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Abstract: Vegetation coverage variation may influence watershed water balance and water resource
availability. Yarlung Zangbo River, the longest river on the Tibetan Plateau, has high spatial
heterogeneity in vegetation coverage and is the main freshwater resource of local residents and
downstream countries. In this study, we proposed a model based on random forest (RF) to
predict the Normalized Difference Vegetation Index (NDVI) of the Yarlung Zangbo River Basin
and explore its relationship with climatic factors. High-resolution datasets of NDVI and monthly
meteorological observation data from 2000 to 2015 were used to calibrate and validate the proposed
model. The proposed model was then compared with artificial neural network and support vector
machine models, and principal component analysis and partial correlation analysis were also used for
predictor selection of artificial neural network and support vector machine models for comparative
study. The results show that RF had the highest model efficiency among the compared models.
The Nash–Sutcliffe coefficients of the proposed model in the calibration period and verification period
were all higher than 0.8 for the five subzones; this indicated that the proposed model can successfully
simulate the relationship between the NDVI and climatic factors. By using built-in variable importance
evaluation, RF chose appropriate predictor combinations without principle component analysis or
partial correlation analysis. Our research is valuable because it can be integrated into water resource
management and elucidates ecological processes in Yarlung Zangbo River Basin.

Keywords: NDVI; Yarlung Zangbo River; machine learning model; random forest

1. Introduction

Vegetation is produced as a result of the interactions among factors such as soil, atmosphere,
and moisture [1]. Vegetation is affected by climate because of biophysical responses such as plant
respiration, photosynthesis, and evapotranspiration [2]. Recent research found that vegetation
plays a key role in future terrestrial hydrologic response, and understanding water stress is of the
utmost importance for properly predicting future dryness and water resources [3]. Changes in
global climate and associated effects on vegetation condition have received an increasing amount
of attention [4]. Among such research, the Normalized Difference Vegetation Index (NDVI) is
frequently used to monitor changes in vegetation conditions, because of its close relationship with
photosynthetically active radiation, which is absorbed by photosynthesizing tissues [5,6]. With the
improvement of remote sensors, the NDVI has been widely applied in continental and regional
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research [7]. Continuous NDVI datasets make it possible to trace vegetation conditions changes
and explore the underlying climate factor-associated mechanisms [8,9]. The NDVI has been widely
exploited to monitor and quantify drought disturbance in semiarid and arid regions with low values
corresponding to stressed vegetation [10,11]. As a known covariate with other environmental variables,
the NDVI was also applied to soil-loss-prone area identification [12,13], wetland delineation [14],
irrigation and soil salinity management [15]. Therefore, quantifying the relationship between NDVI
and climate factors, and predicting the NDVI trends will help effectively guide regional water resource
managements [16,17].

Yarlung Zangbo River, the longest river on the Tibetan Plateau, has high spatial heterogeneity in
vegetation conditions and is the main freshwater resource of local residents and downstream countries.
As one of the most important ecosystems in the Tibetan Plateau, the vegetation conditions of the Yarlung
Zangbo River Basin (YZRB) have a significant impact on the water balance and biological population of
the Tibetan Plateau and surrounding areas [17]. Because of the influence of the plateau’s high altitude,
YZRB vegetation is extremely fragile and sensitive to global climate change. In recent years, statistically
significant warming and intensive drought were observed in the YZRB [18], where the cultivated land
accounts for about 62.89% of the area of the Tibet Autonomous Region [19]. Soil erosion is another water
resources problem of YLZB, where the vegetation conditions play an important role [20]. Moreover,
the changes in vegetation cover also influence the water availability of the YLZB [21,22]. Therefore,
investigating and modelling the vegetation responses to climate changes is of great significance to
the water resource management of YLRB and the water governance of the transboundary rivers [23].
Han et al. explore the relationship between the NDVI and the meteorological variables of the YZRB [24].
Liu et al. analyzed the spatiotemporal patterns of vegetation during 1998–2014 using the NDVI [25].
Sun et al. investigate the spatial heterogeneity of changes in vegetation growth and their driving
forces using the NDVI of the YLZB [26]. Based on these researches, an NDVI prediction model that
incorporates a comprehensive understanding of the climate–vegetation–hydrology relationships could
be important for integrated water resource management.

A large amount of studies have been devoted to exploring the response of the NDVI to
precipitation and temperature on regional and global scales, which are the most common climate
factors [27,28]. Most of the studies adopted linear methods, such as partial correlation coefficient [29],
complex correlation coefficient [30] and linear regression [31]. Due to the complexity of ecosystem
and the uncertainties of vegetation dynamics, nonlinear modes, especially machine learning models,
attached the attention of researchers [32–35]. Moreover, because the climate and topography show
high heterogeneity from upstream to downstream regions [36,37], it puts forward higher requirements
on the universal abilities of prediction models in the YZRB. Furthermore, because of the diversity
of ecosystems and climate characters, the correlation between NDVI and climate are diverse in
different regions [38]. Therefore, predictor selection is also a challenge for NDVI prediction models.
Recently, random forest (RF) has received substantial attention in water resource research [39,40]. RF is
advantageous because it can handle large datasets and undergoes predictor selection using a built-in
variable importance evaluation method [41,42]. Therefore, RF should be highly suitable for the NDVI
prediction of the YZRB. This is the first time RF has been applied to explore the complex relationship
between the NDVI and climatic factors to the best of our knowledge.

The objective of this study was to propose feasible NDVI prediction models for the YZRB on
the subzone scale. RF was adopted to simulate the relationships between NDVI and climatic factors.
A comparison was then conducted between the RF and Artificial Neural Network (ANN) and Support
Vector Machines (SVM) models. For comparative study, principal component analysis (PCA) and
partial correlation analysis (PAR) were used for predictor selection of the models. This research will
improve our knowledge on the climate–vegetation–hydrology relationships of the YZRB, which is an
important high-altitude continental plateau basin.
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2. Materials and Methods

2.1. Study Area

The Yarlung Zangbo River is the largest river on the Tibetan Plateau and one of the most important
international rivers [43]. It originates from the Jemayangzong Glacier in southern Tibet and has a total
length of 2229 km and its drainage area is 2.42 × 105 km2 [44]. This river is one of the highest rivers
in the world, with an average elevation of above 4600 m, and tilts from the west to the east, with an
average slope of 2.6◦ [21]. The Yarlung Zangbo River has six major tributaries (the Dogxung Zangbo,
Nyangqu, Lhasa, Nyang, Yigong Zangbo, and Purlung Zangbo Rivers). The locations of the YZRB and
its tributaries are shown in Figure 1.
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Figure 1. Location of the Yarlung Zangbo River Basin (YZRB) and its five subzones.

Because of the unique topographic characteristics and high altitude of the plateau, the vegetation
and ecological environment of the YZRB are relatively fragile and complex [23] and show obvious
changes from upstream to downstream [45]. According to the China Vegetation Atlas (Figure 2),
the upstream region is located in an arid zone that is dominated by alpine grassland and meadows [46].
With decreasing elevation, the midstream transitions into a continental climate and is mainly covered
by alpine grassland and meadows, and the cultivated vegetation slightly increases. The lower reaches
of YZRB have a subtropical climate and are mainly covered by coniferous and broadleaf forests.
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Yarlung Zangbo river has more than 130 tributaries, which is larger than 100 km2, and its major
tributaries include Nianchu River, Lhasa River, Nyang River, and Parlung Tsangpo. By considering
the hydrological and vegetation similarity, which is shown in Figures 1 and 2, the YLZB is divided
into 5 subzones in the research. The area and vegetation conditions of the five subzones are shown in
Tables 1 and 2.

Table 1. Name and area of the subzone.

Subzone Watershed Name Area (km2)

1 Upper reaches of the Yarlung Zangbo River 70,048
2 Nianchu River 43,741
3 Lhasa River 31,571
4 Parlung Zangbo 26,574

5
Nyang River 66,543

Lower reaches of the Yarlung Zangbo River

Table 2. Proportion of different vegetation types in each subzone.

Subzone 1 2 3 4 5

Cultural Vegetation 0.29 2.49 1.41 0.11 2.43
Alpine Vegetation 32.71 26.26 20.81 26.65 21.8
Broadleaf Forest 0 0 0 0.38 15.73

Needle leaf Forest 0 0 0 19.23 16.13
Meadow 49.23 48.82 53.86 11.48 8.85
Steppe 11.86 12.79 7.69 0 1.6
Scrub 3.44 8.34 13.97 23.69 30.47
Others 2.48 1.29 2.25 18.46 3

total 100 100 100 100 100

2.2. Data Description

A quality-controlled NDVI remote sensing product (MOD13A3) is selected in this study,
obtained from the observation of MODIS (Moderate Resolution Image Spectroradiometer) data
provided by NASA, spanning 16 years (February 2000 to December 2015). MOD13A3 is the third
level product, based on the secondary product, corrected the edge distortion (Bowtie effect) produced
by the sensor imaging process. The spatial resolution of the product is 1.1 km × 1.1 km, while the
time resolution is monthly. The data were processed into the Geostationary Earth Orbit Tag Image
File Format (GEO TIFF) by MODIS Reprojection Tool (MRT) software and processed by ArcGIS
projection splicing. The monthly mean air temperature and precipitation data covering 2000–2015
from 30 meteorological stations located in the YZRB were collected from the China Meteorological
Data Network. The locations of the meteorological stations are shown in Figure 1.

2.3. Methodology

2.3.1. Random Forest

RF was first proposed by Breiman (2001) [47] as an ensemble learning method that can be used
in both classification and regression tasks. The model is considered capable of dealing with small
sample sizes and high-dimensional correlation relationships [47]. RF is also advantageous because of
its robustness; it does not easily lead to overfitting or provide biased estimates when predictors that do
not add information are used [48].

RF includes a group of classification and regression decision trees (CARTs) that are unpruned and
generated by bootstrap sampling and random variable selection. The RF algorithm can be divided
into the following steps. First, the training dataset is randomly extracted from the original dataset by
bootstrap resampling. Second, the CARTs are established for each training set. Compared with the



Water 2020, 12, 1433 5 of 12

traditional CART method, RF selects random feature combinations to split each node, and each CART
grows to the maximum extent without any pruning. Finally, the RF output is obtained by voting in
classification mode or averaging in the regression mode of all of the CART predictions.

RF provides a built-in cross-validation process that occurs in parallel with the training procedure
for the out-of-bag (OOB) samples, which are not chosen by the bootstrap process. RF can evaluate
variable importance by randomly permuting these variables and observing the difference in model
performance using OOB samples. At the end of procedure, RF obtains variable importance by averaging
these differences, which is then normalized by the standard deviation.

2.3.2. Model Implementation and Validation

The RF is utilized to simulate the nonlinear relationship between the NDVI and climate factors
in the 5 subzones. The monthly area-averaged NDVI datasets for each subzone were obtained by
calculating the average values of each pixel. The monthly area-averaged precipitation and temperature
of 5 subzones were obtained from actual data. For model development, the monthly average NDVI
datasets and monthly area precipitation and temperature datasets of each subzone are divided into
two datasets. The datasets from 2000 to 2009 were used for model calibration, and those from 2010 to
2015 were used for model validation.

Two machine learning models, ANN and SVM, which were previously used for NDVI
prediction [49,50], were selected to compare with RF performance. A three-layer back propagation (BP)
ANN model was used in this research. The BP method has been the most widely used algorithm to
design multiple layer neural networks, and has also been successfully used for NDVI prediction [16].
SVM was the first classification machine learning algorithm and was proposed by Vapnik, and then
gradually derived to the regression algorithm [51]. SVM has been widely used for hydrological
prediction, and most recently for NDVI prediction. In this research, SVM with linear kernel function
was used, which has been widely used in former studies.

One of the most important steps in the development of machine learning prediction models is
the choice of appropriate predictors. Due to the spatial heterogeneity of the vegetation in the YLZB,
the relationships between the NDVI and climate factors are different in the 5 subzones. Therefore, it is
important to choose appreciate climate factors as predictors in NDVI prediction. In previous studies,
PCA and PAR were used for predictor selections of ANN and SVM models. For comparative study,
here, PAR and PCA were both used for predictor selection of the ANN and SVM models [52]. For PCA,
the climate factors are standardized by subtracting the mean from the original values and then dividing
the results by the standard deviation of the original variables. The PCA method is then applied to the
standardized climate factors to extract principal components (PCs) that are orthogonal. The obtained
PCs preserve more than 90% of the variances that are selected as predictors. Then, the PCs are used in
the ANN and SVM modeling, and these results are marked as, ANN-PCA and SVM-PCA. For PAR,
climate factors with a partial correlation coefficient greater than 0.3 were selected as predictors, and the
corresponding results are marked as ANN-PAR and SVM-PAR.

2.3.3. Model Evaluation Index

The mean absolute percentage error (MAE), Nash–Sutcliffe coefficient (NASH), root mean square
errors (RMSE), and correlation coefficient (R) statistical indicators were used to assess the predictive
performance of the ANN, SVM, and RF models. MAE, NASH, RMSE, and R were defined as:

NASH = 1−

n∑
i=1

(Yi,obs −Yi,sim)
2

n∑
i=1

(Yi,obs −Yobs)
2

,
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RMSE =

√√√√ n∑
i=1

(Yi,obs −Yi,sim)
2

n
,

MAE =

n∑
i=1

∣∣∣Yi,obs −Yi,sim
∣∣∣

n
,

r =

n∑
i=1

[(Yi,obs −Yobs)(Yi,sim −Ysim)]√
[

n∑
i=1

(Yi,obs −Yobs)
2
]

√
[

n∑
i=1

(Yi,sim −Ysim)
2
]

where Yi,obs is the measured NDVI value of the station, Yobs is the mean of the observed NDVI value,
Yi,sim is the vector of the simulated NDVI value, and Ysim is the mean of the simulated NDVI value.
In general, a higher NASH value indicates better model efficiency; in contrast, smaller RMSE, MAE,
and R values indicate higher accuracy.

3. Results and Discussion

3.1. Spatial and Temporal Characteristics of the NDVI in the YZRB

The inter-annual variations of the NDVI, precipitation, and temperature on the subzone scale
from 2000 to 2015 are shown in Table 3. The NDVI and temperature values showed a statistically
insignificant increase, whereas the average precipitation of the Yarlung Zangbo River Basin significantly
decreased from 528 mm in 2000 to 396 mm in 2015, with a total increase of 0.8 ◦C over the 16 years.
This finding is consistent with the results of previous studies [26].

Table 3. Rainfall, temperature and the Normalized Difference Vegetation Index (NDVI) perennial
change rate.

Subzone Precipitation (mm) Temperature (◦C) NDVI

Sub1 −3.9 0.02 0.1 × 10−3

Sub2 −3.7 0.04 0.1 × 10−3

Sub3 −9.86 0.07 0.4 × 10−3

Sub4 −13.86 0.04 0.7 × 10−3

Sub5 −12.8 0.01 0.2 × 10−3

Total −8.25 0.03 0.2 × 10−3

In the five subzones, NDVI gradually increased from upstream to downstream. The average
annual growth of NDVI in the five subzones was 0.1 × 10−3, 0.1 × 10−3, 0.4 × 10−3, 0.7 × 10−3,
and 0.2 × 10−3. The precipitation and temperature show similar trends. The average annual growth of
precipitation was −3.9, −3.7, −9.86, −13.86, and −12.8; the average annual growth of temperature was
0.02, 0.04, 0.07, 0.04, and 0.01.

3.2. Predictors Selection

In order to determine the optimal predictors for NDVI prediction models, PCA and PAR were
used to analyze the relationships between NDVI and precipitation/temperature at different lead times.
The results are shown in Tables 4 and 5, where Pn represents the average precipitation with a lead
time n month, and Tn represents the average precipitation with a lead time n month. With reference to
similar studies and the meteorological cycles [32–35], the maximum lead times were set to 6 months.

As shown in Tables 4 and 5, the correlations between the NDVI and precipitation/temperature
gradually decayed with the increase of lead time. The PCA results show that the precipitation and
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temperature whose lead time was shorter than 2 months had major impacts on the NDVI in these
subzones. However, the PAR results varied in these subzones. In Sub1 and Sub5, the precipitation in
the present month and temperature whose lead time was shorter than 2 months had major impacts
on the NDVI. In Sub2, the precipitation whose lead time was shorter than 1 month and temperature
whose lead time was shorter than 2 months had major impacts on the NDVI. In Sub3, the precipitation
whose lead time shorter than 1 months and temperature whose lead time shorter than 3 months had
major impacts on NDVI. In Sub4, the precipitation whose lead time was shorter than 2 months and
temperature whose lead time was shorter than 3 months had major impacts on the NDVI. In general,
the relationships between the NDVI and temperature were slightly closer than those between NDVI
and precipitation in the five subzones.

RF evaluates the relative contribution of each predictor using a built-in variable importance
evaluation process. The importance of the precipitation/temperature at different lead times in these
subzones are calculated and indicated in Figure 3. As illustrated in Figure 3, although the importance
of precipitation and temperature gradually decreased, the increase in lead time and the decreases
were not as significant as in the PCA and PAR results. This finding may indicate that RF can use all
predictors without overfitting. Thus, the precipitation and temperature whose lead time was shorter
than 6 months were used for RF modeling of the five subzones.
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Table 4. Contribution and cumulative contribution rates for selected principal components.

Subzone PCA T0 P0 T1 P1 T2 P2 T3 P3

sub1
Contribution rate 0.46 0.26 0.14 0.06 0.03 0.03 0.01 0.01

Cumulative contribution rate 0.46 0.72 0.86 0.92 0.95 0.98 0.99 1.00

sub2
Contribution rate 0.56 0.27 0.05 0.05 0.03 0.02 0.01 0.01

Cumulative contribution rate 0.56 0.83 0.88 0.93 0.96 0.98 0.99 1.00

sub3
Contribution rate 0.59 0.19 0.06 0.05 0.04 0.03 0.03 0.01

Cumulative contribution rate 0.59 0.78 0.84 0.89 0.93 0.96 0.99 1.00

sub4
Contribution rate 0.58 0.24 0.05 0.05 0.03 0.03 0.01 0.01

Cumulative contribution rate 0.58 0.82 0.87 0.92 0.95 0.98 0.99 1.00

sub5
Contribution rate 0.57 0.20 0.08 0.06 0.04 0.03 0.01 0.01

Cumulative contribution rate 0.57 0.77 0.85 0.91 0.95 0.98 0.99 1.00

T0: Temperature of the month, P0: rainfall of the month, T1: temperature of the previous month, P1: rainfall of the
previous month, T2: temperature of the first 2 months, P2: rainfall of the last 2 months, T3: temperature of the first
3 months, P3: rainfall in the first 3 months.
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Table 5. Partial correlation calculation results.

PAR Sub1 Sub2 Sub3 Sub4 Sub5

T0 0.61 0.80 0.60 0.75 0.60
P0 0.56 0.78 0.58 0.66 0.57
T1 0.41 0.53 0.44 0.57 0.39
P1 −0.06 0.50 0.42 0.50 −0.06
T2 0.38 0.45 0.36 0.45 0.32
P2 −0.16 0.11 0.28 0.35 −0.11
T3 0.27 0.20 0.33 0.43 0.28
P3 −0.25 −0.20 −0.15 0.22 −0.25

T0: Temperature of the month, P0: rainfall of the month, T1: temperature of the previous month, P1: rainfall of the
previous month, T2: temperature of the first 2 months, P2: rainfall of the last 2 months, T3: temperature of the first
3 months, P3: rainfall in the first 3 months.

3.3. Comparative Study

The calibration and validation results of the RF and comparative models are summarized in
Table 6.

Table 6. Machine learning calculation results.

Subzone Model
Calibration Validation

NASH RMSE MAEP R NASH RMSE MAEP R

Sub1 ANN-PCA 0.68 0.03 0.02 0.84 0.67 0.03 0.03 0.86
ANN-PAR 0.65 0.03 0.02 0.84 0.63 0.03 0.03 0.82
SVM-PCA 0.90 0.02 0.01 0.95 0.87 0.02 0.01 0.95
SVM-PAR 0.90 0.02 0.01 0.94 0.85 0.03 0.02 0.95

RF 0.96 0.02 0.01 0.98 0.91 0.02 0.01 0.98

Sub2 ANN-PCA 0.74 0.03 0.03 0.91 0.73 0.04 0.03 0.92
ANN-PAR 0.69 0.03 0.03 0.83 0.71 0.04 0.03 0.84
SVM-PCA 0.90 0.02 0.02 0.95 0.91 0.02 0.01 0.95
SVM-PAR 0.89 0.02 0.02 0.94 0.90 0.02 0.02 0.94

RF 0.97 0.01 0.01 0.98 0.95 0.01 0.01 0.98

Sub3 ANN-PCA 0.78 0.05 0.05 0.94 0.77 0.05 0.04 0.94
ANN-PAR 0.79 0.05 0.04 0.91 0.79 0.05 0.04 0.91
SVM-PCA 0.91 0.04 0.03 0.95 0.89 0.04 0.03 0.95
SVM-PAR 0.89 0.04 0.03 0.94 0.87 0.04 0.03 0.94

RF 0.96 0.02 0.02 0.98 0.96 0.02 0.02 0.98

Sub4 ANN-PCA 0.75 0.05 0.04 0.90 0.75 0.05 0.04 0.89
ANN-PAR 0.71 0.05 0.04 0.84 0.67 0.06 0.05 0.82
SVM-PCA 0.85 0.04 0.03 0.92 0.82 0.04 0.03 0.92
SVM-PAR 0.79 0.05 0.04 0.88 0.77 0.05 0.04 0.88

RF 0.94 0.03 0.02 0.97 0.89 0.03 0.03 0.97

Sub5 ANN-PCA 0.78 0.04 0.03 0.89 0.72 0.05 0.04 0.87
ANN-PAR 0.72 0.05 0.04 0.86 0.67 0.05 0.04 0.83
SVM-PCA 0.84 0.04 0.03 0.92 0.73 0.05 0.03 0.92
SVM-PAR 0.78 0.04 0.04 0.89 0.68 0.05 0.03 0.89

RF 0.92 0.03 0.02 0.96 0.83 0.04 0.03 0.96

The results show that RF was superior to the comparative models in the calibration and validation
periods. The NASH RF values for the five subzones were 0.96, 0.97, 0.96, 0.94, and 0.92 in the calibration
period, and 0.91, 0.95, 0.96, 0.89, and 0.83 in the validation period. All of the measured criteria were
superior to those of the compared models (ANN and SVM).

The results of the two-parameter selection were also compared between the ANN and SVM
models. PCA was superior to PAR for both the ANN and SVM models. For the ANN models,
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the average RMSE and MAE were similar in both the calibration and validation periods. However,
the average NASH and R of the results using PAR were superior to those of the PCA by 0.03 and
0.04 in the calibration period, and 0.03 and 0.05 in the validation period, respectively. For the SVM
models, the average NASH and R increased by 0.03 and 0.02 in the calibration period, and 0.03 and
0.02 in the validation period, respectively. The average RMSE and MAE decreased by 0.002 and 0.004
in the calibration period, and 0.004 and 0.006 in validation period, respectively. Therefore, PCA was
advantageous over PAR, with increases of NASH and R, and decreases of RMSE and MAE.

4. Conclusions

As a key component of ecohydrological processes, vegetation conditions influence the efficiency
of plant water use and potentially affect water resources. Therefore, investing the changes of
vegetation conditions and exploring the vegetation responses to climate changes will provide essential
information for regional water resource management [53,54]. Combining with climate models,
NDVI prediction models can assess the effects of future drought events [10]. As a covariate with
other environmental variables, NDVI prediction models will also provide essential information for
irrigation management [15] and soil-loss-prone area identification [12,13], etc. By exploring the
vegetation condition changes of the YZRB and their relationship with climatic factors, we proposed an
NDVI prediction model based on RF with area-averaged precipitation and temperature as predictors.
The monthly rainfall and temperature observations from 30 meteorological stations in the YZRB and the
MODIS NDVI datasets from 2000 to 2015 were selected to calibrate and validate the proposed model.
The RF results were also compared with those of ANN and SVM models. The primary conclusions are
as follows:

1. RF successfully simulated the relationship between NDVI and climatic factors. The NASH
coefficients of the proposed model during the calibration period in the five subzones were all
higher than 0.9, and those during the verification period were all higher than 0.8. Among the five
tested models, RF showed the highest model efficiency in both the calibration and validation
periods among all compared models.

2. RF showed advantages for predictor selection. The built-in variable importance evaluation
allowed RF to select predictors without additional selection methods, such as PAR and PCA.
Moreover, the numbers of predictors were greatest for RF among the compared models. RF showed
robustness for modeling, because it could take full advantage of all predictor and avoid overfitting.

3. PCA and PAR were used to analyze the factors that affect the NDVI in YZRB subzones. The results
show that the rainfall and temperature of the first 3 months had significant impacts on NDVI,
and temperature had a greater influence than rainfall in most of the subzones.

Because of sparse meteorological networks, this research was conducted on a subzone scale.
In the future, we will try to explore the relationships between NDVI and climatic factors at a higher
resolution with gridded meteorological observations, which will be more applicable for integrated
water resource management. The adoption of more vegetation indices, such as leaf area index (LAI),
is another important direction.
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