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Abstract: Anomalous patterns are common phenomena in time series datasets. The presence of
anomalous patterns in hydrological data may represent some anomalous hydrometeorological events
that are significantly different from others and induce a bias in the decision-making process related
to design, operation and management of water resources. Hence, it is necessary to extract those
“anomalous” knowledge that can provide valuable and useful information for future hydrological
analysis and forecasting from hydrological data. This paper focuses on the problem of detecting
anomalous patterns from hydrological time series data, and proposes an effective and accurate
anomalous pattern detection approach, TFSAX_wPST, which combines the advantages of the Trend
Feature Symbolic Aggregate approximation (TFSAX) and weighted Probabilistic Suffix Tree (wPST).
Experiments with different hydrological real-world time series are reported, and the results indicate
that the proposed methods are fast and can correctly detect anomalous patterns for hydrological time
series analysis, and thus promote the deep analysis and continuous utilization of hydrological time
series data.

Keywords: hydrological time series; anomalous pattern detection; Variable Markov Model; TFSAX;
weighted Probabilistic Suffix Tree

1. Introduction

In the era of Big Data, new satellite, space, airborne, shipborne and ground-based remote sensing
systems, as well as Internet of Things (IoT) devices, are ubiquitous, producing data rapidly and
continuously, which lead to hydrological time series being acquired at a breathless pace, both in size
and variety [1,2]. However, due to measurement/manual operation errors, instrument failure, changes
in natural laws caused by human activities or hydrological evolution, there is a large number of
“anomalous” data in hydrological time series. Undoubtedly, those “anomalous” data will significantly
affect the models related to flood forecasting and hydrological analysis, and lead to potentially
incomplete or inaccurate results [3]. Therefore, detecting those “anomalies” in hydrological datasets is
becoming an important and urgent task for hydrology and information researchers [4].

Anomalies are individuals that behave in an unexpected way or feature abnormal properties [5].
According to the literature [6,7], anomalies in time series can be divided into point anomalies and
pattern anomalies, and the problem of finding those unexpected individual points or patterns is
referred to as anomaly detection. For hydrological time series data, many researchers have proposed
different anomaly detection algorithms from different application aspects to address “anomalous”
variables [8–15]. However, those methods pay more attention to detect point anomalies to improve
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hydrological data quality rather than mine potentially meaningful pattern anomalies within a given
time series.

Pattern anomalies in hydrologic time series may be related to disastrous hydrometeorological
events (flood or drought) within a period of time [16]. Therefore, detecting and analyzing pattern
anomalies in hydrological time series is helpful to discover the law of a hydrological process, to provide
decision support for early warning and prevention of flood and drought disasters, and to reduce
economic and social losses. However, there are very few studies focusing on hydrological time series
pattern anomaly detection. Moreover, due to the fact that the nature of the time series and anomalies
are fundamentally divergent in different domains, it is hard to apply those pattern anomaly detection
algorithms that are effective in other areas [17–22] to the hydrology field.

Therefore, this paper proposes a novel pattern anomaly detection algorithm, TFSAX_wPST, to
detect hydrological time series pattern anomalies. The algorithm first uses the Trend Feature Symbolic
Aggregate approximation (TFSAX) [23] to discretize original time series into symbolic time series,
then proposes the weighted Probability Suffix Tree (wPST) to construct the symbol sequence obtained
by the above steps, and thus top-k pattern anomalies are analyzed and verified from the candidate
pattern anomalies set based on the sequence that was pruned during the wPST construction process.
Experimental results show TFSAX_wPST can accurately detect pattern anomalies in hydrological time
series and thus provides technical and application support for hydrological time series data analysis
and decision-making.

2. Related Work

2.1. Time Series Pattern Anomaly Detection

A time series pattern anomaly represents a pattern with anomalous behavior that is significantly
different from other patterns within a given time series. Generally, a pattern may contain a collection
of data instances, where each single data instance is not anomalous; however, the combination of them
may be an anomaly and implies more important information [6]. For example, it may be a normal
condition if the mean daily water level of a station on some day of July is lower than its mean water
level over the same period in history. But it may indicate an anomalous pattern (drought event) when
the mean daily water level of all 31 days in July at this station is lower than its mean water level over
the same period in history. Therefore, detecting and analyzing pattern anomalies that contain more
interesting information is more meaningful and valuable [6].

A time series pattern (TSP) represents a certain characteristic trend within a given time series,
which may be a statistical characteristics metric (e.g., maximum, minimum or mean values of a segment)
or mathematical transformation (e.g., Fourier transform). Formally, given a time series TS, the pattern
of TS can be formally represented as a pattern–time tuple:

TS = <(m1, t1), (m2, t2) . . . (mi, ti) . . . (mN, tN)> i = 1,2 . . . N (1)

where tuple (mi, ti) indicates that the pattern of TS is m1 during 0–t1, m2 during t1–t2, mN during
tN − 1–tN, and so on and so forth.

Researchers use Novelty Pattern, Surprise Pattern, Discord, Novel Event and Aberrant Behavior to
describe anomaly patterns, and thus design window-based [6,24], similarity-based [25,26], symbolic
representation-based [21,27] and model-based [28–31] algorithms to detect the tuples (mi, ti) on a given
time series TS that met the definition of the pattern anomaly based on different application areas and
purposes [32].

Wan [33] proposed the FP_SAX (Feature Points Symbolic Aggregate Approximation) approach to
improve the selection of feature points, and then detect those patterns that have the top-k distance
measured by Symbol Distance-based Dynamic Time Warping (SD_DTW) as anomalous patterns on
hydrological time series. Zhang [34] proposed the distance-based anomalous patterns detection method
by improving the selection of feature points in FP_SAX [33] and its distance measurement method.
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Those approaches have a lower fitting error and higher accuracy in the task of anomalous hydrological
time series patterns mining, but how to choose a proper number (N) of feature points and the anomaly
determination threshold will affect the detection accuracy and results of the algorithm. Wu et.al [35]
used the quantile perturbation method (QPM) to reveal rainfall time series anomalies and changes over
the Yellow River Basin due to the fragile ecosystem and rainfall-related disasters. The QPM method
is a tool for analyzing extreme values and effective for the identification and analysis of extreme
meteorological events. However, it is relatively weak for the detection of ordinary anomalous events.

For detecting pattern anomalies in time series, some existing methods in the literature reduce the
problem to a point anomaly detection problem before solving it [11]. In some other methods, pattern
anomalies are detected by using different machine learning and data mining approaches [3]. Markov
Models (MM) [36] and their variants [29,31] are the popular machine learning approaches extensively
used for pattern anomalies detection in time series. In the next section, we briefly study PST-based
anomaly detection approaches.

2.2. PST-Based Anomaly Detection

The Markov model is a powerful finite state machine and widely used in sequence modeling.
The Markov approaches are used in several studies to solve anomaly detection problems with the
idea that an odd behavior might be represented not only by a single observation, but also by a series
of consecutive observations [36]. The Probabilistic Suffix Tree (PST) is a compact representation of
the Variable Order Markov Model (VMM) and uses a suffix tree as its storage structure. It originally
comes from Probabilistic Suffix Automata (PSA) [37] and is believed to have a more memory efficient
representation than the PSA. Hence, it has been used in several domains as an efficient approach for
classifying sequences [38,39].

Figure 1 is an example of a PST corresponding to string s1: abbabbabaaba over the alphabet Σ = {a, b}
and tree depth L = 2. In PST, each edge is labelled by a unique symbol σ in Σ. Each node has at most two
(|Σ|) children and records a string representing a path from the node to the root. The node also records
a probability distribution vector corresponding to the conditional probabilities of seeing a symbol
right after the label string in the dataset [40]. PST models the normal behave using the maximum
likelihood criterion likelihood ratio. For a given sequence S and its PST T, the total likelihood-ratio of
the observations can be expressed mathematically as L = Pr (S|T). If the probability of the observation
sequence given the model has the largest likelihood ratio (or exceeding a certain preset threshold θ),
then an anomaly is detected [29,41].
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However, PST is a sequence statistical model based on VMM. It inherits the shortcomings, such
as losing important sequence information and reducing detection accuracy of the VMM in anomaly
detection tasks [42]. For subsequence A: abbabbabaaba, and B: abbabaaaaaaa, the probability that seeing a
right after event ab in subsequence A (PA(a|ab)) is equal to that of subsequence B (PB(a|ab)). However,
the frequency of event ab occurring in A (PA(ab) = 4/11) is higher than that in B (PB(ab) = 2/11). Hence,
if it only uses probability to represent the sequence for anomaly detection tasks, it may lead to an
erroneous analysis result.
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Therefore, we propose a novel wPST model to better descript and accurately distinguish different
time series sequences; thus, we give here a formal definition for pattern anomaly based on wPST to
define the detection boundary and detection target for our anomaly detection algorithm.

3. A Novel Time Series Anomaly Detection Approach TFSAX_wPST

In this section, we propose a novel time series pattern anomaly detection approach, TFSAX_ wPST.
Firstly, we propose a novel wPST model as the structure to store symbol sequences and give a formal
definition for a hydrological time series pattern anomaly based on wPST. Then, we conduct a novel
time series anomaly detection approach TFSAX_wPST to detect pattern anomalies within a given
hydrological time series. TFSAX_wPST can be performed as in Figure 2.
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(1) Anomaly Definition: As the basis of anomaly detection, the anomaly definition determines the
object of the detection algorithm, the accuracy and interpretability of detection results. Therefore, we
give a pattern anomaly definition based on our wPST model.

(2) Anomaly Detection: Based on the wPST model and our previous research work, TFSAX, we
propose a novel TFSAX_wPST algorithm to detect those patterns that meet our definition within given
time series.

3.1. Time Series Pattern Anomaly Based wPST Model

The wPST model is an improvement of the PST model. It increases the model frequency weight of
the subsequence corresponding to a node to distinguish different sequences accurately. For a given
sequence, its wPST model can be defined as follows:

PT(s)= PT(σi|σ1σ2 . . . σi−1) × wi (2)

where wi is the frequency weighting of the subsequence σ1, σ2 . . . σi − 1.
Figure 3 shows the wPST model of the sequence s1 in Figure 1. Compared to PST, each node in

the figure stores the conditional probability distribution vector of the subsequent symbol as well as the
frequency weight corresponding subsequence, and thus can better present the feature information of
the sequence.
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The representation of a TSP is a trend feature over a period of time, such as a rising, a stable or a
falling subsequence. Moreover, a time series TS of length n can be treated as a plurality of subsequences
of length m (m <<= n); each subsequence has its own trend feature as well as the overall trend features
of the original sequence. Therefore, the pattern features between different subsequences are closely
related to the temporal trend of the sequence. For these reasons, this paper gives the definition of the
hydrological time series anomaly subsequence and time series pattern anomalies based on the physical
mechanism as below.

Definition 1. Time series anomalous subsequence.

Given a time series TS, the event sequence set is Σ, the subsequence s, and the subsequent events σ
of s (σ = suffix(s) & σ∈Σ). Let Prmin and MinCt represent the predefined minimum occurrence probability
and minimum occurrence number for the conditional occurrence probability of σ under the condition
of s, respectively. If the conditional occurrence probability of σ under the condition of s is satisfied:

(1) Pr (σ|s) < Prmin and
(2) occ_num(σ) ≤MinCt,

then, it can define sσ to be an anomalous subsequence on time series TS.
As it can be seen from Definition (1), for a given time series TS, the smaller the probability of sσ

occurring under the condition of s occurring, the higher the anomaly probability of sσ is. Therefore,
the top k subsequences with the smallest occurrence probability (or occurrence number) are the top_k
anomaly subsequences.

Definition 2. Time series anomaly pattern.

The time series pattern anomaly is a pattern consisting of one or a series of consecutive anomalous
subsequences within a given time series.

3.2. TFSAX_wPST Algorithm

3.2.1. TFSAX Representation

TFSAX is our previous work to extend the SAX representation. TFSAX employs the sequence
mean feature and trend feature to represent the time series, and thus overcomes the shortcomings of
SAX that only uses the mean values to describe the original time series. It can be obtained as follows:

Step 1: Normalization. Transform the original time series TS into the normalized time series TS′

with a mean of 0 and standard deviation of 1.
Step 2: Dimensionality reduction. Use the PAA (Piecewise Aggregate Approximation)

approach [43] to divide time series TS′ into w equal-sized segments, then extract the mean feature and
trend feature of each segment.
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Step 3: Discretization. According to the breakpoints lookup table, choose alphabet cardinality,
obtain the Trend Feature Symbolic Representation of the original time series and discretize TS′ into
symbols, denoted by TS.

For more detailed information about TFSAX, please refer to our previous research work [23].

3.2.2. wPST Construction

The construction of wPST starts from a subsequence with a single element. It first initializes
an empty wPST containing only one root node, and then iterates through all possible subsequences,
with the length varying from 1 to L. For each to be checked subsequence s, its occurrence time should
be greater than MinCt; then, continue to search the subsequent symbol σ (σ∈Σ) of s and count the
occurrence times of sσ and σs to determine whether σ needs to be constructed in wPST; otherwise,
discriminate all the subsequences, beginning with s, as being pattern anomalies, and stops searching.

To improve the algorithm’s efficiency, this approach uses the hash map data structure at each
level to search and update the information of each node before and after a segment in the sequential
database. For example, assume that we are at level 2 and the alphabet is {a, b}. Then, without
pruning, the hash.keys at level 2 are all the possible 2 combinations of the alphabet:{aa, ab, ba, bb}.
These combinations are lexicographically ordered, and the orders are stored at hash.values. Thus, the
hash.values are {0, 1, 2, 3}. Now, the hash.key, hash.value combination is used as an index to the arrays
Abefore and Aafter. Moreover, The arrays’ size is the size of the alphabet, and the value of each element
of Abefore is the current count of σs′, where s′ is the element of hash.keys and σ is a character in the
alphabet. Similarly, Aafter will store the count of s′σ. Thus, we can update all the counts at each level of
the tree after one scan. After a level of the wPST is constructed, the current hash map is destroyed
and a new hash map for the next level is initialized. For example, assuming that we have a sequential
database consisting of one sequence {abba}, in one scan we can update the counts of ab→ b, a← bb,
bb→ a and b← ba. The formal description of constructing wPST is shown in Algorithm 1.

Algorithm 1 wPST construction. Build_wPST(S,H)

Input: Sequence S, Maximum depth H
Output: wPST T

1. Initialize: T← root; k = 0;
2. k = 1, S1← {σ |σ∈Σ ∧ occ_count(σ) > 0}
3. HM1← HASHMAP(S1)
4. While k≤ H Do
5. Foreach (s′∈Sk)
6. Abefore[|Σ|], Aafter[|Σ|]←0;
7. For i = 1 to len(s) –k + 1
8. ForEach (s[i,i + k−1] ∈ S)
9. If s[i,i + k−1] ∈ HMk.keys then
10. Update(occ_times(s[i,i + k−1]));
11. ForEach(σ∈Σ | |σ′∈Σ)
12. If (s[i + k] =σ) then Update(Aafter(s[i + k]));
13. If (s[i−1] =σ′) then Update(Abefore(s[i−1]));
14. ForEach (s′∈ Sk)
15. T.Add(represent(u, s′));
16. w(represent(u, s′)) = occ_times(s′)/(len(S)-k);
17. ForEach (σ∈Σ)
18. compute Pr(σ|s′) using Aafter;
19. smooth Pr(σ|s′);
20. Mine_candidate_Anomaly (T, MinCt, Prmin);
21. HMk + 1← HASHMAP(Sk + 1);
22. Return T
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3.2.3. Candidate Anomalies Pattern Set Generation

Theoretically, the number of entries in the hash map on the Lth level of wPST is |Σ|L − 1 without
pruning while wPST is constructed. Therefore, the total complexity of this implementation is O(NmL)
+ O(L × |Σ|L − 1) [29]. Thus, we can prune the wPST by using Prmin or MinCt, which only increases
the number of nodes exponentially at first a few levels and then decreases and converges to some
constant C. However, using the Prmin or MinCt to perform the pruning operation during the wPST
construction process may result in the loss of the anomalous subsequence. In order to solve the
above problem, this paper proposes a strategy to put the sequence corresponding to the node whose
occurrence number is less than MinCt or occurrence probability is less than Prmin into the candidate
pattern anomalies set, and then analyzes and mines the candidate set to obtain pattern anomalies that
meets the user’s requirements.

During the wPST construction process, each node of the wPST stores the occurrence number of the
string traversing from the root to this node, the occurrence probability of the node and the probability vector
of the subsequent nodes. Hence, it only needs to analyze the node to determine if the sequence is a pattern
anomaly or not during the wPST tree construction process; that is, if the sequence whose occurrence number
is less than MinCt or the occurrence probability is less than Prmin, then it puts the node corresponding to the
sequence and all its descendant nodes into the candidate pattern anomalies set. The formal description of
the candidate anomaly mining algorithm Mine_Candidate_ Anomaly is shown in Algorithm 2.

Algorithm 2 Candidate anomaly pattern mining. Mine_Candidate_Anomaly (wPST T, int MinCt, real Prmin)

Input: wPST T, MinCt, Prmin
Output: candidate pattern anomaly set cpas

1. Initialize: cpas←∅
2. ForEach represent(u,X) ∈T
3. occ_times(u).Cal(); Pr (suffix(u)). Cal ();
4. If (occ_times(u) < MinCt || Pr (u) < Prmin)
5. caps.Add(represent(u,X));
6. caps.Add(descendants (represent(u,X)));
7. T.Prune(represent(u,X));
8. T.Prune(descendants (represent(u,X)));
9. Return caps

3.2.4. Pattern Anomalies Verification

Generally speaking, pattern anomalies have a higher probability coming from the candidate
pattern anomalies set caps. However, there may be some special pattern anomalies that are not in
the cpas; in addition, the cpas may also have partially redundant pattern anomalies. Hence, it is
necessary to mine and analyze the cpas to obtain the pattern anomalies. The pattern anomalies mining
mainly include:

(1) Pattern filtering: for pattern s1 corresponding to node u and pattern s2 corresponding to node
v in the cpas, if pattern s2 is a substring of the pattern s1, add pattern s1 to the pattern anomalies set pas.

(2) Pattern merging: for pattern s1 corresponding to node u and pattern s2 corresponding to node
v in the cpas, if pattern s1 and pattern s2 have the longest common substring s3; furthermore, s3 is the
true suffix of pattern s1 and pattern s2, then merge pattern s1; (s2-s3) becomes the new pattern s′ and is
added to the pattern anomalies set pas; else add s3 to pas, where ′-′ in (s2-s3) means deleting pattern s3

from s2.
(3) Pattern expanding: for each pattern σisi corresponding to node ui (1 ≤ i ≤ |Σ|) and its parents

node u in wPST, if pattern sσ corresponding to node u does not include in caps but all σisi is included
in caps, prune the parent node u corresponding to pattern sσ from wPST and add sσ to the pattern
anomalies set pas.
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(4) Pattern verifying: for each pattern sσ in cpas, if there exists an alphabet σ′∈Σ, make the
occurrence number of sσ be equal to the occurrence number of sσσ′; that is, the probability that the
event σ′ occurs after the event sσ is 1. Although the probability of event sσ is lower than MinCt, the
occurrence of sσ represents the occurrence of a high confidence event sσσ′. Therefore, sσ cannot be
simply treated as a pattern anomaly and should be deeply verified and analyzed.

(5) Pattern sorting: the probability of sequences corresponding to nodes in different levels of
wPST is different. Generally, if the symbol sequence has the same occurrence number, the closer a
node is to the root, the higher the probability it is to be an anomalous pattern. Thus, for pattern s1

corresponding to node u1 and pattern s2 corresponding to node u2 in the pas, if the occurrence number
of s1 equals the occurrence number of s2 and the node u1 is closer to root than u2, it seems that s1 has a
higher probability to be an anomalous pattern than s2. Therefore, the top-k anomalous patterns can be
gained by using this rule to sort the patterns in pas.

The formal description of the pattern anomalies mining process is shown in Algorithm 3.

Algorithm 3 Anomalies Pattern Mining. Mine_Anomaly (CAPS caps)

Input: candidate pattern anomaly set caps
Output: pattern anomaly set aps

1. Initialize: aps←∅
2. Pattern_Filter(caps);
3. Pattern_Merge(caps);
4. Pattern_Extend(caps);
5. Pattern_Valid (aps);
6. Pattern_Sort(aps);
7. Return aps

3.3. Algorithm Analysis

TFSAX_wPST can be divided into four parts: time series symbolization TFSAX, wPST construction,
candidate pattern anomalies generation and pattern anomalies verification. For TFSAX, it has been
proven to have a slightly more time complexity than SAX, but can achieve better symbolization. For
the second part, it prunes the wPST by using Prmin or MinCt, thus the number of nodes only increases
exponentially at first a few levels and then decreases and converges to some constant C [29]. Therefore,
the total cost of constructing the wPST is approximately equal to O(NmL) + O(L × |Σ|α) + O(LC), where N
is the total length of S, m is the average length of the sequence of S, αis a fixed integer, which depends
upon the pruning parameters (usually less than 4), and C is a constant. Since the probability of pattern
anomalies is small, the number of nodes included in the candidate pattern anomalies set is far less than
|Σ|L −1. Therefore, the time complexity required for candidate pattern anomalies generation and pattern
anomalies mining will be much lower than that of wPST construction. Hence, the time complexity of
TFSAX_wPST is mainly concentrated on TFSAX representation and wPST construction. Theoretically, the
performance and efficiency of our algorithm are effectively improved compared to PST-based methods.

4. Case Studies

In this section, we conduct a set of experiments to show the accuracy and feasibility of our
new approach. Here we choose different datasets (the NWIS dataset and Poyang Lake dataset) for
experiments to prove the generality of our model.

4.1. NWIS Dataset

4.1.1. Research Area

Echeconnee Creek (site number 02214075, location at 32◦41’30.76” N, 83◦42’03.5” E) is an important
water level and flow control station in Peach County, Georgia. It is 9.1 miles from the confluence with
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the Ocmulgee River, 4.4 miles northwest of Byron, GA, and its basin has an area of 228 square miles
(Figure 4). This station is a typical hydrological station in the southern United States. Every year from
July to October, the water level and discharge gradually decrease due to the influence of the Atlantic
monsoon and will fall to the lowest value in September or October. With the increase of precipitation
from November to June of the following year, the water level and discharge begin to rise and will reach
the highest level from January to February. According to historical data, its monthly mean water level
varies from 6.4 feet (September) to 9.3 feet (February) and its monthly mean discharge varies from
76 ft3/s (October) to 452 ft3/s (February).
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Figure 4. Echeconnee Creek station and its location in Georgia, USA.

Therefore, we used hourly water level, discharge and rainfall from 15 November 2010 to
15 November 2013 provided by the NWIS, USGS (NWIS: https://waterdata.usgs.gov/nwis/inventory/

?site_no=02214075&agency_cd=USGS&amp), to verify the feasibility and effectiveness of this algorithm.
The original water level data is shown in Figure 5. It should be mentioned that we used data quality
control methods in the literature [15] and the point outlier detection method in the literature [13] to
perform data quality control and point outlier detection on the original data set, so as to provide
high-quality data for pattern anomalies detection.
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4.1.2. TFSAX Representation

As can be seen from Figure 5, the water level data of Station 02214075 is smooth overall, but
there are still some local “extreme” patterns that are obviously inconsistent with other patterns. In
order to discover those “interesting” information in the series, we first use TFSAX to transform
hydrological time series into symbolic sequence representation. In this experiment, we discretize the
daily monitoring data (including 24 monitoring records with an interval of 1 h) into a mean symbol
and a trend feature symbol representation. Therefore, the experimental time series will be divided
into 1096 sequence segments (the total number of days from 15 November 2010 to 15 November 2013);
that is, w = 1096. According to the TFSAX, the mean and trend feature of the given time series from
15 November 2010 to 15 November 2013 can be represented by 5 and 7 symbols. That means the
number of mean symbols is α = 5, and the number of trend feature symbols is α′ = 7. The character set
represented by the mean and trend feature and their corresponding physical meanings are shown in
Tables 1 and 2.

Table 1. The character sets and their meanings for the mean feature.

Symbol Meaning (Water Level)

A 5.46 ft–7.45 ft

B 7.46 ft–9.43 ft

C 9.46 ft–10.39 ft

D 10.48 ft–13.44 ft

E 13.48 ft−16.56 ft

Table 2. The character sets and their meanings for the trend feature.

Symbol Trend Feature Meaning

a (−90◦–−45◦) water level drops sharply

b (−90◦–−30◦) water level drops rapidly

c (−30◦–−5◦) water level drops slowly

d (−5◦–5◦) water level remains stable

e (5◦–30◦) water level rises slowly

f (30◦–45◦) water level rises rapidly

g (45◦–90◦) water level rises sharply

After TFSAX symbolic representation, the original water level time series containing
1096 × 24 records will be symbolized into a symbol sequence containing 1096 symbols. The TFSAX
representation of the water level time series is shown in Table 3.

Table 3. The TFSAX representation of the daily mean water level of station 02214075.

Symbol Frequency Symbol Frequency Symbol Frequency Symbol Frequency Symbol Frequency

Eb 1 Cc 3 Ea 5 Bf 11 Bd 33

Ee 1 Cf 3 Dc 5 Af 12 Be 37

Ec 1 Eg 3 Df 6 Bb 13 Ae 103

Ab 2 Ag 4 Ba 6 Dg 13 Bc 125

Ef 2 Db 4 Ca 9 Da 7 Ac 149

De 3 Cb 4 Cg 9 Bg 8 Ad 495
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4.1.3. wPST Construction

As shown in Table 3, we can find some pattern anomalies. For example, pattern Eb means the
water level is in state E (high water level between 13.48 and 16.56 feet) and the trend feature is in state
b (the water level drops rapidly, and the trend feature angle is −45◦–30◦) is a rare pattern in the time
series. It will be added to the candidate pattern anomaly set according to TFSAX_wPST. In order to
analyze the symbolized sequence, we used the wPST construction algorithm Build_wPST to construct
the wPST for the sequences shown in Table 3. For the convenience of description, it uses Ad with the
constraint of the depth of tree L ≤ 3 to illustrate the construction of wPST. The constructed wPST is
shown in Figure 6. 11 of 23 
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4.1.4. Detection Results and Analysis

From Figure 6, it can be inferred that the normal subsequent stages of state Ad should be Ac, Ad
and Ae. Hence, it may indicate an anomalous event occurred if state Af or Bg appears right after state
Ad. Here we use the algorithm Mine_Candidate_Anomaly and Mine_Anomaly to detect those patterns
that meet the anomaly pattern definition in Definition (2).

In this experiment, we set parameters Prmin = 0.01 and MinCt = 5. When wPST is constructed, any
node whose occurrence probability is less than Prmin or occurrence number is less than MinCt will be
pruned from wPST. Moreover, the sequences corresponding to those nodes and all of its descendant
nodes will be put into the candidate pattern anomalies set caps. For example, the node AfAd and all its
descendant nodes will be pruned from the wPST shown in Figure 6, and all the sequences that contain
patterns AdAf (e.g., AdAdAf) will be put into the caps.

After caps is generated, we will validate and analyze the patterns in it to determine the final
pattern anomalies. Take AdBg for instance: we checked and analyzed the original data shown in
Figure 5 and find that the pattern AdBgCg corresponds to the anomalous rain event from 15 August
2013 to 17 August 2013 in the Echeconnee Creek basin. On August 15, 16 and 17, the precipitation of
this station was 1.41 in, 0.98 in and 1.45 in, respectively. As a result, the water level sharply rose 2.22 ft,
2.79 ft, 1.27 ft and 1.14 ft on 15 August–18 August, and the water level state represented by TFSAX
changed drastically from Ad to Bg and then to Cg. Our method can quickly and accurately detect the
pattern corresponding to this time series as an anomalous pattern. Similarly, the algorithm can also
detect pattern anomalies, such as AcAe, AcAg, AeBd and AfBg, in a given time series.

The pattern anomalies detected by TFSAX_wPST on the Echeconnee Creek water level time series
data set are shown in Table 4. The analysis of the results and corresponding events verifies that our
method can effectively detect anomalous patterns, and thus provides high-quality data and knowledge
support for subsequent hydrological analysis and application.
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Table 4. Anomalous patterns detected by the algorithm and event descriptions.

Pattern Subsequence Corresponding Event Description

BgCcBa 1 Dec 2010–3 Dec 2010 Daily water level is +1.88, −0.3, −1.19 feet,
respectively.

BgDeDfDgEfEaDaCb 2 Feb 2011–9 Feb 2011
Daily water level is +1.68, +0.24, +1.33/2,
+1.53, + 1.39/2, −1.53, −2.42, −0.8 feet,

respectively.

BfCgDeCaBc 9 Mar 2011–12 Mar 2011 Daily water level is +2.13, +0.36, −2.35,
−0.53 feet, respectively.

CgDgDbDcDfDbDaBbBcBgCfCa 27 Mar 2011–7 Apr 2011
Daily water level is +3.38, +1.6, −0.86,
−0.31, + 0.9, −0.65, −1.74, −0.7, −0.39,
+1.09, +0.61, −1.25 feet, respectively.

BgBcBb 23 Sep 2011–25 Sep 2011 Daily water level is +2.34/2, −0.51, −0.72
feet, respectively.

AgBg
21 Jan 2012–22 Jan 2012

2012.1.21–1.22
Daily water level is +1.3, +1.1 feet,

respectively.

AfCgDfDaBcBb 18 Feb 2012–23 Feb 2012 Daily water level is +0.67, +2.67, +0.79,
−2.1, −0.99 feet, respectively.

BfBgBaBc 26 Dec 2012–28 Dec 2012 Daily water level is +0.65, +1.49, −1.55
feet, respectively.

AgCgCaBaCgDgEeEcEaDaCaBc 7 Feb 2013–18 Feb 2013
Daily water level is +1.87, +1.78, −1.06,
−1.14, +3.19, +3.44, +0.26, −0.32, −1.59,
−2.04, −1.47, −0.57 feet, respectively.

BgDgEgEaDcDcEfEaDaCaBc 22 Feb 2013–2 Mar 2013
Daily water level is +1.14, +2.86, +1.85,
−1.14, −0.2, +1.31, −1.24, −2.1, −1.15,

−0.46 feet, respectively.

CgDgEaDaCb 24 Mar 2013–28Mar 2013 Daily water level is +3.25, 3.18/2, −1.62,
−2.66, −0.88 feet, respectively.

BgDgDaBbBc BgDgEgDaDaBb 29 Apr 2013–9 May 2013
Daily water level is +2.04, +1.91, −1.98,
−0.88, −0.31, +1.05, +2.55, +2.09/2, −1.31,

−2.68, −0.9 feet, respectively.

CgEgDaBa 23 May 2013–26 May 2013 Daily water level is +4.21, +2.1/2, −3.97,
−1.41 feet, respectively.

BgDcBfDgDfDbDaBcDgDfDa 3 Jun 2013–13 Jun 2013
Daily water level is +3.03, −0.24, +0.78,

+2.17, +0.57, −0.8, −1.7, 0.35, +2.42, +0.6,
−3.46 feet, respectively.

BfCfDaDeCaDgDaBa 3 Jul 2013–10 Jul 2013 Daily water level is +0.52, +0.46, −1.25,
+0.25, −1.2, +1.61, −1.16, −1.13 feet,

respectively.

CgDgDfDaBa 12 Jul 2013–16 Jul 2013 Daily water level is +1.97, +1.2, +0.57,
−2.76, −1.11 feet, respectively.

AgBgCaBb 2013.7.31–8.3 Daily water level is +1.01, +2.43, −1.52,
−0.92 feet, respectively.

BgCgDgDgEb 15 Aug 2013–19Aug 2013 Daily water level is +2.22, +2.79, +1.27,
+1.14 feet, respectively.

4.2. Poyang Lake Data Set

4.2.1. Research Area

Poyang Lake (Figure 7), the largest freshwater lake in China, is an important reservoir lake and an
important international wetland in the mainstream of the Yangtze River. It is located on the south
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bank of the middle reaches of the Yangtze River and north of Jiangxi Province. The catchment has a
subtropical wet climate characterized by an annual mean precipitation of 1680 mm and an annual mean
evaporation of 1200 mm. Poyang Lake receives water flows from five rivers: Ganjiang, Fuhe, Xinjiang,
Raohe and Xiushui, and exchanges water with the Yangtze River. Lake storage and lake level variation
is controlled by catchment discharges and interactions with the Yangtze River [44]. From April to June
each year, the lake experiences large water level fluctuations in response to the catchment’s annual
cycle of precipitation. From July to September, it is affected by the backflushing or backwatering of
the Yangtze River to maintain high water levels. In the wet season (April to September), the water
level rises and the lake coverage expands, covering an area of roughly 170 km from the north to the
south and 17 km from the east to the west. The lake shrinks to little more than a river during the dry
season (October to March), exposing extensive floodplains and wetland areas that support migrating
waterfowls and a variety of invertebrate species [45].
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Figure 7. The Xingzi station and its location in the Poyang Lake and Yangtze River.

According to historical data, the multi-annual mean water level of Poyang Lake is 14.01 m; the
monthly mean water level is highest in July (17.59 m) and lowest in January (10.52 m); and the highest
water level appeared on 31 July 1998 (22.59 m), and the lowest appeared on 6 February 1963 (5.90 m).
The Xingzi gauging station is the representative hydrological station of Poyang Lake and situated
in the northern arm of the Lake at about 39 km from the Yangtze River. Typically, when the water
level of Xingzi is below 11 m, it means that Poyang Lake has entered the dry season. Meanwhile, if
the water level of Xingzi Station is above 19 m, it indicates that the water level of the Poyang Lake
exceeds the warning line and is entering the flood season. The monthly mean lake water level at the
Xingzi station from 1953 to 2009 is shown in Figure 8. We also used data quality control methods
from the literature [15] and the point outlier detection method from the literature [13] to perform data
quality control and point outlier detection on the original data set, so as to provide high-quality data
for pattern anomalies detection.
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Figure 8. Monthly mean water level at the Xingzi Station.

4.2.2. TFSAX Representation

The monthly mean water level data of Xingzi Station is smooth overall in Figure 8, but there are
still some local “extreme” patterns that are obviously inconsistent with other patterns. In order to
discover those “interesting” patterns in this series, we first use TFSAX to transform the monthly mean
water level data into a symbolic sequence representation.

In this experiment, we discretize the monthly statistics data (including 30 or 31 records with
an interval of 1 day) into a mean symbol and a trend feature symbol representation. Therefore, the
experimental time series will be divided into 684 sequence segments (the total number of month
from January 1953 to December 2009); that is, w = 684. According to the TFSAX, both the mean and
trend feature of the given time series from January 1953 to December 2009 would be represented by
5 symbols. That means the number of mean symbols is α = 5, and the number of trend feature symbols
is α′ = 5. The character set represented by the mean and trend feature and their corresponding physical
meanings are shown in Tables 5 and 6.

Table 5. The character sets and their meanings for the mean feature.

Symbol Meaning (Water Level)

A 7.28 m–8 m

B 8.01 m–10.99 m

C 11.03 m–15 m

D 15.04 m–19 m

E 19.01 m−21.96 m

Table 6. The character sets and their meanings for the trend feature.

Symbol Trend Feature Meaning

a (−90◦–−30◦) water level drops rapidly

b (−30◦–−5◦) water level drops slowly

c (−5◦–5◦) water level remains stable

d (5◦–30◦) water level rises slowly

e (30◦–90◦) water level rises rapidly

After the TFSAX symbolic representation, the original water level time series containing
684 × 30 records will be symbolized into a symbol sequence containing 684 symbols. The TFSAX
representation of the water level time series is shown in Table 7.
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Table 7. The TFSAX representation of the monthly average water level of the Xingzi station.

Symbol Frequency Symbol Frequency Symbol Frequency Symbol Frequency

Aa 12 Bc 5 Cd 28 De 82

Ab 9 Bd 31 Ce 101 Ea 4

Ac 1 Be 37 Da 50 Eb 3

Ad 4 Ca 89 Db 31 Ed 4

Ba 73 Cb 24 Dc 9 Ee 16

Bb 29 Cc 12 Dd 30

4.2.3. wPST Construction

We can find some pattern anomalies in Table 7. For example, pattern Ba means when the water
level is in state B (dry season, water level is 8–11 m), the trend feature is in state a (the water level
drops rapidly, and the trend feature angle is −90◦–−30◦). It will be a rare pattern in the time series if
the subsequent state of Ba is C (normal, water level is between 11 and 15 m) and the subsequent trend
feature of Ba is e (water level rises rapidly, the trend feature angle is 30◦–90◦). It will be added to the
candidate pattern anomaly set according to TFSAX_wPST.

In order to analyze the symbolized sequence, we used the algorithm Build_wPST to construct the
wPST for the sequences shown in Table 7. For the convenience of description, it uses Bd under the
constraint that the depth of tree L ≤ 3 to illustrate the construction of wPST. The constructed wPST is
shown in Figure 9.

 15 of 23 

 

After the TFSAX symbolic representation, the original water level time series containing 684*30 
records will be symbolized into a symbol sequence containing 684 symbols. The TFSAX 
representation of the water level time series is shown in Table 7. 

Table 7. The TFSAX representation of the monthly average water level of the Xingzi station. 

Symbol Frequency Symbol Frequency Symbol Frequency Symbol Frequency 

Aa 12 Bc 5 Cd 28 De 82 

Ab 9 Bd 31 Ce 101 Ea 4 

Ac 1 Be 37 Da 50 Eb 3 

Ad 4 Ca 89 Db 31 Ed 4 

Ba 73 Cb 24 Dc 9 Ee 16 

Bb 29 Cc 12 Dd 30   

4.2.3. wPST Construction 

We can find some pattern anomalies in Table 7. For example, pattern Ba means when the water 
level is in state B (dry season, water level is 8–11 m), the trend feature is in state a (the water level 
drops rapidly, and the trend feature angle is −90°–−30°). It will be a rare pattern in the time series if 
the subsequent state of Ba is C (normal, water level is between 11 and 15 m) and the subsequent trend 
feature of Ba is e (water level rises rapidly, the trend feature angle is 30°–90°). It will be added to the 
candidate pattern anomaly set according to TFSAX_wPST.  

In order to analyze the symbolized sequence, we used the algorithm Build_wPST to construct 
the wPST for the sequences shown in Table 7. For the convenience of description, it uses Bd under the 
constraint that the depth of tree L ≤ 3 to illustrate the construction of wPST. The constructed wPST is 
shown in Figure 9. 

 

Figure 9. wPST tree representations for event Bd. 

4.2.4. Detection Results and Analysis 

From Figure 9, it can be inferred that state Bd (dry season, water level rises slowly) means the 
water level of Poyang Lake starts to rise slowly and its subsequent patterns is most likely to be Bd, Be  
and Ce. So, it may indicate that an anomalous event occurred if states Bb or Bc appears right after state 
Bd. In order to detect those patterns that meet the anomaly pattern definition in Definition (2), we set 
parameters Prmin = 0.02 and MinCt = 4. 

When wPST is constructed, any node whose occurrence probability is less than Prmin or 
occurrence number is less than MinCt will be pruned from wPST. Moreover, the sequences 
corresponding to those nodes and all of its descendant nodes will be put into the candidate pattern 
anomalies set caps. For example, the node BcBd and all its descendant nodes will be pruned from the 
wPST shown in Figure 9. Meanwhile, all the sequences that contain pattern BdBc (e.g., BdBcBe) will be 
put into the caps. 

Figure 9. wPST tree representations for event Bd.

4.2.4. Detection Results and Analysis

From Figure 9, it can be inferred that state Bd (dry season, water level rises slowly) means the
water level of Poyang Lake starts to rise slowly and its subsequent patterns is most likely to be Bd, Be

and Ce. So, it may indicate that an anomalous event occurred if states Bb or Bc appears right after state
Bd. In order to detect those patterns that meet the anomaly pattern definition in Definition (2), we set
parameters Prmin = 0.02 and MinCt = 4.

When wPST is constructed, any node whose occurrence probability is less than Prmin or occurrence
number is less than MinCt will be pruned from wPST. Moreover, the sequences corresponding to those
nodes and all of its descendant nodes will be put into the candidate pattern anomalies set caps. For
example, the node BcBd and all its descendant nodes will be pruned from the wPST shown in Figure 9.
Meanwhile, all the sequences that contain pattern BdBc (e.g., BdBcBe) will be put into the caps.

After caps is generated, we will validate and analyze the patterns in it to determine the final pattern
anomalies. Take pattern BdCeCc for instance: we checked and analyzed the original data shown in
Figure 8. It shows that the pattern BdCeCc corresponds to the flood event from April to August 1974 in
the Xingzi water level time series. Due to the influence of upper stream inflow from Ganjiang, Fuhe,
Xinjiang, Raohe and Xiushui during the rainy season, the monthly mean water level of Xingzi Station
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soared from 10.13 m in April 1974 to 14.21 m in May, and dropped slightly in June to 14.05 m; then,
in July, it rose to 18.41 m (the highest water level is 20.1 m). Our method can quickly and accurately
detect the pattern corresponding to this time series as an anomalous pattern. Similarly, our algorithm
can also detect other pattern anomalies, such as BdBeBb corresponding to drought events at Poyang
Lake from September 2006 to May 2007, and BdBcCe corresponding to drought events at Poyang Lake
from December 2007 to January 2008.

The pattern anomaly results detected by TFSAX_wPST on the Xingzi water level time series data
set are shown in Table 8. The analysis of the results and corresponding events verifies that our method
can effectively detect anomalous patterns, and thus provides high-quality data and knowledge support
for subsequent hydrological analysis and application.

Table 8. Anomalous patterns detected by the algorithm and event descriptions at the Xingzi station.

Pattern Subsequence Corresponding Event Description

DeEeEeEbEaDaDaCa Mar 1954–Dec 1954 Extraordinary floods in the Yangtze River Basin, monthly mean
water levels are 17.07, 19.84, 21.47, 21.23, 20.24, 18.5, 15.93, 11.48 m

AaAb

Dec 1958–Feb 1959 Extreme drought season, monthly mean water levels are 7.95, 7.48,
11.16 m

Jan 1963–Oct 1963
Drought year, monthly mean water levels are 7.89, 7.45, 8.01, 8.94,

14.99, 14.59, 14.51, 15.45, 15.99, 14.9 m, highest water level occurred
in September

Dec 1971–Mar 1972 Extreme drought event, monthly mean water levels are 7.9, 7.68, 9.4,
9.83 m

Dec 1979–Feb 1980 Extreme drought event, monthly mean water levels are 7.96, 7.76,
8.63, 12.4 m

AaAd

Jan 1965–Apr 1965 Extreme drought event, monthly mean water levels are 7.81, 8, 8.62,
12.31 m

Jan 1968–Apr 1968 Extreme drought event, monthly mean water levels are 7.68, 7.9, 9.1,
13.68 m

Dec 2007–Mar 2008 Extreme drought event, monthly mean water levels are 7.54, 7.72,
8.5, 8.62 m

DbDeEeEbDaCa Jul 1980–Oct 1980 Flood events, monthly mean water levels are 18.03, 19.41, 19.19,
16.26 m

EeEaDaDcCa Jul 1983–Oct 1983 Flood events, monthly mean water levels are 20.85, 19.22, 17.9, 17.77
m

CcEeDa Jun 1968–Aug 1968 Flood events, monthly mean water levels are 14.53, 19.27, 17.71 m

CdCbCaCaCeCdBaBd Jun 1972–Feb 1973 Drought year with a gentle overall trend, monthly mean water
levels are 14.68, 14.55, 13.64, 11.73, 13.25, 13.45, 10.53, 10.98, 10.81 m

BaBbAbBe Dec 1986–Feb 1987 Drought season, monthly mean water levels are 8.84, 8.06, 7.66, 8.34
m

DeEeEdEaDaBa Jun 1998–Nov 1998 Extreme flood event, monthly mean water levels are 17.12, 21.4,
21.96, 20.17, 15.77, 10.98 m

DeEeEaEbDaCa Jun 1999–Nov 1999 Flood events, monthly mean water levels are 16.69, 21.12, 19.63,
19.36, 15.63, 12.89 m

CaBaBaAbAbBe Nov 2003–Mar 2004 Extreme drought event, monthly mean water levels are 8.5, 7.65,
7.28, 9.38 m

EeEd Jul 1996–Oct 1996 Flood events monthly mean water levels are 19.46, 19.97 m

BdCeCcDe Apr 1974–Jun 1974 No rainy season, monthly mean water levels are 10.13, 14.21, 14.05,
15.6 m

BaBaBbBcBaBdBeBbBe Sep 2006–May 2007 Extreme drought year, monthly mean water levels are 10.72, 9.29,
9.05, 9.02, 8.06, 8.28, 10.6, 10.4, 10.98 m
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4.3. Analysis and Discussion

In order to verify the accuracy and efficiency of our method, we conducted three sets of comparative
experiments. We first compared the construction efficiency and detection accuracy of the wPST and
PST models. Then we compared the detection result of our algorithm with other different algorithms.
Lastly, we compared the time complexity of our algorithm with other hydrological time series pattern
anomaly detection algorithms. The following performance metrics—True Positive Rate (TPR), True
Negative Rate (TNR), False Positive Rate (FPR), False Negative Rate (FNR), Accuracy, Precision, Recall
and F1-score and Area Under the Curve (AUC) [46]—were used to evaluate the different approaches.

4.3.1. Construction Algorithm Comparison

Here, we first compared the construction efficiency between the wPST model and the traditional
PST model on the Poyang Lake daily water level dataset. In this experiment, the performance is
measured by the negative log-likelihood of the normal patterns given the observation of the anomalous
patterns. Specifically, we constructed both wPST and PST models from the experimental data with
Markov orders 1, 2, 3, 4 and 5. For each wPST/PST model, we calculate the negative log-likelihood
P (s|T) of the experiment sequence s based on the given wPST/PST model T. The larger the negative
log-likelihood value is, the more dissimilar are the compared sequences. We expect the dissimilarity
between the anomalous patterns and the normal patterns to grow as the memory order grows.

Our results are summarized in Table 9. The empirical results indicate that the sizes of the wPST
model are much smaller than that of the PST model as the order increases. For example, the 5th order
PST model uses 138 states to characterize the experimental dataset, while the 5th order wPST model
only uses 84 states. The negative log-likelihood is the same between a sequence given a wPST model
and a PST model with the same order, since we eliminate nodes that have the same probabilities as
their parent nodes when constructing the wPST models. Therefore, we prefer a wPST model over a
PST model because it is purely data-driven, flexible, and takes less space.

Table 9. Comparison of the wPST vs. PST model.

Approach Order Numbers of Nodes −Log-Likelihood

PST-based

1 10 −0.0152

2 46 −0.0108

5 138 −0.0068

wPST-based

1 10 −0.0152

2 41 −0.0108

5 84 −0.0068

Note that the PST models can be pruned to remove some low probability nodes [29]; which
will lead to information loss. Unlike PST, our approach prunes the low probability nodes and puts
the sequence corresponding to those nodes and all its descendant nodes into the candidate pattern
anomalies set caps, which can improve the accuracy and reduce the false detection rate of our algorithm.

Table 10 shows the confusion matrix obtained when adjusting the threshold MinCt. Based on the
detection performances, the FPR for the wPST model on Poyang Lake dataset is 3.8% when MinCt = 5,
which has the best tradeoff between FPR and TPR. As a comparison, the FPR for the PST model on
Poyang Lake dataset is 21.9% when MinCt = 5, which has the best tradeoff between FPR and TPR. In
addition, the miss rates for the PST and wPST models are 14.3% and 2.3%, respectively. The miss rates
and false alarm rates are both relatively low for the wPST model. The detection results show that our
proposed TFSAX_wPST algorithm is able to detect anomalies with a higher performance than that of
the PST model.
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Table 10. Performances for wPST and PST.

Approach MinCt FNR (Miss Rate) FPR (False Alarm)

PST-Based (order = 5)

1 25.2% 64.9%

2 22.7% 42.5%

5 14.3% 21.9%

10 12.5% 37.6%

wPST-Based (order = 5)

1 12.6% 25.6%

2 8.4% 10.9%

5 2.3% 3.8%

10 5.3% 8.4%

4.3.2. Anomaly Detection Results Comparison

We compared the detection results of our algorithm with PST-based [41], HMM-based [31],
OCSVM [47], FP_SAX-based [33], and Distance-based [34] algorithms on the same datasets. The
detection results computed by the different algorithms on the Poyang Lake dataset are presented in
Table 11. All results reported were averaged over 10 runs of both the representation learning and
detection models.

Table 11. Anomaly detection results for the Poyang Lake dataset.

Metric
Algorithm PST-based HMM-based OCSVM FP_SAX-based Distance-based TFSAX_wPST

Accuracy 0.912 0.928 0.874 0.936 0.947 0.976
Precision 0.926 0.922 0.896 0.927 0.935 0.964

Recall 0.925 0.932 0.902 0.944 0.951 0.969
F1-score 0.926 0.927 0.918 0.935 0.943 0.966

AUC 0.924 0.931 0.915 0.938 0.949 0.971

The comparison results are displayed in the receiver operating characteristic (ROC) [48] curves
shown in Figure 10. By convention, the ROC curve displays sensitivity (TPR) on the vertical axis against
the complement of specificity (1 − specificity or FPR) on the horizontal axis. The ROC curve then
demonstrates the characteristic reciprocal relationship between sensitivity and specificity, expressed
as a tradeoff between the TPR and FPR. This configuration of the curve also facilitates calculation of
the area beneath it as a summary index of the overall test performance. Therefore, the larger the area
under the ROC curve, the better the performance of the technique is. 20 of 23 
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Figure 10 reveals the AUC obtained from the different algorithms. For experimental datasets,
the AUC of the proposed algorithm are satisfactory and stable. These facts support the idea that our
algorithm can effectively and accurately detect pattern anomalies and get better performances than
that of OCSVM, HMM-based, PST-based, FP_SAX-based and Distance-based algorithms. This result is
expected since the trend feature of the series is taken into account during the time series symbolization
process TFSAX. Furthermore, we propose the improved probability suffix tree wPST to store the symbol
sequence after TFSAX symbolization. Meanwhile, putting the symbol sequences pruned during the
construction of wPST into caps rather than discarding them directly avoids information loss, which
will improve the performance and efficiency of the algorithm.

4.3.3. Computational Complexity Comparison

One important aspect of anomaly detection is efficiency. In the hydrological field, it is important
to ensure that the pattern anomalies are computed in a short amount of time and with a minimum
delay. In this section, we compare the execution time of the TFSAX_wPST, FP_SAX-based [33] and
Distance-based [34] algorithms along with the increase of the length of sequences on the Poyang Lake
daily water level. The comparison results are shown in Table 12 and Figure 11.

Table 12. The execution time of different approaches.

Num Time Sequence Lengths Total Length FP_SAX-based Distance-based TFSAX_wPST

1 Jul–Aug 62 3534 0.372 s 0.324 s 0.264 s

2 Jun–Aug 92 5244 0.719 s 0.708 s 0.532 s

3 Jun–Sep 122 6954 1.133 s 1.012 s 0.793 s

4 Jun–Oct 153 8721 1.471 s 1.274 s 0.946 s

5 May–Oct 184 10,488 2.641 s 2.416 s 1.387 s

6 Apr–Nov 244 13,908 3.325 s 2.782 s 1.764 s
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From Table 12 and Figure 11, we can see that the execution time of TFSAX_wPST is obviously less
than that of the FP_SAX-based method [33] and Distance-based method [34]. The main reason is that
the FP_SAX-based method and Distance-based methods need to measure distance between patterns
and result in relatively high time complexity. As discussed in Section 3.3, the time complexity of our
approach is mainly concentrated on TFSAX representation and wPST construction. The time of TFSAX
symbolization is slightly better than that of FP_SAX, but our algorithm does not need to calculate the
distance between patterns, so the time complexity is greatly improved.
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5. Conclusions

In this paper we have conducted in-depth research on time series anomaly patterns and their
detection algorithms; particularly, a detailed analysis of the framework, advantages and disadvantages,
as well as an improvement strategy for the wPST-based approach. Combining with the field of
hydrology, we proposed an effective and accurate anomaly pattern detection approach TFSAX_wPST
for hydrological time series. At present, it mainly uses a distance-based approach to detect anomalous
patterns in hydrological time series; however, the time complexity to calculate the distance between
each pattern is very high. In this work, we combined symbolization (TFSAX) of time series with the
VMM model (wPST). Then, a new approach that is suitable for hydrological time series anomalous
pattern detection is put forward, which makes the detection results accurate and efficient.

There are some parts that remain to be improved in the future. Firstly, in the candidate pattern
anomalies mining step, the threshold Prmin or MinCt to prune the wPST is based on the experience of
previous experiments. In the future we should consider a more scientific way of evaluation, which
achieves the optimal value of Prmin or MinCt. Secondly, compared to the fixed-length segmentation
method TFSAX, how to use variable-length segmentation to represent time series for hydrological
feature extraction is a more meaningful and interesting question. Finally, our approach mainly analyzes
univariate time series anomalous pattern detection; therefore, how to apply this approach to detect
multivariate hydrological time series anomalous patterns is a topic for future research.
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