers of synthetic gravel. Once placed in the test rig according to the standard, a
loading plate is centered on the sample, which applied a cyclical pressure ranging from a minimum of
10 ± 10 kPa and a maximum of 500 ± 10 kPa, at a frequency of 1 Hz during 200 load cycles. For this
study, a load of 485 kPa was used. The value was similar to the maximum load prescribed in the ISO
10722, to better reproduce the high loads produced during the compaction of the road but with a small
margin, to avoid problems associated with reaching the maximum capacity of the equipment.

To adapt the test to real installation conditions, both the nature and the particle size of the
gravel used are modified to match the characteristics of the real aggregates used in road construction.
This modification also implies a change in loading conditions. The final configuration of the mechanical
damage stage is shown in Figure 5.
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The type of mechanical damage that affects geotextiles can be divided into six categories—abrasion,
splitting, puncturing, stress breakdown, fiber cutting, and tearing [18,19]. It was observed that the
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intensity of the damage did not only depend on the compacting energy but to a great degree on the
materials that make up the pavement. This phenomenon was also studied by Carneiro et al. [20],
who came to the same conclusion after studying different materials. It was also observed that the
quantity of fines that settled on the geotextile surface depended on the granular material used.
In summary, the aggregates used in the test affected both the mechanical damage of the geotextile
and the presence of fines on the geotextile surface. Therefore, the mechanical damage stage of the
proposed procedure, even though based on the ISO 10722 standard, is designed to accurately simulate
the actual on-site conditions during road construction, and thus the material used is changed to match
the real scenario.

Test Adjustments
The mechanical damage that a geotextile undergoes during this stage of the test is the consequence

of the relative movement of the particles during the cyclic load application process. In this process
new fine particles are generated, and this generation of particles also depends on the nature of
the granular material and the energy used in the compaction process. As a result, some of the
parameters prescribed in ISO 10722 for the reference material need to be adjusted for the use of different
materials. The aggregate prescribed in ISO 10722 is corundum with a precise particle size distribution.
Since this material is troublesome to obtain, it is usually replaced by a diabase aggregate, with a similar
Los Angeles coefficient of abrasion of 16%, with the particle size distribution prescribed in the standard
for the corundum. To adjust the test parameters, the three granular materials used in this study, diabase
and the two ZAD-20, were tested under cyclic loading conditions. As the compaction equipment was
supposed to be the same, it was decided to adjust the procedure by changing the number of applied
load cycles and maintaining the load intensity and frequency. As a result, the characterization tests
were carried out using the same molds, stresses, and frequency indicated by the ISO 10722 standard,
with a higher number of load cycles. As the aim of these tests were to obtain the characteristics of the
aggregates, a geotextile was not installed into the test rig. In order to adjust the test parameters, the
evolution of the plastic settlement with the application of the cyclic loads for the different materials was
compared. Figure 6 shows the plastic settlement over the number of cycle curves obtained in the tests.
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Additionally, the evolution of the elastic modulus (E) when applied with the load cycles was
obtained (Figure 7). In order to attain this parameter, the settlement produced in each cycle was
considered to be totally elastic. This consideration was not valid for the first load applications, as
the permanent settlement produced in each cycle of this test phase was not insignificant. However,
it could be disregarded after the application of a relatively small number of load cycles—around 500.Water 2020, 12, x FOR PEER REVIEW 9 of 16 
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As observed in Figure 6, both the magnitude of the settlement and its evolution were clearly
different for the three materials. Given this, the variation on the number of cycles applied is one of
the adjustments made to the ISO 10722 procedure to better represent the actual on-site compaction
conditions. As the standardized procedure consisted of the application of 200 cycles, the number
of cycles needed to obtain the same degree of compaction was obtained for the other two materials.
To achieve this ratio, the settlement obtained after 270,000 cycles was considered to be the maximum
(ε f ). Although it could be observed in the graph (Figure 6) that the stabilization of the settlement
was not reached, the slope of the curves in this zone indicated that they were close to stabilizing.
Furthermore, the elastic modulus stabilized after the application of around 150,000 cycles in all three
materials (Figure 7), further showing that the materials had reached their maximum compaction for
the applied load. One possible explanation of the lack of stabilization of the settlement, even with a
large number of cycles, is the migration of material from the area under the loading plate towards the
edge of the mold, which increases the settlement produced without increasing the dry density of the
material. This could explain why the settlement does not stabilize for light loads like the ones applied
during the tests.

For the tested diabase, the settlement produced after 200 cycles was around 35% of what was
considered the maximum settlement; this settlement was labeled ε35. The number of cycles applied in
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the tests using ZAD-20 would be that which produced a settlement equal to 35% of the maximum.
In Table 3, the values obtained for the tested granular layers are shown.

Table 3. Test cycles according to the material used.

Material εf ε35 Test Cycles

Diabase 0.1070 0.0385 200
Coarser ZAD20 0.1927 0.0674 1800

Finer ZAD20 0.1714 0.0600 1500

3.4.3. Stage 3: Simulation of Hydraulic Damage

After the simulation of the mechanical damage, the dimensions of the geotextile specimens are
reduced from 300 × 300 mm to 200 × 200 mm, to eliminate the possible edge effects. Only the center
part of the sheet is maintained, using a template to ensure that all geotextiles are cut consistently.

The third test stage consists of passing water through a sample with the same layer arrangement
as the studied pavement, using the resulting geotextiles from the previous test stage. The sample is
constructed within a bottomless acrylic container, which is placed over a geo-cell, allowing the free flow
of water to a drain. In the Spanish code for pavement cross-sections, there are several configurations,
depending on the materials used, the sub-grade quality, and the type of traffic. For this study, a 40 cm
sub-base layer made of ZAD-20 with an overlaying 7 cm base layer was used. An example of the final
arrangement is shown in Figure 8.
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Water circulation through the sample is done by pouring a volume equal to the sum of the volumes
of field capacity of the sample (estimated to be 7% in volume) and the volume of the pores (estimated to
be 35% in volume). For the tested section, this corresponded to a volume of 8 liters of water. Water was
poured manually, maintaining a 3 cm water layer on top of the surface, at any time during the process.

The circulation of water across the sample drags some fines that are stuck to the larger particles to
the surface of the geotextile. This stage is not present in the standardized procedures but is considered
essential to replicate the actual installation conditions of a geotextile. The ISO 10722 standard suggests
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the realization of a water permeability test right after the mechanical damage simulation. However,
with the real aggregates used in road construction, this underestimates the water permeability loss,
since the quantity of fines that settled on the surface of the geotextiles by the dragging effect of water
during this stage was relevant.

3.4.4. Stage 4: Determination of the Water Permeability Normal to the Plane after the Test

The geotextile is carefully recovered from the acrylic container, avoiding losing the fines that
settled on its surface. Five circular specimens of 50 mm in diameter are prepared from this specimen,
in order to perform the ISO 11058 standard procedure, to obtain water permeability normal to the
plane of the resulting material. Specimens are obtained at random locations within the tested geotextile
sheet. The edges of the sheet are avoided to eliminate the possible edge effects due to the preferential
flow path between the aggregates and the acrylic container walls. The value of the water permeability
obtained is compared with the value from stage 1 for an untested piece of geotextile. The ratio of these
two magnitudes is the value of the new condition factor.

3.5. Testing Campaign

The two geotextiles were subjected to two complete tests for each ZAD-20 type and geotextile
configuration defined in Figure 1. As previously mentioned, the three configurations could be tested by
testing configuration 1, with the geotextile only between the sub-base and the subgrade (lower position),
and configuration 3, with the geotextile both between the base and sub-base layers (upper position)
and the sub-base and subgrade (lower position). This gave a total of 16 complete tests. To achieve
this, 24 mechanical damage simulations and 16 washing simulations had to be done. A total of 120
water permeability tests were performed to probes that had previously undergone both the mechanical
and hydraulic damage stages. As a result, 12 new condition factors were obtained, depending on the
granular material used, the geotextile tested, and the pavement configuration.

4. Results and Discussion

Although the main scope of this study was to design a test procedure to obtain the water
permeability loss of geotextiles due to their installation in pervious pavements, some preliminary
results were obtained from the tests carried out. A three-way analysis of the variance (ANOVA) was
performed to the test results to determine the statistical significance of the variables affecting the
tests, along with an analysis of the coefficient of variation to verify the precision of the test procedure.
In addition to the numerical results obtained after the interpretation of the test results, some qualitative
results were obtained from a visual inspection of the tested samples.

4.1. Qualitative Results: Visual Observations

Figure 9 is a picture taken right after a mechanical damage stage. It was observed that the
deterioration of the geotextile after the mechanical damage stage was in concordance with those
described in previous experiments from other authors. Although this study was focused on the loss of
water permeability, it was crucial to observe the degree of mechanical deterioration of the geotextile
sheets, as it could affect the permeability through an increase in the size of the openings and creation
of holes. In all tested specimens, only minor isolated holes were found, and the main difference with
the untested geotextiles was the presence of a layer made up of fine particles from the aggregates.

Additionally, when carrying out particle size distribution tests of the material after the mechanical
damage simulation, the results barely varied from the initial measurements. Considering these
observations, we could conclude that most of the fine particles settled on the geotextile surface came
from the pre-existing fines in the aggregates, and the generation of new fine particles caused by
abrasion and crushing of the material during the test was negligible.
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Figure 9. Appearance of the geotextile after a mechanical damage simulation.

After the hydraulic damage stage, a worsening of the appearance of the geotextile could be
observed (Figure 10). This was due to both the migration of the fines stuck to the larger particles of the
granular material dragged by water, and their cementation on the surface of the geotextile due to the
presence of water. Most of the permeability loss of the geotextile could be attributed to this layer of
cemented fines.
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Figure 10. (a) Appearance of the geotextile after the hydraulic damage simulation; (b) Detail view,
where the cementation produced by the passing of water can be observed.

4.2. Quantitative Results: Water Permeability Loss

The measurements of water permeability normal to the plane of the tested samples were compared
with the initial determinations carried out on the new samples of the two geotextiles. The percentage of
permeability loss was obtained for every test scenario to obtain the new condition factor. Tables 4 and 5
show the obtained results for geotextile A and B, respectively.
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Table 4. Geotextile A results.

ZAD Type Configuration Position Test Code

Water Permeability Normal
to the Plane Permeability

Loss (%)Value
(mm/s)

Coefficient of
Variation CV (%)

Coarser 3
Upper A.3.C.U 127 19,6% 15%
Lower A.3.C.L 142 15,9% 5%

1 Lower A.1.C.L 146 12,0% 3%

Finer 3
Upper A.3.F.U 74 40,8% 51%
Lower A.3.F.L 114 30,3% 24%

1 Lower A.1.F.L 93 25,1% 38%

Table 5. Geotextile B results.

ZAD Type Configuration Position Test Code

Water Permeability Normal
to the Plane Permeability

Loss (%)Value
(mm/s)

Coefficient of
Variation CV (%)

Coarser 3
Upper B.3.C.U 148 19,9% 9%
Lower B.3.C.L 125 12,9% 23%

1 Lower B.1.C.L 117 36,6% 28%

Finer 3
Upper B.3.F.U 98 31,6% 40%
Lower B.3.F.L 125 25,4% 23%

1 Lower B.1.F.L 114 21,3% 30%

A test code was added to the different tests, to improve their reference within the text. Figure 11
shows the meaning of the code.
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Figure 11. Test code explanation.

Measurements of water permeability loss ranged between 3% (A.1.C.L) and 51% (A.3.F.U), with an
average water permeability loss of 24.6%, for all tested geotextiles. In some specimens, the loss of
permeability was very low, and even an increase in permeability was measured. This could be explained
by the appearance of little holes during the mechanical deterioration simulation and inconsistencies in
the geotextile manufacturing that produced a certain level of heterogeneity in the geotextile. The holes
not only affected the permeability of the geotextile but could also cause the geotextile to lose its
properties as a separation and filtering layer.

According to the obtained results, including an upper geotextile did not significantly affect the loss
of water permeability of the geotextile in the lower position. As a result, the inclusion of a geotextile
in the upper position could be motivated by its separation function or biofilm support, handling the
biodegradation of oils and grease, rather than to protect the lower geotextile. Results showed that the
variable with the highest impact in water permeability loss was the type of aggregates used.
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4.3. Analysis of Variance (ANOVA)

Figure 12 shows a box plot representation of the data obtained from all test scenarios. A total of
ten samples were tested to obtain every value of water permeability normal to the plane.Water 2020, 12, x FOR PEER REVIEW 14 of 16 
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Results for the different geotextiles were analyzed using a three-way analysis of variance (ANOVA)
to determine the statistical significance of the variables involved—configuration, aggregate type, and
geotextile position. Tables 6 and 7 summarize the results of the analysis for both geotextiles.

Table 6. ANOVA for geotextile A results.

Source Sum of Squares Degrees of Freedom Mean Square F p-Value

Position 7770 1 7770 11.18 0.0015
ZAD Type 29500.8 1 29500.8 42.46 0.0000

Configuration 3602.5 1 3602.5 5.19 0.0266
Error 38906.3 56 694.8
Total 76516.3 59

Table 7. ANOVA for geotextile B results.

Source Sum of Squares Degrees of Freedom Mean Square F p-Value

Position 40.3 1 40.31 0.04 0.8436
ZAD Type 4520.9 1 4520.88 4.41 0.0403

Configuration 507.4 1 507.41 0.49 0.4847
Error 57426 56 1024.46
Total 62867.8 59

In both cases, the aggregate type was statistically significant for a 0.05% level of significance.
This was in accordance with the thesis of the investigation and pointed out the importance of using
real aggregates to perform the tests. For the other two variables, the analysis showed that they were
only statistically significant on the tests carried out to geotextile A. This can also be seen in Figure 12,
in the similar values for all three tests performed using the same ZAD.

4.4. Coefficient of Variation Analysis

All water permeability tests were carried out at the Geosynthetics Laboratory of the University of
Cantabria (LAGUC), with ISO 17025 certification.

Due to the nature and manufacturing process of geotextiles, both the water permeability normal
to the plane and the mechanical damage under repeated load test results show a high variability even
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in the same geotextile sheet. The proposed procedure comprises the realization of these two tests to
the same specimen, adding the hydraulic damage simulation in between. Hence, the variability of the
results for this new procedure is expected to be higher than in the individual tests.

The precision of a test is usually evaluated using the coefficient of variation (CV). Due to the lack
of available information about the allowable CV between the specimens of a water permeability test
under the ISO 11058 standard, the results of the last proficiency testing campaign (interlaboratory
test comparison) for the laboratory certification was used for comparison. In the proficiency testing
campaign, the obtained CV referred to complete tests, not to single specimens. The result of a complete
test is obtained by averaging the water permeability of five specimens, and this averaging reduces the
variability, and hence the coefficient of variation. As a result, the CV calculated between the specimens
in the same test should be significantly higher than that obtained from different complete tests.
Five laboratories participated in the proficiency testing campaign for ISO 11058, using a nonwoven
geotextile, obtaining a coefficient of variation of 13.4%.

The average CV obtained in this study was 24.3%, with a minimum of 12% (A.1.C.L) and a
maximum of 40.8 (A.3.F.U). Comparing these values with the results of the interlaboratory study,
it could be said that the precision of the test is sufficient for the measured variable.

5. Conclusions

This work presents a test procedure proposal to obtain the new condition factor for the water
permeability normal to the plane of a geotextile. The main novelties of the test procedure are the
usage of the same aggregates used in road construction instead of the granular material prescribed in
the mechanical damage test (ISO 10722) and the inclusion of a hydraulic damage phase. These two
improvements are introduced to better reproduce the on-site conditions during road construction.
The loss of permeability of a geotextile is mainly caused by the clogging of its pores with fines
present in the aggregates, and thus the usage of real aggregates is crucial to simulate real conditions.
An analysis of the variance (ANOVA) performed to the results obtained from testing 120 geotextile
specimens subjected to the proposed test procedure determined that the variable aggregate type was
statistically significant, and thus the tests should be carried out using the appropriate granular material.
Additionally, circulating water through a model of the pavement dragged more fine particles stuck to
larger ones and created a crust on the geotextile surface, further reducing the permeability.

Two nonwoven geotextiles were tested in different pavement configurations, geotextile positions,
and aggregate type. The average water permeability loss was 24.6%, with a maximum of 51%.
These results confirmed the initial assumption of the necessity of design pervious pavements taking
into consideration the water permeability loss due to its installation, and hence the usage of a new
condition factor.
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