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Abstract: Mediterranean oak savannas (known as dehesas in Spain) are exposed to numerous threats
from natural and economic causes. A close monitoring of the use of water resources and the status of
the vegetation in these ecosystems can be useful tools for maintaining the production of ecological
services. This study explores the estimation of evapotranspiration (ET) and water stress over a dehesa
by integrating remotely sensed data into a water balance using the FAO-56 approach (VI-ETo model).
Special attention is paid to the different phenology and contribution to the system’s hydrology of the
two main canopy layers of the system (tree + grass). The results showed that the model accurately
reproduced the dynamics of the water consumed by the vegetation, with RMSE of 0.47 mm day−1

and low biases for both, the whole system and the grass layer, when compared with flux tower
measurements. The ET/ETo ratio helped to identify periods of water stress, confirmed for the grassland
by measured soil water content. The modeling scheme and Sentinel-2 temporal resolution allowed
the reproduction of fast and isolated ET pulses, important for understanding the hydrologic behavior
of the system, confirming the adequacy of this sensor for monitoring grasslands water dynamics.

Keywords: soil water balance; canopy coefficients; evapotranspiration (ET); vegetation indices (VIs);
VI-ETo model; dehesa ecosystem; grasslands

1. Introduction

Water availability is the main climate factor limiting the primary production of Mediterranean
agroforestry systems. Recurrent water scarcity conditions are likely to worsen, with a decrease in the
quality, quantity, and resilience of freshwater resources predicted for the Mediterranean region under
the current global change scenario [1,2]. In this context of increased variability, improved knowledge of
hydrological process dynamics and its impact on vegetation is essential to reinforce ecosystem water
resource management and planning, which may contribute to reducing vulnerability to climate change.
Metrics describing the ecosystem’s status regarding water consumption and vegetation growth, as
well as its general stability, can facilitate regular monitoring and the implementation of conservation
strategies at different scales (regional, national, or European policies), while maintaining the productivity
required to support the rural economy. Earth observation technologies provide timely and quantitative
open data to assist in the calculation of these metrics at different resolutions.

Oak savannas growing in the Mediterranean region, known as dehesa in Spain and montado in
Portugal, are structurally and physiologically adapted to survive under extreme seasonal water scarcity
conditions, including high temperatures and soil dryness levels for several months every summer [3,4].
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This landscape is a complex mosaic of widely-spaced oak trees (mostly Quercus Ilex L. and Quercus Suber
L.), combined with pastures, shrubs, and crops. The low ground fractional coverage of the oak trees
constrains the leaf area index (LAI) of the ecosystem and enables light to enter the understory, meaning
that grass production can be maintained in these soils, usually with a low fertility [5]. In addition,
scattered tree roots can explore a large volume of soil [6,7], with pasture tapping shallow water supplies.
This structure imposes a marked spatial heterogeneity on the functioning of the ecosystem, with
additional differences in the water use below and outside the tree canopy [8,9].

This human-induced ecosystem has historically offered a compromise between production and
conservation, satisfying the population’s economic needs while providing multiple environmental
services, such as biodiversity hotspots, landscape, water provisioning, or CO2 fixation [10]. However,
it is currently being exposed to numerous threats, such as the lack of the natural regeneration of tree
species [11], its low profitability, the intensification of agricultural and livestock activities, and changes
in soil properties and hydrological processes, increasing soil erosion [5,12]. The situation might worsen
due to climate change, with prediction models forecasting warmer and drier summers, a growing
occurrence of extreme high-temperature events and heatwaves [13,14], and increased drought frequency
and intensity [15–18]. The abandonment of farmland and grazing areas due to the aforementioned
processes will also trigger changes in land use and management [19,20], leading to an additional risk to
dehesa conservation.

Remote sensing is widely used in agricultural areas to assist in the computation of crop water
requirements, using an adaptation of the Food and Agriculture Organization (FAO) Irrigation and
drainage paper -56 approach [21,22]. This model estimates crop evapotranspiration (ET) as being the
product of reference evapotranspiration (ETo), representing the atmospheric evaporative demand, and
a crop coefficient (Kc) used to account for crop factors, such as crop type, developmental stage, ground
cover, or soil water content. The integration of vegetation indices (VIs) derived from remote sensing
into this model (herein called VI-ETo) improves the estimation of canopy transpiration [23–28] and
takes advantage of the spatial and temporal resolutions (daily, weekly, monthly) of remotely sensed
data. Different approaches and applications of this method have been reviewed by Glenn et al. [29],
Calera el al. [30], and Pôças et al. [31]. Applications over natural ecosystems are substantially fewer
than over crops, and present additional difficulties due to the higher heterogeneity in plant properties.
The adjustments proposed by Allen et al. [21] for using this method in native vegetation under water
deficit conditions, and the good estimations of the vegetation ground cover fraction (fc) and LAI
produced by remote sensing over mixed vegetation types and natural ecosystems [32], are the basis for
applications in non-cropped areas.

Previous studies have given good results in the application of VI-ETo over savanna landscapes in
Mediterranean and African semi-arid areas [33,34]. However, these studies highlighted the difficulty of
taking into account the heterogeneity of the system in the estimation of effective model parameters.
Another factor that needs to be considered in the use of this method over dehesas is the differential
spectral response of holm oak trees (similar to olive trees) compared to other plant species under full
cover conditions, which may condition ET and water stress monitoring when VI-based techniques are
used [35]. On the other hand, Mateos et al. [36] underlined the importance of the accurate computation
of fc for incomplete canopies when applying this method. In this case, the frequent presence of a
senescent or dead grass layer during the summer and the low tree cover, as the only photosynthetic
vegetation during this season, might reduce the ability of broadband VIs to accurately estimate fc
in the dry period. Depending on the sensor and the spectra of the soils, the non-photosynthetic
vegetation may be spectrally indistinguishable from the soil [37]. Xu et al. [38] found a linear relationship
between Normalized Difference Vegetation Index (NDVI) and dead cover in grasslands, with a variable
contribution to NDVI depending on the dead cover fraction. This study uses both measurements and
models to explore the factors influencing the estimation of ET and water stress over a dehesa ecosystem
in an attempt to provide effective vegetation parameters to model the water balance with the assistance
of remote sensing. Special attention is paid to the different behavior and phenology of the two main
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canopy layers of the ecosystem (tree + grass) and to the varying contribution to the system’s hydrology.
The use of layer-specific parameters and the effect of the non-photosynthetic vegetation on the modeling
scheme are evaluated.

2. Materials and Methods

2.1. Study Site

The study was conducted over a dehesa farm (Santa Clotilde, 38◦12′ N; 4◦17′ W, 736 m a.s.l.;
Figure 1a) located in the Natural Park of the Sierra de Cardeña y Montoro, in Southern Spain. It is a
homogeneous landscape with gentle slopes and multiple uses (agriculture, extensive livestock grazing,
and hunting). The continental Mediterranean climate of the area is characterized by a strong seasonality,
with moderately cold winters alternating with long, hot, and dry summers. The rainfall presents intra-
and interyear variability, with an annual average of 895 mm (from 1990 to 2015), concentrated during
spring and fall.
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Figure 1. (a) Distribution of the dehesa ecosystem in the Iberian Peninsula (in green) and the study
area location (b) Eddy covariance tower (ECT) over open grassland. (c) ECT over the combined tree +

grassland system; (d) Aerial photograph showing the locations of validation sites.

The study site vegetation consists of widely-spaced oak trees (mostly Quercus ilex L., with a
scattering of Quercus faginea Lam. and Quercus pyrenaica Willd. individuals) combined with a subcanopy
composed of annual grassland. The layer of annual species emerges after the first rainfall in autumn
and dries out in late spring. The majority of the herbaceous species belong to the Stellarieteamediae class,
and more specifically to the Bromo scoparii-Hordeetumleporini association [39], according to field visual
identification based on the work of Melendo [40]. This grass cover corresponds to annual ephemeral,
ruderal, and nitrophilous weed communities as a result of moderately intense continuous grazing. The
predominant species are: Bromus hordeaceus, Hordeum leporinum, Bromus diandrus, Echium plantagineum,
Lolium rigidum, Anthemis arvensis, Plantago lagopus, Raphanus raphanistrum, Sisymbrium officinale, and
Avena barbata.

In relation to the soil’s properties, the prevailing textural class in the area is sandy loam, with
variations in soil depths generally ranging between 0.5 and 2.40 m. The bulk density increases linearly
with depth, from a mean value of 1.3 Mg m−3 at the surface to 1.6 Mg m−3 at around 25–30 cm. This
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increase with depth is commonly linked to a lower C content and higher compaction, but in this area it
is also related to the increase in stoniness [41].

2.2. Ground Validation Measurements

Ground validation measurements were taken at the study area using two eddy covariance
towers (ECT), one over the combined tree + grassland system and another over open grassland
(Figure 1b–d). Measurement sties to complement the flux towers data were located on two grazing
exclusion enclosures, over open grassland and under a holm oak tree, to assess the heterogeneity of
the study area. The setup encompasses all the instruments required for continuous measurement of all
energy balance components, including the turbulent fluxes of sensible (H) and latent heat (LE), the net
radiation (Rn), and the soil heat flux (G).

The ECT system over the dehesa was installed on a tower at a height of 18 m in April 2012, registering
the ecosystem response as a whole (Figure 1c). A 3D sonic anemometer (model CSAT3 Campbell
Scientific Inc., Logan, UT, USA) measuring horizontal and vertical fluctuations of temperature and wind
speed, and a hygrometer (model KH20, Campbell Scientific Inc., Logan, UT, USA) used to estimate
water vapor fluctuations were installed at the beginning, with the latter being replaced in 2015 by a
LICOR-7500 open path CO2/H2O gas analyzer (IRGA; model LI-7500A, Li-Cor, Lincoln, NE, USA),
taking simultaneous measurements of carbon dioxide and water vapor in turbulent air structures. These
measurements were recorded with high frequency (10 Hz), and half-hourly averages were computed
after applying corrections of density effects due to heat and water vapor transfer [42]. The net radiation
was first obtained with a net radiometer (model NR-Lite, Kipp and Zonen, Delft, Netherlands), which
was also replaced by a four-component net-radiometer (model NR01, Hukseflux Thermal Sensors, Delft,
The Netherlands) in 2015. The relative humidity and air temperature were also measured with a probe
(model HMP155, Vaisala, Helsinki, Finland). More information on the study area and the equipment
can be found in the work of Andreu et al. [43].

The soil heat flux was measured by soil heat flux plates (model HFP01, Huseflux Thermal Sensors,
Delft, Netherlands) buried in the two grazing exclusion areas together with soil thermocouples, which
were used to calculate the temporal variation of the soil temperature above the plates. The data were
corrected with the soil moisture obtained with five humidity soil probes (model EnviroSCAN, Sentek
Pty. Ltd., Stepney, Australia) located in grazing exclusion areas 1 and 2 (Figure 1d), which were
continuously measured at depths of 10, 30, and 50 cm. The ground cover fraction of trees and pasture
was integrated into a weighted average to estimate the ecosystem G value.

The quality of the measurements was tested by Andreu et al. [43] for the 2012 summer season,
resulting in an average closure balance (Rn −G = LE + H) of 86%. For the period 2014–2015, the closure
balance was 91%. The energy balance closure method used in this study preserves the Bowen ratio
(the residual of the available energy is allocated to H and LE, depending on their relative proportions),
and the corrector factor is subsequently estimated on a daily basis [44].

The second ECT over the open grassland was installed in February 2015, taking measurements at
1.5 m of surface energy exchanges (Figure 1b). This tower had a CSAT three-dimensional (3D) sonic
anemometer, a KH20 hygrometer, and a NR-1 four-component net radiometer (all from Campbell Sci.
Inc., Logan, UT, USA). A humidity and temperature probe (Vaisala model HMP45A, Helsinki, Finland)
was also installed, and soil heat flux plates and soil thermocouples were buried to determine the G
flux. The ECT measurements were recorded with high frequency (20 Hz), and half-hourly averages
were computed after applying the corrections regarding density effects due to heat and water vapor
transfer [42]. Two soil water content probes were installed under this grass eddy tower in 2017; no data
were available for the study period. For the period when all the probes located over open grassland
were measuring, a correlation between the grazing exclusion 1 probes and the grass ECT probes was
computed, finding an R2 = 0.92. The humidity values shown in the Results section were computed
using the correlation equation.
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A footprint analysis was performed over both ECT by estimating the contribution areas to daily
fluxes for the years studied, as described by Hseich et al. [45]. From the analysis, it was observed that
100% of the system ECT fluxes were collected from an area within 130 m upwind in 78% of the cases,
with the maximum contribution to the energy fluxes measured being approximately found at 33 m
upwind over the period analyzed. According to these results, average values of a 3 × 3 grid cell (with
30 × 30 m cell and oriented towards the predominant south-west footprint direction of the ECT) of the
modeled fluxes were evaluated. At the open grass ECT, the peak contribution was 8.5 m, with 76% of
the fluxes being measured within the first 10 m. A grid cell with 2 × 1 pixels (with a 10 × 10 m cell)
was selected; due to the characteristics of the installation, all the fluxes recorded at the tower came
from the herbaceous vegetation area.

2.3. Remote-Sensing-Based Soil–Water Balance Model

The VI-ETo approach applied in this work to assess vegetation water requirements is based on the
concepts of ETo, calculated using the Penman–Monteith equation, and the crop and vegetation coefficients
(Kc), which are partly derived from satellite VIs. ETo takes into account the atmospheric evaporative
demand, while the Kc accounts for the influence of the plant properties on the ET, considering the growth
of the canopy and the related changes in its biophysical properties. Kc is estimated daily by means of the
FAO-56 dual method, which separates crop transpiration from soil surface evaporation [21,46]:

ET = (KcbKs + Ke)ETo (1)

where Kcb is the basal canopy coefficient determining canopy transpiration; Ks is the water stress
coefficient, quantifying the reduction in transpiration due to soil water deficit; and Ke is the soil
evaporation coefficient.

The Kcb of the whole system and that of the grass were derived from satellite spectral information
provided by VIs, combining bands in the near-infrared and red domains. Numerous VI-Kcb empirical
relationships can be found in the literature for different crops [47–51]. This work used the generalized
linear equation proposed by González-Dugo et al. [52] through the soil adjusted vegetation index
(SAVI, [53]), as follows:

Kcb =
Kcb f ull

fce f f− f ull

(
SAVI − SAVImin

SAVImax − SAVImin

)
i f fc < fce f f− f ull (2)

Kcb = Kcb f ull i f fc ≥ fce f f− f ull (3)

where fc eff-full is the ground cover fraction at which Kcb is at its maximum (Kcb full), and the subscripts
max and min refer to the values of SAVI for high LAI and bare soil, respectively. The Kcb values
distributed over the study area were linearly interpolated between satellite overpasses in order to
obtain a daily Kcb image throughout the study period.

The energy available at the topsoil was calculated to compute Ke with Equation (4):

Ke = Kr(Kcmax −Kcb) (4)

Here, Kr is a dimensionless evaporation reduction coefficient that depends on topsoil water
depletion [21] and Kc max is the maximum value of Kc following a rainfall or irrigation event. Ke should
be lower than few × Kc max, with few being equal to the fraction of the soil surface that is both exposed
and wetted.

A daily soil root zone water balance test was carried out in order to determine the vegetation
water stress coefficient (Ks). The variation in the root zone water content, ∆Sw, was computed as the
balance between water inflows and outflows:

Sw = Sw f − Swi = R− ET −D (5)
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where Swi and Swf (mm) are the root zone water contents at the beginning and end of the water balance
period, R is infiltrated rainfall, and D is deep drainage during the balance period.

The root zone water daily deficit can be expressed with Equation (6), as below:

RZWDi = RZWDi−1 + ETi + Di −Ri (6)

where the subscript i indicates the balance day, and RZWDi and RZWDi−1 are the root zone water
deficits on days i and i − 1, respectively. The water depth between the soil field capacity and wilting
point extremes is called the root zone water holding capacity (RZWHC).

Equations (7) and (8) calculates the stress coefficient, Ks, based on the relative root zone water
deficit:

Ks =
RZWHC−RZWDi

(1− p)RZWHC
i f RZWDi < (1− p)RZWHC (7)

Ks = 1 i f RZWDi ≥ (1− p)RZWHC (8)

where p is the fraction of the RZWHC that can be reduced before water stress occurs (depletion fraction).
This stress coefficient is equal to 1 for non-stress conditions and less than 1 when a shortage of water
is found in the root zone [21]. A complete description of the model can be found in the work by
Allen et al. [21,22].

This approach was applied at a daily time step (1) over the whole dehesa ecosystem (integrating
the tree cover layer and the herbaceous understory) at the farm scale over the Santa Clotilde area and
(2) over the open grassland area, in order to exclusively model the water balance of the herbaceous
layer to improve our understanding of the function of each canopy component separately. The water
balance calculation over the combined tree + grassland system was initiated in September 2012 at the
end of a dry summer and ended in August 2017. For the initiation of the balance and due to a long time
without rainfall events, the soil was considered to be completely dry and the root zone water deficit
was assumed to be equal to the soil water holding capacity. Over grass, the VI-ETo model was applied
during the hydrological years 2015–2016 and 2016–2017. The starting-out soil water deficit was taken
as the value estimated for the dehesa for that exact period but related to its root zone water holding
capacity. To model the water balance in the soil, the strategies have to be assessed, followed by each of
the vegetation clusters, trees, and grass, and later implemented into the balance, using tabulated and
calibrated input parameters to reproduce the behavior of the different components.

To quantify the impact of water stress over the whole ecosystem, the ratio of ET to reference
ET (ET/ETo) was computed at a daily time step for the period 2013–2017. This ratio is a widely used
drought indicator [54].

2.4. Tree–Grass Cover Fraction during the Dry Season

The evidence shows a medium to high coverage of senescent or dead grass in this ecosystem
during the summer. This coverage is highly variable and depends on the annual climatology and farm
management strategies. This could challenge the application of the VI-ETo methodology in the dehesa,
given the high sensitivity of this model to the estimation of fc, with significant ET inaccuracies when
this variable is poorly determined, as Mateos et al. [36] concluded over an olive orchard.

The main spectral differences between non-photosynthetic grass and bare soil are located in
shortwave infrared regions, and spectral mixture analysis is normally used to discriminate both covers
from hyperspectral data [37]. Bare soil and dead grass are not easily discriminated by only using
visible (VIS) and near infrared (NIR) [55] due to neither of them having a unique spectral feature in that
region, and due to the fact that the reflectance of the dead grass can be higher or lower than that of the
soil [56]. The absorption of senescent grass at 2.1 µm in the spectra is associated with its cellulose and
lignin contents. Thus, the shortwave infrared region ranging from 2.0–2.2 µm is used to discriminate
plant litter from soil, defining a spectral variable called cellulose absorption index (CAI, [57]), which
describes the depth of the lignocellulose absorption. However, Xu et al. [38] found a linear relationship
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between NDVI and dead cover in grasslands, having a variable contribution to NDVI depending on
the dead cover fraction. It can be hypothesized that the effect of the non-photosynthetic grass layer on
summer VIs might produce a slight deviation in tree fc estimation in using these VIs, leading to an
overestimation of the transpiration rates during this season.

To evaluate this effect, ground spectral measurements over the non-photosynthetic grass (100%
of ground cover) were conducted at the Santa Clotilde farm with a spectroradiometer (model ASD
FieldSpec 3, ASD Inc., Boulder, CO, USA). This instrument provides uniform VIS/NIR/SWIR data
collection, with a spectral range from 350 to 2500 nm (the sampling interval is 1.4 nm from 350 to
1050 nm, and 2 nm from 1000 to 2500 nm). The spectral measurements were referenced with regular
ones over a white Spectralon panel (Labsphere, North Sutton, NH, USA) with 100% reflectance across
the entire spectrum. The spectral data were taken on 7 July 2015 over 20 sampling points, and this
information was later integrated into the Landsat Operational Land imager (OLI) sensor bandwidths,
using the spectral response function for those wavelengths in order to compute the broadband VIs.

In addition, in order to accurately compute the fractional cover of the multiple ecosystem layers
(grass, tree), digital classification was performed during the dry season using an airborne hyperspectral
image (39 bands ranging from 400.8 to 680.8 nm) with a high spatial resolution (1 m). The image was
acquired on 27 August 2015 at 12:00 pm with the Micro-Hyperspec visible/near infrared VNIR model
sensor (Headwall Photonics, MA, USA). This high-resolution image was classified (using a trained
maximum likelihood classification algorithm) into the different components (shadow, tree, and grass +

soil). To validate this image, 70 ground truth points for each component were used. To choose the
classification training vectors, the spectra of the different components were analyzed, with bare soil +

plant litter, green canopy, and dark shadows being clearly identified. On the other hand, some mixed
pixel spectra located in between the tree spectrum and nearby shadows were more difficult to isolate,
and a new class was derived (mixed tree–shadow). For the final assessment, the pure shadow class
was added to the soil–dry grass fraction and the mixed pixels were added to the tree fraction. The
results were then compared with the estimation of the tree and dead grass + soil ground coverage
fractions using summer satellite VIs.

2.5. Satellite Remote Sensing Dataset

A set of 84 cloud-free images provided by Landsat-8, Sentinel-2, and MODIS satellites, collected
between September 2012 and September 2017, were employed for the application of the VI-ETo model
over the system. The frequency of images was variable between seasons due to cloudiness. Most of
the images were Landsat-8 images (46 images), with 30 m spatial resolution in the visible and NIR
spectral bands, which were provided geometrically and atmospherically corrected by the Landsat
surface reflectance climate data record (SR CDR) (http://espa.cr.usgs.gov). MODIS (product MOD09GQ,
12 images) was used at the beginning of the study period to complete the data series, due to the lack
of Landsat images and Sentinel-2A (subsequently resampled at 30 m for the analysis). Georeferenced
surface reflectance from Sentinel-2A (17 images) was generated with the Sen2cor processor, which
performs the atmospheric, terrain, and cirrus correction of top-of-atmosphere input data [58]. In addition,
the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [59] data fusion technique
was applied on nine dates to fill a long period without cloudless images. This approach compares one
pair of observed Landsat or MODIS images acquired on the same day to predict maps at the Landsat
spatial scale on other MODIS observation dates. In order to apply the method over grassland, a set of
99 Sentinel-2 images (10 m spatial resolution), collected between August 2015 and September 2017, was
used for the two hydrological years. The processing was by using a Google Engine processor.

2.6. Meteorological Information and Soil Properties

Meteorological data and spatially distributed soil properties are required to apply the soil–water
balance model. Daily meteorological data, including rainfall, solar radiation, air temperature, humidity,

http://espa.cr.usgs.gov
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and wind speed, were provided by two ground stations operated by the Spanish Meteorological
Agency (AEMET) near the study area (~3 km).

Soil parameters were supplied by Rodríguez et al. [60], who offer distributed information at 250-m
spatial resolution. Maps of soil texture (sand, clay, and silt), water content at field capacity, and water
content at the wilting point were used. The saturation point was also determined by performing a
daily analysis of the soil moisture content for several years. From this information, and using the
expressions proposed by Mbah et al. [61], we computed the water content at field capacity and at the
wilting point, adjusting the values provided by the distributed map. Finally, the employed land cover
map was based on the Information and Soil Uses System of Spain (SIOSE 2013), which groups classes
with similar characteristics and spectral responses.

2.7. Obtaining Soil and Vegetation Parameters

2.7.1. Tabulated and Measured Soil and Vegetation Parameters

The vegetation root depth determines the control volume of soil for water balance. Grass roots
are found mostly in the upper 30 cm, with the root length density decreasing exponentially until 100
cm depth, while the oak root density is lower in the first 10 cm of the soil, remaining almost uniform
with depth at a given distance from the tree [6]. Pulido et al. [62] showed the low dependence of oak
trees on water in the uppermost soil layer. A high dependence on the water located below a depth
of 3 m during summer, when the herbaceous layer is dry, was shown by Cubera and Moreno [7].
These limited vertical overlaps of grass and oak root profiles suggest that the competitive effects of the
understory are unimportant for tree water uptake in dehesa landscapes [63]. In this work, to account for
the whole system, the average root depth of oak trees was considered as being equal to 4 m [6], while
that of grasslands was considered as being equal to 1 m [6,64–66]. These values were linearly combined,
considering the area covered by each component to estimate the maximum effective root depth over the
tree + grassland system of 2 m. The average coverage fraction in the study area of 0.25 for oak trees
(estimated from the classification of the high-resolution image) was increased by 50% to account for the
fact that tree roots explore a larger area than that occupied by their treetops [6]. For the modeling of the
grassland area, a constant effective depth equal to 1 m was used [6,64–66].

The minimum SAVI was assumed to be 0.09 for bare soil [26], while SAVI under full vegetation
cover conditions (SAVImax) was determined from ground radiometric measurements at the site,
measured over the tree and herbaceous canopies, using aspectroradiometer (model ASD FieldSpec
3, ASD Inc., Boulder, CO, USA). A SAVImax value equal to 0.51 was measured for oak trees [35].
For pasture, a SAVImax value equal to 0.70 was determined from field measurements on 29 April
2015, when full vegetation conditions were reached. Finally, a value of 0.65 for the combined system
(weighted with the coverage fraction of each vegetation type) was used.

2.7.2. Calibration of Vegetation Parameters

Due to the lack of information on the value of some vegetation parameters in this ecosystem,
such as Kcb under full vegetation conditions (Kcb full), as well as the depletion fraction (p), a calibration
process was followed to determine the optimal values for the best model’s performance. The fc eff-full
was assumed to be equal to 0.8, as the average fc at the beginning of the effective full cover is supposed
to be reached at about 0.7–0.8 in most crops [21,67]. The model was run in multiple simulations, with a
wide range of Kcb full varying between 0.7 and 1.1 (the minimum corresponds to the value for pastures
with extensive grazing, while the maximum corresponds to the tabulated annual herbaceous crops in
FAO-56 guidelines) in increments of 0.05; p varied between 0.3 and 0.7 (interval taken from the same
guidelines and Campos et al. [33]) in increments of 0.1.

In this work, we used the cross-validation method to evaluate the performance of the different
water balance simulations [68]. Cross-validation is a model validation technique that assesses how the
performance of a model will generalize to an independent dataset. Various methods of cross-validation
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are available to partition a set of data and to validate a model, including the k-fold cross-validation
used here [69,70]. In k-fold cross-validation, the data is divided into k subsets. Then, the holdout
method is repeated k times, so that each time one of the k subsets is used as the validation set and the
other k − 1 subsets are put together to form a training set. The error estimation is averaged over all k
trials to obtain the total effectiveness of the model [68]. This method has been applied to evaluate the
accuracy of some hydrologic models [71,72]. In this case, the cross-validation method was preferred to
a conventional one (partitioning the dataset into two sets for training and testing) due to the existing
inter- and intra-annual differences, which may result in the pool data selected for calibration not
being able to encompass all the different scenarios and climate variability, meaning the calibrated
model would end up being a biased framework. We used the k-fold cross-validation with k = 4 folds,
3 hydrological years for calibration, and 1 year for validation. The performance indicator used in
this study was the root mean square error (RMSE). The Kcb full and p parameters with the minimum
validation error were selected as the optimal values.

In the grassland area modeling, a similar analysis as for the whole system (trees + grass) was
performed to determine the best model performance, evaluating in the analysis a range of Kcb full for
fc eff-full = 0.8 (0.7–1.1) based on tabulated literature values [22]. The cross-validation algorithm was
not considered to be necessary here due to the low variability of the two hydrological years of study
(2015–2016 and 2016–2017).

3. Results and Discussion

3.1. Parametrization of the VI-ETo Model over the Dehesa Ecosystem and Open Grassland

The application of the VI-ETo model to the study site has combined measured and estimated soil
and vegetation parameters. Regarding the soil, the observed physical properties and the computed
vegetation root depth resulted in a total amount of water being available for evaporation in the root
zone of 283 mm, a value similar to the 280 mm zone computed by Campos et al. [33] for the same
landscape. For the vegetation, the calibrated model parameters were Kcb for full cover vegetation,
Kcb full, and the depletion fraction, p. As can be observed in Figure 2, the sensitivity of the model to the
depletion factor is very low in both the whole system and the open grassland components, providing
very similar results in the range of 0.4–0.6. Allen et al. [21] discussed the variability of the fraction p as
a function of the evaporation power of the atmosphere and the soil type. However, a constant value of
p = 0.5 is commonly used for a wide variety of crops, rather than a daily variation. Attending to the
results (Figure 2), p was chosen to be equal to 0.5 here for the two situations studied. This value was
higher than the 0.3 selected by Campos et al. [33] in the same type of ecosystem. However, different soil
or evaporative conditions could contribute to this difference, which as can be derived from Figure 2,
has a limited impact on the final ET estimations.

On the other hand, the selection of Kcb full = 1 for the whole system resulted in a reduction in
RMSE of 0.2 mm when compared with the minimum value considered (Kcb full = 0.7). Therefore,
the values of the parameters selected for the model application were Kcb full = 1 and p = 0.5 (with
RMSE = 0.47 mm day−1). In open grassland modeling (Figure 2b), the simulation of increasing Kcb full
seemed to improve the final RMSE, until it reached a minimum of around Kcb full = 1.1, corresponding
to the tabulated value of annual herbaceous crops used in previous works [21,52,73]. These results
are consistent with the results for the combined dehesa system and the tabulated values for other
Mediterranean tree crops (e.g., olive trees) that have similarities with oak trees. The consideration
of a Kcb full value equal to 1 for the whole system and to 1.1 for grassland implies that Kcb full for oak
trees might be around 0.7, which is a reasonable value considering that it is similar to the values
recommended by some authors for other Mediterranean tree species [21,36]. The selected values of
the parameters for model application over grassland, producing a RMSE = 0.47 mm day−1, were
Kcb full = 1.1 and p = 0.5.
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3.2. Dead Grass Impact on ET Estimations during the Dry Season

Figure 3 presents the measured spectral signatures of green grass, senescent grass, and bare soil,
with the red and near-infrared regions used to compute NDVI and SAVI highlighted in dark and light
pink, respectively. One can observe the low separability of the bare soil and non-photosynthetic grass
in the VIS–NIR region [55], as well as the differences in the shortwave infrared region (2.0–2.2 µm),
which can be useful for distinguishing both covers.
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Figure 3. The spectral response measured with the spectroradiometer of bare soil, along with images of
photosynthetic and non-photosynthetic grass under full vegetation conditions.

The field measurements resulted in NDVI and SAVI values of 0.24 and 0.19, respectively, for dead
grass, which were significantly higher than values commonly used for soils, with SAVI in the range of
0.08–0.09 and NDVI of 0.1–0.14 [31]. Xu et al. [38] obtained an NDVI of about 0.12 from a simulated
relationship between the index and the dead cover, while the NDVI determined by Nagler et al. [57]
ranged between 0.25 and 0.3 for dry and wet forest litter, respectively, which was more similar to the
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values measured in this study. Summer SAVI values derived from the satellite data over the footprint
of the open grassland tower when only dead grass is present are always higher than the selected value
for soil, which is equal to 0.09, confirming the contribution of dead grass cover to the SAVI values used
to estimate fc.

In the final classification map of land cover on Santa Clotilde farm (Figure 4a), 96.6% of the
validation points were classified correctly. The highest mismatches were found in mixed tree and
shadow pixels and pure shadows. The classification map obtained for the 1× 1 km area surrounding the
installation (Figure 4c) showed 75% background area (bare soil or non-photosynthetic grass, fc grass+soil)
and 25% tree fractional cover (fc tree), similar to the fractional cover computed by Andreu et al. [43].
Considering only the tower footprint area used to compute the whole system VIs, fc grass was equal to
78.5% and fc tree equal to 21.5%. The tree fractional cover on the pasture lower tower footprint was
confirmed to be equal to 0%, as originally designed.
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The average estimation of the oak tree fractional cover of the ecosystem tower footprint area using
satellite-derived SAVI values of the end of the summer (August) and all the years studied yielded a
value of fc tree = 24%. The specific value corresponding to 28 August 2015 (when the reference flight
was conducted) was equal to 23%. Both values are slightly higher than the 21.5% tree fractional
cover computed with the reference classification method. Over the open grassland tower footprint,
satellite-estimated summer fc tree was always >0%.

The difference of 1.5% in fc suggests a certain influence of the dead grass on the satellite VI.
However, its size does not seem large enough to justify the use of more precise spectral mixing models
or higher complexity algorithms. The accuracy analysis presented in Section 3.3 was also used to
support this decision.

3.3. Daily ET and Water Stress Monitoring over the Dehesa Ecosystem (Tree + Grass)

The modeled daily evapotranspiration is in reasonable agreement with the tower observations
for the four hydrological years of the study (2013–2014 to 2016–2017; Figure 5), yielding an RMSE
of 0.47 mm day−1 and a relatively low bias of −0.15 mm day−1. This deviation is consistent with
previous studies using the VI-ETo FAO-56 dual crop coefficient method in similar ecosystems [33,34] for
woody, sparse, semi-arid crops [27,74,75] and for field crops [36,73,76]. Despite the low bias, a slight
underestimation of the ET rates can be observed, with a greater impact on the highest ET rates (>4 mm)
in spring and a higher dispersion during this season. This underestimation might have an influence on
the seasonal or annual computations of water consumption by the system. As an example, during
the hydrological year 2016–2017, average weekly ET underestimation changed from 1.8 mm week−1
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on average to values of around 5–7 mm week−1 for the springtime (between mid-May and mid-June
2017), decreasing again to 1.6 mm week−1 for the summer. The observed underestimation might be
caused by a slight overestimation of some canopy parameters limiting the estimations (SAVImax, fc,full).
The selection of representative values, accounting for the inter- and intra-annual variability and the
behavior of the two vegetation layers, is a challenge, especially if ones wishes to avoid increasing the
model’s complexity, which could hinder the final operative applications. Adaptations to account for
the major phenological periods were applied over savanna systems to estimate ET using a surface
energy balance model [77], which had a high sensitivity to fc and to parameters related to the vegetation
structure. Nevertheless, a daily error of 0.47 mm day−1 can be considered to be admissible to support
management actions in the dehesa, with the precision reaching the accuracy requirements for agriculture
and water management applications.Water 2020, 12, 1418 12 of 21 
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Figure 5. Comparison between observed and modeled daily evapotranspiration (ET) values (mm)
for the dehesa system (tree + grass) for the four hydrological years analyzed (between 2013–2014
and 2016–2017). Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are presented in
the figure.

Figure 6 shows a daily time step ET series generated for the four hydrological years analyzed
(between 2013–2014 and 2016–2017) by the VI-ETo approach, together with ET measurements acquired
by the dehesa ECT system and the rainfall data for the period. It can be seen that ET rates present an
annual bimodal behavior, with two clear peaks of different sizes. The largest one occurs during the
spring, reaching maximum values of around 4–4.5 mm day−1 in the first two years and higher ones of
around 5 mm day−1 in the following years. A second smaller peak with maximum values of around
2 mm day−1 appears in the fall. This pattern is closely linked to the distribution of the annual rainfall
and is also influenced by variables controlling the availability of energy for the evaporation. Although
the average annual rainfall was similar in the first 3 years (653, 633, and 623 mm, respectively) with
a wetter final year (731 mm), rainfall distribution is irregular throughout the seasons. The rainiest
springs corresponded to the last 2 years (292 and 160 mm, respectively), which were followed by the
ET rates, reaching their maxima during the spring of 2016 and the spring of 2017. During the long
dry summers, the transpiration of the system was low (1.5 mm on average for the months of July and
August) and minima of around 0.5–0.6 mm day−1 were measured at the end of the season (normally in
early September before the first rainfall). ET rates during the summer, when the grass was dry and the
oak trees transpired at a very low rate, showed the tolerance of this species to water stress. Oak tree
roots explore extensive and deep volumes of soil, reaching the groundwater, in addition to forming
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both arbuscular and ectotrophic mycorrhizae accessing many different resources [7,78]. The ET rates
estimated here were lower but in the same range as values presented by David et al. [4], who found
that oak trees maintained transpiration rates of above 0.7 mm day−1 during the summer drought.Water 2020, 12, 1418 13 of 21 
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Figure 6 shows that modeled ET accurately reproduced the temporal dynamics of the water
consumed by the dehesa vegetation measured by the flux tower. Due to rainfall events (e.g., July 2015,
October 2015, November 2016), isolated ET peaks measured by the ECT were reproduced precisely
by the estimations. The temporal resolution of the satellite images was key to mimicking the fast
ET pulses in those events and preventing a loss of information. Accounting for intense, short-term
events is important for the total annual budgets and for understanding the system’s functioning, and it
highlights the value of high temporal resolution satellite data.

The ratio of ET to reference ET (ET/ETo) at a daily time step for the period 2013–2017 is presented
in Figure 7. This index ranges from ~1 when the actual ET covers the atmospheric evaporative demand
to approximately 0 as the water deficit develops and the evaporation is close to zero. In this location,
ET/ETo abruptly decreased from the end of May or beginning of June, depending on the year, with a
slope of ~−1.5% for all years. The ecosystem’s “dry peak” (ET/ETo = 0.11) is found at the end of the
summer, after a long season without rain. With the first rainfall, this ratio increased until reaching the
annual maxima in around May. The falls and winters were noisy and highly influenced by the rainfall,
but ET/ETo varied at values of around >0.6, which can be considered to be the threshold of vegetation
water stress. At the end of 2015, there was a small valley in the ET/ETo values, representing a short period
when the vegetation suffered a mild water stress at an unusual time of year. The later recovery from that
situation was slower, with growing but lower values than other years, even if ET/ETo reached the same
maximum values afterwards. The results suggest the potential capability of this index as a monitoring
tool for assessing anomalous dry periods and events, which can be used to guide management actions
leading to maintaining the ecosystem’s stability, both environmentally and economically.
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3.4. Estimation of Evapotranspiration of Grass in Open Areas

The RMSE of the estimation of the daily evapotranspiration of grass for the hydrological years
2015–2016 and 2016–2017 was equal to 0.47 mm day−1 when compared with tower measurements
(Figure 8). This error is equal to the one obtained over the whole system and consistent with other
studies using the VI-ETo approach in field crops [36,52,73]. A bias of −0.03 mm day−1 was found, which
was lower than that for the whole system and with a greater complexity. A clear deviation is found in a
number of points, with ET modeled at around ~2 mm day−1 but measured at close to zero mm day−1.
These points corresponded to a period during the month of November 2016 (Figure 9), coinciding with
some rainfall events. In this case, the modeled data seemed to be better aligned with the previous
and following ET rates, and the effect of rainfall water on the instruments could have produced noisy
measurements, which were difficult to correct with the automatic data processing.
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Figure 9 shows the daily time step ET series for the open grassland estimated for the two
hydrological years analyzed (2015–2016 to 2016–2017), together with ET measurements at the open
grass tower and rainfall data. The different phenology of the grasses in comparison with the combined
system can be observed in Figure 9, with lower rates shown for the dry season, when the grass is dry
and the trees are still transpiring. As for the whole tree–grass system, a bimodal shape was also clear
for 2015. However, the peak in the fall was not observed in 2016. ET rates reached the maximum values
during spring (~5mm day−1, similar to the maxima for the whole ecosystem), sharply decreasing with
the drying of the grass, with both maximum values and the ET decreasing process being accurately
reproduced by the model, especially in 2017, while in 2016 a slight underestimation can be observed.

Several short-time phenomena measured during this period were also accurately reproduced by
the model. In this sense, it is worth mentioning a sharp reduction in the vegetation transpiration in
May 2016 as a consequence of an unusually long rainfall event, which was well reproduced by the
estimations. It is also possible to observe that the model captured the impact on ET of small isolated
rain events, which increased the evaporation rates during the summer of 2016 when the grass fractional
cover was close to zero. The identification of the starting dates of grass greening and drying, and
the date when the grass layer reached ET maximum rates, which can be derived from the ET series,
are key points for management purposes that may help to decide on the livestock grazing period in
each field without compromising the conservation of the ecosystem. As mentioned for the system, the
importance of the temporal resolution of the remote sensors in the monitoring of this vegetation layer is
noted here, where the drying process usually occurs in a few days as a function of the fast depletion of
soil water content and increasing evaporative demand. Information on the system’s functioning could
be lost with a lower frequency of available images, which at this time of the year can also be affected by
cloudiness. The temporal resolution of Sentinel-2 was found to be well suited for this application.

ET basal rates (0.3–0.4) were maintained during the dry season, where no rainfall was observed
and the grass was mostly dry. This could be explained by the presence of morning dew and humidity
condensing in the dry grass pockets and later evaporating, with a small percentage being due
to the metabolism of heterotrophs and dead grass becoming converted into organic matter by
microorganisms [79,80]. In addition, a scattering of photosynthetically active plants were still found
throughout the summer. Small gramineae individuals even survived in August, as they were protected
by dry grass cover, but the most abundant species was Senecio jacobaea L., a tap-rooted compositae that
explores deeper soil profiles.

The comparison of the estimated stress coefficient Ks and the soil water content is presented in
Figure 10. It can be seen that the Ks curve is, in general, consistent with the evolution of the water content.
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When the soil moisture reached a threshold equal to field capacity, the Ks took and maintained the
maximum value. Values of soil water content below 0.15 cm3 cm−3, in agreement with Gómez-Giráldez
et al. [81], generally marked the starting of Ks reduction.
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4. Conclusions

The VI-ETo model accurately reproduced the temporal dynamics of daily water consumption of a
dehesa ecosystem measured by an eddy covariance flux tower over four years. The results yielded an
RMSE value of 0.47 mm day−1 and a low bias (−0.15 m mday−1), similar to the errors presented in the
literature for more homogeneous systems using similar approaches. Moreover, a separate application
in an open grassland—the predominant component in the occupied area—produced similar results,
with an RMSE of 0.47 mm day−1 and a bias of −0.03 mm day−1 for the two years analyzed. This work
has provided effective parameters for applying a remote sensing-based water balance method over an
oak—grass savanna, in addition to analyzing each of its components. Reasonable parameters for one
component of the system, the grass, were proposed and tested, while suggested values for the oak
trees are yet to be validated. This proposal opens up new insights into the high diversity in water use
of different grassland communities in the dehesa, the role of oak trees in the hydrology of the systems,
and the potential impact of the possible reduction in water availability in the future.

The ET of the system presented an annual bimodal behavior, with two clear peaks of different sizes
in spring (ET of 4.5–5 mm day−1) and fall (ET around 2 mm day−1). This pattern was repeated for all the
years studied and could be closely linked to the distribution of the annual rainfall. The water stress of
the whole system and the grassland was monitored using the ET/ETo ratio. This index helped to identify
periods of water stress, which were confirmed for the grassland by the soil water content measured.

The temporal resolution of the satellite images and the modeling scheme allowed the reproduction
of fast and isolated ET pulses that are important for computing accurate annual budgets and for
understanding the hydrologic behavior of the system. The identification of the starting dates of grass
greening and drying, as well as the date when the grass reaches maximum ET rates, could be useful for
management and conservation purposes, such as making decisions on the livestock grazing period in
every field. Thus, the temporal resolution of Sentinel-2 was found to be well suited for the monitoring
of these processes.

The effect of the non-photosynthetic grass layer on fc estimation was evaluated using field
measurements, airborne data, and satellite data. A slight deviation in tree fc estimation (1.5 %) using
summer satellite VIs was corroborated, although it was not considered large enough to justify the use
of more precise spectral mixing models or higher complexity algorithms.
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