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Abstract: This paper presents a novel analytical solution, which is developed for investigating
three-dimensional wave-induced seabed responses for anisotropic permeability. The analytical
solution is based on the assumption of the poroelastic and the u− p dynamic form, which considers
the inertia force of the soil skeleton. In this paper, the problem is regarded as an eigenvalue problem
through a first-order ordinary differential equation in matrix form. The problematic eigenvector
involved in the solution is dealt with using numerical computation, and a process is proposed to
implement the present solution for the desired dynamic response. A verification, which is compared
with two existing solutions, demonstrates an agreement with the present solution. The results
show that the amplitude profile of seabed response for a shorter wave period varies significantly.
A comparison between the anisotropic and transverse isotropic, as well as isotropic permeabilities
reveals that the error of vertical effective stress on the seabed bottom can reach 74.8% for the isotropic
case. For anisotropic permeability, when the wave direction is parallel to the higher horizontal
permeability direction, the amplitude profiles of pore pressure and vertical effective stress exhibit the
greatest dissipation and increment, respectively. For transverse isotropic permeability, the vertical
effective stress is independent of the wave direction, which results in the two horizontal effective
stresses on the seabed bottom being identical to each other and independent of the wave direction.
Our comprehensive analysis provides insight into the effect of anisotropic permeability on different
wave periods and wave directions.

Keywords: wave-seabed interaction; seabed response; porous media; inertia force; anisotropic
permeability

1. Introduction

The dynamic response caused by pore fluid movement in a soil matrix under cyclic loads is a
practical issue in geotechnical engineering and has been intensively studied, based on the theory
of soil consolidation [1–4]. In particular, the wave-induced seabed response in ocean environments,
comprising the variation in pore pressure, effective normal stresses, and shear stresses, is required for
widespread engineering applications, such as submerged foundations and underwater pipelines [5–8].

Soil consolidation investigates the simultaneous response and deformation of a porous material
and the flow of the pore fluid [9,10]. Since the pioneering work of Biot on the three-dimensional
consolidation theory of a poroelastic medium [11], as well as the storage equation of Verruijt [12],
the wave-induced seabed response problem had been intensively investigated. Among these studies,
the quasi-static seabed responses considered in two-dimensional space [13–16] and three-dimensional
space [17,18], as well as the effect of inertia forces of both the soil skeleton and pore fluid [19–22] were
investigated. Depending on the consideration of the inertia forces of the soil skeleton and pore fluid in
momentum equations, two types of simplified soil behaviors can be assumed for the approximation
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solution: quasi-static soil behavior (QS) and partial dynamic soil behavior (PD). The former ignores the
effects of all inertial forces, while the latter considers the inertial force of the soil skeleton and excludes
that of the pore fluid. PD approximation is known as the u − p dynamic form, as the governing
equations can be expressed only by the variables of pore pressure (p) and the displacement of the
soil skeleton (u) [19]. Hsu et al. [22] examined the applicable ranges of QS and PD approximation
based on the cnoidal wave theory and concluded that the u− p dynamic form was accurate enough to
represent the wave-induced seabed response in shallow water. For shorter waves or in a seabed with
high permeability, the interaction between the soil skeleton and pore flow is rapid so that the effect
of inertia becomes significant [21]. Owing to the limit of QS approximation on rapid soil behavior
prediction, the u− p dynamics form is preferred for the design of the underwater structure suffering
from a wide range of wave periods in ocean environments.

In the development of an analytical solution, the wave-induced seabed response under periodic
gravity wave loading for the QS approximation was studied by Yamamoto’s team [15,16]; the team
was the first to derive a two-dimensional analytical solution for an isotropic seabed with infinite
thickness [16]. Then, Hsu’s team further extended the QS approximation to a three-dimensional
Cartesian coordinate system [17,18] and derived its analytical solution for a finite seabed with
anisotropic permeability [18]. In most engineering practices, a three-dimensional model is more
realistic and applicable than a two-dimensional one. Owing to the scarcity of a three-dimensional
analytical solution for a seabed dynamic response considering the effect of inertial forces, numerical
investigations in three dimensions were conducted and applied to engineering practices such as the
coupling interaction with a pile foundation or pipeline [1,5–8]. Most of these studies used the u− p
dynamic form for numerical modeling and verified the results by physical hydraulic experiments.

One of the distinctions between the three-dimensional model and the two-dimensional one for
the seabed response problem is the effect of additional permeability in the transverse direction on
three-dimensional seabed responses. As the anisotropic permeability of soil is common in a natural
environment, this issue was previously discussed through the solution of QS approximation for
horizontal transverse isotropy, whose permeability is isotropic for horizontal coordinates and differs in
the vertical direction [14,18,21,23]. An three-dimensional model of the u− p dynamic form is suitable
for investigating the effect of anisotropy on three-dimensional dynamic seabed responses, as the
consideration of the inertia force of the soil skeleton can cover a wider range of waves, causing rapid
soil behavior rather than the QS approximation.

This study aims to extend the theoretical framework of wave-induced dynamic responses to
three dimensions and to provide an ideal tool for the verification and calibration for numerical
modeling. A three-dimensional wave-induced soil response in a poroelastic seabed with anisotropic
permeability for the u− p dynamic form in the Cartesian coordinate system is derived analytically as
an eigenvalue problem. To deal with the complicated eigenvector involved in the general solution,
numerical computation is used, and a process to obtain the desired seabed response is presented.
A verification of the present analytical solution in comparison with the previous solutions is performed.
The effects of wave period and wave direction on an anisotropic seabed are discussed through
parameter studies, and the dynamic responses of an anisotropic seabed in comparison with transverse
isotropic and isotropic permeabilities are presented to give prominence to the influence of anisotropic
permeability.

2. Theoretical Framework

According to Zienkiewicz et al. [19], the generalized governing equations for a two-phase medium
can be expressed as:
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σij,j + ρgi = ρüi + ρ f ẅi, (1)

−p,i + ρ f gi = ρ f üi +
ρ f

n
ẅi +

γw

ki
ẇi, (2)

− n
K f

ṗ = u̇i,i + ẇi,i. (3)

where ui is the displacement of the soilskeleton and wi is the average displacement of the fluid related
to the soil skeleton. Consequently, üi and ẅi indicate the inertia terms representing the acceleration
of the soil skeleton and that of the relative pore fluid, respectively. ẇi is the average relative fluid
velocity. σij is the second-order tensor of the stress state, and the first index i indicates that the stress
acts on a plane normal to the xi-axis, while the second index j denotes the direction in which the stress
acts. p is the pore water pressure. gi is a component of gravitational acceleration. ki is a component
of permeability. n indicates porosity. K f is the apparent bulk modulus of the pore fluid. γw = gρ f is
the unit weight of water. g = 9.8[m/s2] is the gravitational acceleration. ρ is the total density of the
seabed. ρ f is the density of the pore fluid, which is taken as 1000kg/m3 in this study.

The above governing equations sequentially represent the equilibrium equations for a unit volume
comprising both the soil skeleton and pore fluid, the equilibrium equations for the pore fluid, and the
continuity of flow. Note that if all inertia terms are excluded (üi = ẅi = 0), the equilibrium of the
pore fluid is identical to Darcy’s law, and the simplified equations become the QS approximation.
Compared to Biot’s formulation, this set of governing equations adopts the relative coordinates of
pore fluid wi to avoid adding the mass term, for simplification. On demand, the actual pore fluid
displacement, denoted as w f i, can be obtained through wi = n

(
w f i − ui

)
.

The equation set is completed by an appropriate constitutive relation and the introduction of
effective stresses to represent a dynamic soil response. For linear elasticity, the constitutive relation,
known as Hook’s law, can be expressed as:

σ′ij = λuk,kδij + 2Gεi,j, (4)

where εi,j =
1
2
(
ui,j + uj,i

)
, and the effective stresses σ′ij are defined as:

σij = σ′ij − δij p (5)

where G is the shear modulus of the soil, λ = 2Gµ
1−2µ is the Lamé constant, and µ is Possion’s ratio. In the

above equations, the tension-positive convention is adopted, so compression is negative.
Additionally, the total density of the seabed, ρ, is defined as:

ρ = Srnρ f + (1− n) ρs, (6)

where ρs is the density of soil particles and Sr is the saturation of the soil. According to verruijt [12],
K f is related to the static water pressure and can be formulated as:

1
K f

=
1

Kw
+

1− Sr

γwd
. (7)

In fully saturated soil (Sr = 1), K f is equal to the bulk modulus of water, which is taken as
2× 109 Pa in this study.
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If all acceleration terms of the pore fluid and the static gravity terms are neglected, then the
governing equations for the u− p dynamic form (ẅi = 0) can be expressed as:

ki p,ii −
γwn
K f

ṗ = γwu̇i,i − ρ f kiüi,i (8)

ρüi = −p,i + λuk,ki + 2Gεi,jj. (9)

The unknown variables p and ui can be solved through the above u− p dynamic form, so that
the desired dynamic response can be obtained.

2.1. u− p Dynamic Form

The basic assumptions used for following derivation are considered as below:

(i) The seabed is horizontal, hydraulically anisotropic, and of finite thickness.
(ii) The soil skeleton and the pore fluid are compressible.

(iii) The soil skeleton deforms as a linear elastic medium.
(iv) The equilibrium of flow in the seabed considers the viscous resisting force as Darcy’s law and

the inertia force of the soil skeleton.
(v) The equilibrium of the bulk material composed of the soil skeleton and pore fluid considers the

inertia force of the soil skeleton.
(vi) The overburden pressure and the static pore pressure caused by gravity are omitted.

The Cartesian coordinates (x, y, z) are chosen, and the vertical coordinate z has its origin on the
seabed surface and is directed upward, so a set of equations for the u− p dynamic form to be solved is
rewritten as:

k1
∂2 p
∂x2 + k2

∂2 p
∂y2 + k3

∂2 p
∂z2 −

γwn
K f

∂p
∂t

= γw
∂ε

∂t
− ρ f

(
k1

∂2ε

∂t2 + k2
∂2ε

∂t2 + k3
∂2ε

∂t2

)
(10)

ρ
∂2ux

∂t2 = −∂p
∂x

+ (λ + G)
∂ε

∂x
+ G

(
∂2ux

∂x2 +
∂2ux

∂y2 +
∂2ux

∂z2

)
(11)

ρ
∂2uy

∂t2 = −∂p
∂y

+ (λ + G)
∂ε

∂y
+ G

(
∂2uy

∂x2 +
∂2uy

∂y2 +
∂2uy

∂z2

)
(12)

ρ
∂2uz

∂t2 = −∂p
∂z

+ (λ + G)
∂ε

∂z
+ G

(
∂2uz

∂x2 +
∂2uz

∂y2 +
∂2uz

∂z2

)
. (13)

where ux, uy, and uz are denoted as the displacement of the soil skeleton in the x-, y-, and z- directions,
respectively. Likewise, k1, k2, and k3 indicate the directional permeability in the order of the x-, y-, and
z-axes. In addition, ε = ui,i =

∂ux
∂x +

∂uy
∂y + ∂uz

∂z is the volume strain.
If the solution is sought in the form of a periodic progressive wave, then the desired unknowns

x =
[
p, ux, uy, uz

]T , where [ ]T for the transpose, can be expressed as:

x = Re
{

X(z)eiφ(x,y,t)
}

, (14)

where X(z) =
[
P(z), Ux(z), Uy(z), Uz(z)

]T , i =
√
−1 is the imaginary unit and φ(x, y, t) = kx cos θ +

ky sin θ − ωt, where θ is the angle between the wave progression and the x-axis. Substituting the
periodic form into the set of equations, a set of four ordinary differential equations (ODEs) in the
second order regarding variable z is obtained as:

AẌ(z) + BẊ(z) + CX(z) = 0, (15)

where ḟ (z) represents the derivative of a function f (z) of variable z, and the coefficient matrices A, B,
and C are expressed as:
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A =


inωγw

K f
− k2 (k1 cos2(θ) + sin2(θ)k2

)
−kω cos(θ)

(
γw + iωk1ρ f

)
−kω sin(θ)

(
γw + iωk2ρ f

)
0

−ik cos(θ) −(G + λ) cos2(θ)k2 − Gk2 + ρω2 −k2(G + λ) cos(θ) sin(θ) 0
−ik sin(θ) −k2(G + λ) cos(θ) sin(θ) (G + λ) cos2(θ)k2 − 2Gk2 − λk2 + ρω2 0

0 0 0 ρω2 − Gk2

 (16)

B =


0 0 0 ω

(
iγw −ωk3ρ f

)
0 0 0 ik(G + λ) cos(θ)
0 0 0 ik(G + λ) sin(θ)
−1 ik(G + λ) cos(θ) ik(G + λ) sin(θ) 0

 (17)

C =


k3 0 0 0
0 G 0 0
0 0 G 0
0 0 0 2G + λ

 (18)

Note that most of the previous studies solved this problem by a set of second-order ODEs as
Equation (15). Here, we are going to further transform this problem into a first-order ODE in matrix
form and solve this problem utilizing the knowledge of the eigenvalue problem. Given Ø(z) = Ẋ(z),
Equation (15) can be rewritten as:[

E O
O A

] [
Ẋ(z)
Ø̇(z)

]
=

[
O E
−C −B

] [
X(z)
Ø(z)

]
(19)

where E is an identity matrix and O is a zero matrix.
If Y(z) = [X(z), Ø(z)]T =

[
P(z), Ux(z), Uy(z), Uz(z), Ṗ(z), U̇x(z), U̇y(z), U̇z(z)

]T , then the set of
governing equations can be rewritten in matrix form as:

Ẏ(z) = MY(z), (20)

where M is an 8× 8 constant matrix. It can be determined by:

M =

[
E O
O A

]−1 [
O E
−C −B

]
=

[
O E

M1 M2

]
(21)

where A−1 represents the inverse matrix of A. The submatrices M1 and M2 are expressed as:

M1 =



k2((k1−k2) cos2(θ)+k2)
k3

− inγwω
k3K f

ikk1γw cos(θ)ω2

k3
+ kγw cos(θ)ω

k3

ikk2γw sin(θ)ω2

k3
+ kγw sin(θ)ω

k3
0

ik cos(θ)
G

k2((G+λ) cos2(θ)+G)
G − ρω2

G
k2(G+λ) cos(θ) sin(θ)

G 0
ik sin(θ)

G
k2(G+λ) cos(θ) sin(θ)

G
k2(−(G+λ) cos2(θ)+2G+λ)

G − ρω2

G 0

0 0 0 Gk2

2G+λ −
ρω2

2G+λ

 (22)

M2 =


0 0 0 γwω2 − iγwω

k3

0 0 0 − ik(G+λ) cos(θ)
G

0 0 0 − ik(G+λ) sin(θ)
G

1
2G+λ − ik(G+λ) cos(θ)

2G+λ − ik(G+λ) sin(θ)
2G+λ 0

 (23)

The original governing equations was derived as a set of eight first-order ODEs as Equation (20),
and this equation can be solved exactly as an eigenvalue problem. In addition, the fact that the general
solution of Equation (20) comprises eight independent solutions is implied by the dimension of M. If a
constant Di satisfies (M− DiE)vi = 0, then vi is an eigenvector corresponding to the eigenvalue Di.
Furthermore, Ψi(z) = vieDiz satisfies Ψ̇i(z) = MΨi(z), so that Ψi(z) can be the independent solution
for which we are looking. M′(Di) = M− DiE is denoted as the characteristic matrix, which is the key
to constructing the general solution. A total of eight eigenvalues can be found through the characteristic
equation det(M′(Di)) = 0 where det(A) represents the determinant of A. For the u− p dynamic form,
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the eigenvalues comprise four distinct complex numbers and two repeated real numbers, both with a
multiplicity of two. Note that the characteristic matrices of two repeated real eigenvalues have a rank
of six, indicating that two independent eigenvectors exist for each repeated eigenvalue in null space.
Therefore, the general solution can be expressed as:

Y(z) =
8

∑
i=1

CiΨi(z) =
8

∑
i=1

CivieDiz, (24)

where Ci indicates the undetermined constants for a particular solution, which can be
determined through appropriate boundary conditions. The solution of Equation (24) contains
displacement functions and their derivatives, which are useful for calculating the effective

stresses s = Re
{

S(z)eiφ(x,y,t)
}

, where s =
[
σ′xx, σ′yy, σ′zz, τxy, τxz, τyz

]T
, and S(z) =[

Sxx(z), Syy(z), Szz(z), Sxy(z), Sxz(z), Syz(z)
]T . According to the constitutive law, as shown in

Equation (4), the effective stresses can be expressed in terms of displacement functions and their
derivatives through the following transformation:

S(z) =



ik(2G + λ) cos(θ) ikλ sin(θ) 0 0 0 λ

ikλ cos(θ) ik(2G + λ) sin(θ) 0 0 0 λ

ikλ cos(θ) ikλ sin(θ) 0 0 0 2G + λ

iGk sin(θ) iGk cos(θ) 0 0 0 0
0 0 iGk cos(θ) G 0 0
0 0 iGk sin(θ) 0 G 0





Ux(z)
Uy(z)
Uz(z)
U̇x(z)
U̇y(z)
U̇z(z)


(25)

2.2. Boundary Condition

The particular solution can be obtained after determining the constant Ci through a physically
reasonable boundary condition. At the seabed surface (z = 0), the vertical effective normal stress σ′zz
must vanish, by definition, and the shear stresses τxz and τyz are generally so small that they can be
ignored in the field measurement. Consequently, the wave-induced pressure at the seabed surface pb
is the dominant input. The boundary conditions at the seabed surface are expressed as:

σ′zz = τxz = τyz = 0, p = pb, at z = 0, (26)

where pb = Re
{

p0eiφ(x,y,t)
}

is the wave-induced seabed pressure and the amplitude p0 = γw H
2 cosh(kd) is

attenuated by the relative water depth kd in the linear wave theory.
On the seabed bottom (z = −h), under the assumption of a rigid bottom, neither does the flow

pass through, nor do the porous media deform, and the boundary conditions on the seabed bottom
can be expressed as:

ux = uy = uz =
∂p
∂z

= 0, at z = −h. (27)

The boundary condition shown in Equation (26) ignores the effect of seabed response on the
progressive wave, so that the damping of the wave is not taken into account. It is a weak coupling
boundary condition, as the seabed pressure dominates the response. The influence of damping was
evaluated by Jeng [24], and this weak coupling boundary condition provides a reasonable prediction
that was validated by Ye and Jeng [25] and has been widely used in previous literature.

2.3. Three-Dimensional Anisotropic Seabed Response for the u− p Dynamic Form

A difficulty of solving this problem for the u− p dynamic form is that the eigenvectors involved
in Equation (24) are too complicated to be computed and expressed in explicit form. To overcome this
issue, we propose an efficient process for a three-dimensional solution by calculating the problematic
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eigenvectors through numerical computation. The QZ algorithm is adopted for solving the eigenvalue
problem and the corresponding eigenvector [26]. In the present process, the reliability and accuracy
of the result depend on the matrix to be solved for the eigenvalue and eigenvector, as well as the
coefficients determined by boundary conditions. In this study, the results in association with matrix
computation are checked, and the accuracy agrees up to errors that are below 2× 10−8.

An implementation of the present process is illustrated as Figure 1, and the symbols are listed
as Appendix A. The general solution is constructed as Equation (24) through (M − DiE)vi = 0.
Among the eight independent solutions, four solutions are directly computed in numerical form
for four distinct complex eigenvalues and corresponding eigenvectors, and the other four solutions
are obtained using two repeated real eigenvalues Di = ±

(
k2 − ρω2/G

)1/2, where two independent
eigenvectors can be found numerically for each repeated eigenvalue. Then, the particular solutions are
determined through the boundary condition of Equations (26) and (27), utilizing the transformation
as Equation (25). Last, the desired wave-induced dynamic response in three-dimensional space,

z =
[

p, σ′xx, σ′yy, σ′zz, τxy, τxz, τyz

]T
, can be acquired as:

z = Re
{

Z(z)eiφ(x,y,t)
}

, (28)

where Z(z) =
[
P(z), Sxx(z), Syy(z), Szz(z), Sxy(z), Sxz(z), Syz(z)

]T .

Figure 1. Schematic diagram of the steps in the implementation process.

3. Verification

To verify the three-dimensional anisotropic seabed response for the u − p dynamic form,
the present solution was compared with two benchmark analytical solutions considering QS
approximation: the two-dimensional solutions of Yamamoto [15] and the three-dimensional solution
of Hsu and Jeng [18]. It is noted that these two solutions were used for verification in many
previous studies [18,22,25]. The solution of Yamamoto assumed isotropic permeability in the seabed
(k1 = k3) [15], while that of Hsu and Jeng considered anisotropic permeability and presented the result
of the horizontal transverse isotropic seabed (k1 = k2 > k3) [18]. Table 1 lists the fixed parameters
used for the following verification and results in the next section. The other parameters for each case,
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including the seabed thickness h, soil permeability ki, water depth d, wavelength L, wave period T,
wave height H, and wave direction θ, will be introduced later.

Table 1. Parameters of water and soil.

Parameter Value Unit

Density of water, ρ f 1000 kg/m3

Bulk modulus of water, Kw 2× 109 Pa
Density of soil particles, ρ f 2700 kg/m3

Shear modulus of soil, G 107 Pa
Poisson’s ratio, µ 1/3
Porosity, n 0.3
Saturation, Sr 1

3.1. Comparison with the Two-Dimensional Solution of Yamamoto

A comparison between the present solution and the solution of Yamamoto [15] is shown in
Figure 2, and the following parameters were adopted: h = 25 m, d = 70 m, L = 312 m, H = 24 m,
T = 15 s, θ = 0◦, and k1 = k2 = k3 = 10−4 m/s. It can be regarded as a fine sand case due to the low
permeability. It is noted that Yamamoto [16] had verified his analytical solution of pore pressure by a
physical hydraulic experiment. In Figure 2, the seabed responses of pore pressure p, vertical effective
stress σ′zz, and shear stress τxz are compared through the vertical profile of maximum magnitude.
|p| denotes the maximum of p along the vertical coordinate z and equals the amplitude function in
linear wave theory (|p| = |P(z)|). The result of the comparison has a good agreement and implies that
the present solution can be used for the prediction of two-dimensional cases. Additionally, the result
indicates that the permeability, whose direction is perpendicular to wave propagation (k2 = 10−4 m/s),
has no effect on |p|, σ′zz, and τxz.

Figure 2. Amplitude profile of pore pressure p, vertical effective stress σ′zz, and shear stress τxz for the
isotropic case.
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3.2. Comparison with the Three-Dimensional Solution of Hsu and Jeng

Figure 3 shows a comparison with the solution of Hsu and Jeng [18] and adopts the following
parameters: h = 44.8 m, d = 50 m, L = 244 m, H = 24 m, T = 13.5 s, θ = 45◦, and k1 = k2 = 2.5k3,
and k3 = 10−2 m/s is the vertical permeability. This scenario considered an incident wave propagated
in miter angle into a horizontal transverse isotropic seabed, whose horizontal permeability was two
and a half times as much as the vertical permeability. It was a case of coarse sand because the
high permeability and pore pressure naturally dissipate along the depth due to the thicker seabed.
The present solution also agreed with the result of Hsu and Jeng [18]. Therefore, the present solution
was verified by two previous solutions adopting QS approximation with different permeabilities.
As the wavelengths of the above two cases were quite long, there was little discrepancy between the
results of the u− p dynamic form and QS approximation.

Figure 3. Amplitude profile of pore pressure p for the horizontal transverse isotropic case.

4. Results and Discussion

As the anisotropic permeability of soil is common in a natural environment, the present solution
was suitable for investigating the effect of anisotropy on a three-dimensional dynamic seabed response
for rapid soil behavior. In what follows, the effect of anisotropic permeability on three-dimensional
seabed response is discussed in three parts. First, the seabed response under different wave periods for
anisotropic permeability was performed to sketch the effect of the wave condition. Second, the seabed
response for anisotropic permeability was compared with the results of isotropy and transverse
isotropy to evaluate the error when the accurate directional permeability failed to be acquired. Third,
the results of anisotropy and transverse isotropy for varied directions of the incident wave were
compared, to discuss the effect of wave direction under anisotropic soil. In the following discussion,
the material parameters listed in Table 1 were adopted, and the seabed environment had a water depth
d = 70 m and seabed thickness h = 25 m, as shown in Section 3.1. Table 2 lists the major parameters for
each case including the wave condition (H, T, L, and d), wave direction θ, and directional permeability
(k1, k2, and k3). The wave condition for wave period T = 15 s in Table 2, as well as the physical
quantities of the material and seabed environment were a practical design condition of the North
Sea, and this set of parameters was intensively applied in previous studies [15,16,27]. The other
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wave conditions for wave periods T = 10 s and T = 20 s represented the scenario under shorter
and longer waves, respectively. It is noted that the range of the wave period from T = 10 s to
T = 20 s belonged to the type of the ordinary gravity wave in wind wave theory [28]. Besides the
wave parameters that determined the fluctuation of seabed pressure, the soil parameters may have a
wide range of values for various materials, and some parameters may significantly affect the seabed
response. For example, the shear modulus of the soil was an important parameter, owing to its extent,
and saturation was another sensitive parameter that may change the result with a slight difference.
The effects of rigidity and water content, as well as wave condition could be referred to Jeng and
Cha [20] and Ulker et al. [21]. In this study, we focused on the effect of anisotropic permeability for
different wave periods and wave directions on the seabed response in three-dimensional space.

Table 2. Case parameters.

No. H (m) T (s) L (m) d (m) θ (◦) k1 (m/s) k2 (m/s) k3 (m/s)

1 24 10 155 70 30 0.10 0.05 0.01
2 24 15 312 70 30 0.10 0.05 0.01
3 24 20 462 70 30 0.10 0.05 0.01
4 24 15 312 70 0 0.10 0.05 0.01
5 24 15 312 70 60 0.10 0.05 0.01
6 24 15 312 70 90 0.10 0.05 0.01
7 24 15 312 70 0 0.05 0.05 0.01
8 24 15 312 70 30 0.05 0.05 0.01
9 24 15 312 70 60 0.05 0.05 0.01

10 24 15 312 70 90 0.05 0.05 0.01
11 24 15 312 70 30 0.01 0.01 0.01

4.1. Effect of the Wave Period on the Anisotropic Seabed

Considering that waves propagate in direction θ = 30◦, three wave periods, T = 10 s, 15 s,
and 20 s, were selected for representing the range of wave conditions from short wave to long wave.
The corresponding wavelengths were L = 155 m for T = 10 s, L = 312 m for T = 15 s, and L = 462 m
for T = 20 s, based on the linear wave theory. The anisotropic permeability was set as k1 = 0.1 m/s,
k2 = 0.05 m/s, and vertical permeability k3 = 0.01 m/s. Figure 4 demonstrates the amplitude profiles
of pore pressure and effective stresses for different wave periods. In Figure 4a,b, the amplitude of pore
pressure decreases with depth, while that of vertical effective stress increases, and shorter waves have
more reduction of |p| and increment of σ′zz, as a higher frequency of the loading wave implied a rapid
interaction between the soil and pore flow. A similar phenomenon was observed by Zhou et al. [29].
For longer waves T = 15 s and T = 20 s, |p| decreased monotonically, and the minimum of |p| was
on the bottom. For shorter waves T = 10 s, the minimum |p|/p0 = 0.472 occurred at the depth
z/h = −0.615. On the other hand, the maximum of |σ′zz| occurred at the upper soil layer for shorter
waves. For T = 10 s, 15 s, and 20 s, the maximum of |σ′zz| was |σ′zz|/p0 = 0.576, 0.299, and 0.188,
which occurred at the depths z/h = −0.692, −0.833, and −0.860, respectively. When a periodic wave
propagated, the soil tended to expand under a wave crest and contract under a wave trough. The soil
contraction was accompanied with the build-up of excess pore pressure, particularly at the depth of a
minimum |p|. For fine sands with low permeability, an excess pore pressure may build up on the upper
soil layer to cause a risk of liquefaction. The amplitude profiles of horizontal effective stress |σ′xx| for
different wave periods are shown in Figure 4c, and that of |σ′yy| is shown in Figure 4d. Both indicated
that shorter waves had a greater magnitude of amplitude, and the minimum occurred in the middle
layer. The maximum of |σ′xx| occurred at the seabed surface, while that of |σ′yy| appeared on the seabed
bottom. In general, the amplitude profile of the seabed response for shorter waves varied dramatically
with the depth, as compared to the longer ones, and the discrepancy between the profiles of the two
shorter waves was much greater.
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Figure 4. Effect of wave period on (a) pore pressure p and effective stresses (b) σ′zz, (c) σ′xx, and (d) σ′yy
along the z-axis for anisotropic permeability (T = 10, 15, and 20 s correspond respectively to Cases 1, 2,
and 3).

4.2. Comparison of Seabed Response for Anisotropic, Transverse Isotropic, and Isotropic Permeabilities

The seabed response for anisotropic permeability was compared with two reduced permeabilities:
transverse isotropy and isotropy. Except for the permeability of isotropy and transverse isotropy,
the adopted parameters were identical to those used in Section 4.1 for wave conditions T = 15 s,
L = 312 m, and θ = 30◦. The transverse isotropic permeability employed k1 = k2 = 0.05 m/s and
k3 = 0.01 m/s, while the isotropic permeability used k1 = k2 = k3 = 0.01 m/s. For convenience, in the
following legend of the figure, “AN” denotes the seabed response for anisotropic permeability, “TISO”
denotes that for transverse isotropic permeability, and “ISO” denotes that for isotropic permeability.
Figure 5 shows a comparison of the amplitude profile of pore pressure and vertical effective stress
among these three permeabilities. In Figure 5a, the amplitude profiles of pore pressure |p| for transverse
isotropy and isotropy attenuate more slowly with depth than those for anisotropic permeability. All of
the minima of |p| occurred on the seabed bottom, where the relative error of |p|was 6.2% for transverse
isotropic permeability and 12.3% for isotropic permeability. In Figure 5b, the amplitude profile of
vertical effective stress |σ′zz| for anisotropic permeability is greater than the others. On the seabed
bottom, the relative error of |σ′zz| was 38.4% for transverse isotropic permeability and 74.8% for the
isotropic one. For anisotropic permeability, the maximum of |σ′zz|/p0 was 0.299, and its depth was
z/h = −0.833. For transverse isotropic permeability, the maximum of |σ′zz|/p0 was 0.194, and its depth
was z/h = −0.763. For isotropic permeability, the maximum of |σ′zz|/p0 was 0.115, and its depth was
z/h = −0.575. Figure 6 shows a comparison of horizontal effective stresses σ′xx and σ′yy. The amplitude
profiles for isotropic and transverse isotropic permeabilities varied significantly as compared to those
for anisotropic permeability, and the variation was sorted in descending order as isotropy>transverse
isotropy>anisotropy. An interesting observation was that the amplitudes of σ′xx and σ′yy coincided
on the seabed bottom for each type of permeability. This was because the amplitudes on the seabed
bottom reduced as Sxx(−h) = Syy(−h) = λ U̇z(z)

∣∣
z=−h after substituting the boundary condition

into Equation (25). Note that the discrepancy between |σ′xx| and |σ′yy| resulted from the angle of wave
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direction θ = 30◦, rather than the different permeabilities in the coordinates, and the amplitude profiles
of horizontal effective stress coincided with each other when θ = 45◦.

Figure 5. Comparison of (a) pore pressure p and (b) vertical effective stress σ′zz for anisotropic
(AN), transverse isotropic (TISO), and isotropic (ISO) permeabilities (AN, TISO, and ISO correspond
respectively to Cases 2, 8, and 11).
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Figure 6. Comparison of horizontal effective stresses σ′xx and σ′yy for AN, TISO, and ISO permeabilities
(AN, TISO, and ISO correspond respectively to Cases 2, 8, and 11).

4.3. Effect of Wave Direction on Anisotropic Permeability

Adopting the same parameter of wave condition and the permeability for anisotropy and
transverse isotropy used in Section 4.2, the seabed responses of different angles of wave direction
were compared between the two permeabilities. The amplitude profiles of pore pressure and vertical
effective stress are shown in Figure 7. For transverse isotropic permeability, both |p| and |σ′zz| were
independent of the wave direction, and θ = 30◦ was chosen as a representative. The result of
transverse isotropic permeability was identical to that of anisotropic permeability for θ = 90◦, whose
wave direction was parallel to that having the same value of permeability k2 = 0.05 m/s. For
anisotropic permeability, when the angle of wave direction θ increased, both the reduction of |p| and
the increment of |σ′zz| along the depth were attenuated. In other words, when the wave direction was
parallel to the direction having the greater horizontal permeability, the amplitude profiles of pore
pressure and vertical effective stress had the greatest dissipation and increment, respectively. Figure 8
shows the amplitude profile of horizontal effective stresses σ′xx and σ′xx, respectively. In Figure 8a,
the amplitude profile decreases when the angle of the wave direction increases, and the amplitude
profile for anisotropic permeability coincides with that for the transverse isotropic one when θ = 90◦.
Moreover, the discrepancy of |σ′xx| between the two permeability types was the greatest when θ = 0◦.
In Figure 8b, the amplitude on the seabed surface increases with θ. For anisotropic permeability,
the amplitude of σ′yy on the seabed bottom decreased when θ increased. However, for transverse
isotropic permeability, all |σ′yy|/p0 at z = −h coincided at the same value of approximately 0.09. This
was attributable to the fact that |σ′zz| was independent of the wave direction for transverse isotropic
permeability, as shown in Figure 7b, so its derivative of Szz was also independent of the wave direction.
Consequently, both |σ′xx| and |σ′yy| on the seabed bottom were independent of the wave direction for
the case of transverse isotropy due to the relation of Sxx(−h) = Syy(−h) = λ U̇z(z)

∣∣
z=−h.
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Figure 7. Comparison of (a) pore pressure p and (b) vertical effective stress σ′zz for different wave
directions between AN and TISO permeabilities (for the AN cases, θ = 0◦, 30◦, 60◦, and 90◦ correspond
respectively to Cases 4, 2, 5, and 6; the TISO of θ = 30◦ corresponds to Case 8).
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Figure 8. Comparison of horizontal effective stresses (a) σ′xx and (b) σ′yy for different wave directions
between AN and TISO permeabilities (for the AN cases, θ = 0◦, 30◦, 60◦, and 90◦ correspond
respectively to Cases 4, 2, 5, and 6; for the TISO cases, θ = 0◦, 30◦, 60◦, and 90◦ correspond respectively
to Cases 7, 8, 9, and 10).

5. Conclusions

An analytical solution was developed for investigating three-dimensional wave-induced dynamic
responses in the seabed of anisotropic permeability. The analytical solution was based on the u− p
dynamic form, which considered the effect of inertia force on the soil skeleton. A first-order ODE in
matrix form was derived to deal with this problem as an eigenvalue problem rather than a set of four
second-order ODEs, which were used for solving the problems in the previous literature. To deal with
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the complicated eigenvector problem involved in the general solution, numerical computation was
used through the QZ algorithm, and the error was found to be less than 10−8. A process was proposed
to implement the present solution for the desired dynamic response. According to the performed
analyses and presented comparisons, the following conclusions could be drawn:

1. The present solution considered the inertial force of the soil skeleton for a rapid soil behavior and
for predicting three-dimensional dynamic responses comprising the pore pressure and stresses
for anisotropic permeability. In addition, the verification of the present solution in comparison
with two existing solutions with two different permeabilities showed a good agreement.

2. In general, the amplitude of pore pressure decreased with depth, while that of vertical effective
stress increased, and a shorter wave period had greater reduction of |p| and increment of σ′zz due
to the rapid interaction between the soil and pore flow. For horizontal effective stresses, both σ′xx
and σ′yy showed that shorter waves had a greater magnitude of amplitude.

3. In the comparison between the seabed responses for anisotropic permeability and the transverse
isotropic and isotropic ones, the amplitude profiles of pore pressure for transverse isotropy and
isotropy attenuated more slowly with depth as compared to anisotropic permeability. All of
the minima of |p| occurred on the seabed bottom, where the relative error of |p| on the seabed
bottom was 6.2% for transverse isotropic permeability and 12.3% for isotropic permeability.
The amplitude profile of the vertical effective stress for anisotropic permeability was greater than
that of transverse isotropy and isotropy. On the seabed bottom, the relative error of |σ′zz|was 38.4%
for transverse isotropic permeability and 74.8% for isotropic permeability. The amplitude profiles
of horizontal effective stresses σ′xx and σ′yy for isotropic and transverse isotropic permeabilities
varied significantly as compared to those for anisotropic permeability, and the variation was
sorted in descending order as isotropy >transverse isotropy > anisotropy.

4. For anisotropic permeability, when the wave direction was parallel to the direction having higher
horizontal permeability, the amplitude profiles of pore pressure and vertical effective stress had
the greatest dissipation and increment, respectively. On the other hand, for transverse isotropic
permeability, both pore pressure and vertical effective stress were independent of the wave
direction.

5. It was shown that the horizontal effective stresses σ′xx and σ′yy were identical on the seabed for
any permeability, and for transverse isotropic permeability, the magnitudes of σ′xx and σ′yy on the
seabed were independent of the wave direction.

6. Seabed instabilities including liquefaction and shear failure are other important issues in ocean
environment. The present solution can be utilized on these problems and has potential to shed
light on the underlying mechanisms.
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Abbreviations

The following abbreviations are used in this manuscript:

AN anisotropic permeability
ISO isotropic permeability
ODE ordinary differential equation
PD partial dynamic soil behavior
QS quasi-static soil behavior
TISO transverse isotropic permeability

Appendix A. List of Symbols

Di eigenvalues of M
h seabed thickness
i imaginary unit
K f apparent bulk modulus of the pore fluid
Kw bulk modulus of water
k wave number
ki directional permeability
k1 x-directional permeability
k2 y-directional permeability
k3 z-directional permeability
L wavelength
M coefficient matrix corresponding to the u-p form
n porosity of the bulk material
p pore fluid pressure
pb wave-induced seabed pressure
p0 amplitude of pb in linear wave theory
S(z) amplitude functions of wave-induced stresses
Sr degree of saturation
T wave period
ui solid-phase displacement
vi eigenvector corresponding to Di
wi relative fluid displacement
Y(z) general solutions of the u-p form
Z(z) amplitude functions of wave-induced seabed responses
γw specific weight of water
θ wave propagating direction
λ Lamé constant of the solid phase
µ Poisson’s ratio of the solid phase
ρ density of the bulk material
ρ f density of the fluid phase
ρs density of the solid phase
σij total stress components of the bulk material
σ′ij effective normal stress components of the bulk material
τij shear stress components of the bulk material
ω angular frequency of wave motion
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