
water

Article

A New Parallel Framework of SPH-SWE
for Dam Break Simulation Based on OpenMP

Yushuai Wu 1, Lirong Tian 1, Matteo Rubinato 2 , Shenglong Gu 1,3,*, Teng Yu 1,
Zhongliang Xu 4, Peng Cao 5,6, Xuhao Wang 6,7 and Qinxia Zhao 1

1 School of Water Resources and Electric Power, Qinghai University, Xining 810016, China;
ys.wu@qhu.edu.cn (Y.W.); LirongTianqhu@hotmail.com (L.T.); 2017990061@qhu.edu.cn (T.Y.);
2014990032@qhu.edu.cn (Q.Z.)

2 School of Energy, Construction and Environment & Centre for Agroecology, Water and Resilience,
Coventry University, Coventry CV1 5FB, UK; matteo.rubinato@coventry.ac.uk

3 State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
4 Transportation Bureau, Haiyan County, Jiaxing 812200, China; 1998990003@qhu.edu.cn
5 College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China;

2017630009@qhu.edu.cn
6 Qinghai University-Tsinghua University, Sanjiangyuan University, Sanjiangyuan Research Institute,

Qinghai University, Xinning 810016, China; wangxh@chd.edu.cn
7 School of Highway, Chang’an University, Xi’an 710064, China
* Correspondence: sl.gu@qhu.edu.cn

Received: 7 April 2020; Accepted: 8 May 2020; Published: 14 May 2020
����������
�������

Abstract: Due to its Lagrangian nature, Smoothed Particle Hydrodynamics (SPH) has been used
to solve a variety of fluid-dynamic processes with highly nonlinear deformation such as debris
flows, wave breaking and impact, multi-phase mixing processes, jet impact, flooding and tsunami
inundation, and fluid–structure interactions. In this study, the SPH method is applied to solve
the two-dimensional Shallow Water Equations (SWEs), and the solution proposed was validated
against two open-source case studies of a 2-D dry-bed dam break with particle splitting and a 2-D
dam break with a rectangular obstacle downstream. In addition to the improvement and optimization
of the existing algorithm, the CPU-OpenMP parallel computing was also implemented, and it was
proven that the CPU-OpenMP parallel computing enhanced the performance for solving the SPH-SWE
model, after testing it against three large sets of particles involved in the computational process.
The free surface and velocities of the experimental flows were simulated accurately by the numerical
model proposed, showing the ability of the SPH model to predict the behavior of debris flows
induced by dam-breaks. This validation of the model is crucial to confirm its use in predicting
landslides’ behavior in field case studies so that it will be possible to reduce the damage that they
cause. All the changes made in the SPH-SWEs method are made open-source in this paper so that
more researchers can benefit from the results of this research and understand the characteristics
and advantages of the solution proposed.

Keywords: dam break; SWE; SPH; openMP; numerical modelling; computational time

1. Introduction

The Smooth Particle Hydrodynamics (SPH) is a meshless method [1] very commonly used
nowadays [2–12]. Gingold and Monaghan [13] were the first to propose this method to solve
astrophysical simulations, using statistical techniques to recover analytical expressions for the physical
variables from a known distribution of fluid elements. The SPH method is typically used for solving
the equations of hydrodynamics in which Lagrangian discretized mass elements are followed [14].

Water 2020, 12, 1395; doi:10.3390/w12051395 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-8446-4448
http://dx.doi.org/10.3390/w12051395
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/5/1395?type=check_update&version=3

Water 2020, 12, 1395 2 of 27

Compared with the limitations of the Eulerian grid method [15–17], the SPH method has unique
advantages in dealing with free water surface and moving boundary conditions [18–21]. In fact,
the SPH method strictly runs in accordance with the law of conservation of mass and can deal with free
surface and moving boundary flexibly; hence, it is very suitable for simulating dam break flows [22].
Flooding due to dam break has potentially disastrous consequences, and multiple studies were
conducted to numerically replicate the hydrodynamics of this phenomenon [23–28]. In most cases,
the dam break flow occurs in a wide area and lasts for a long time. Therefore, the Shallow Water wave
Equations (SWEs) have become the main application formulae for this specific dam break problem.

In 1999, Wang and Shen [29] applied the SPH method to SWEs for the first time. Dam break flows
are unsteady open channel flows that can be described by the St. Venant equations, which are equations
that can be used for flows with strong shocks [29]. The study conducted by Wang and Shen [29]
has demonstrated that the method developed based on the SPH is capable of providing accurate
simulations for mixed flow regimes with strong shocks. In 2005, Ata and Soulaimani [30] tried to reduce
the difficulties that were associated with the treatment of the solid boundary conditions, especially
with irregular boundaries. Ata and Soulaimani [30] derived a new artificial viscosity term by using
an analogy with an approximate Riemann solver, and the several numerical tests conducted have
confirmed that the stabilization proposed provides more accurate results than the standard artificial
viscosity introduced by Monaghan [22]. However, Ata and Soulaimani [30] found that it was difficult
to implement the Dirichlet boundary conditions for bounded domains. Different techniques such as
symmetrization and ghost particles were implemented; nevertheless, results obtained for irregular
boundaries or in presence of shocks were not satisfactory, and there was a need to make SPH method
more competitive with standard approaches [30].

A new method with good stability was then needed for the SPH numerical simulation of shallow
water equations to deal with dam break flows, flood waters, debris flows, avalanches, and tidal waves.

De Leffe et al. [31] proposed an improved calculation method based on a two-dimensional SPH
solid wall boundary condition. By introducing a periodic redistribution of the particles and using
a kernel function with variable smoothing length, this modification was tested and validated against
dam break flows on a flat dry bottom in 1D and 2D. Comparisons conducted against literature
results [30,32,33] have confirmed how this new approach is robust and able to simulate complex
hydrodynamic situations.

However, to date, only a few studies have investigated the efficiency of solving the SPH-SWEs
model. Vacondio et al. [34–37] have developed the serial code to solve the SWEs by using the SPH
method and have made an open source version called SWE-SPHysics, which has been optimized
and adapted based on the hydrodynamics investigated by other researchers [38–52]. Despite continuous
progress, there is still a limitation related to the computational efficiency when the number of particles
to simulate is very large, and this aspect still needs to be improved.

Xia and Liang [53] explored the Graphic Processing Units (GPUs) to accelerate an SPH-SWE model
for wider applications such as dam breaks. Xia and Liang [53] demonstrated that the performance
of the new GPU accelerated SPH-SWE model can significantly improve the calculation efficiency
and verified that the quadtree neighbor searching method may reduce redundant computation
when searching neighbor particles [53]. Furthermore, Liang et al. [54] developed a shock-capturing
hydrodynamic model to simulate the complex rainfall-runoff and the induced flooding process in
a catchment in England, Haltwhistle Burn, of 42 km2, and implemented it on GPUs for high-performance
parallel computing.

GPU has been enhanced with a Fortran programming language capability employing CUDA
(Compute Unified Device Architecture), known as CUDA Fortran [55]. Although the GPU parallel
computing performance is strong, the GPU price is relatively expensive and support for the CUDA
FORTRAN language compiler is limited. Furthermore, if CUDA FORTRAN language is compared
with other parallels (OpenMP and MPI), the program design is also more complex [56–58].

Water 2020, 12, 1395 3 of 27

Over the years, with the development of parallel computing, the development of OpenMP and MPI
in parallel methods has matured, and MPI is widely used in the field of engineering computing [59–63].
However, in this multi-machine cluster environment, memory is not shared. For global shared data
operations, data must be transferred by the communication between machines [64,65].

OpenMP is based on the shared storage mode of multi-core processors, and it is commonly
used in parallel processing of single workstations. Although it is limited by the processing capacity
and memory capacity of a single node, it can simplify the past multi-core computing to the present
multi-core computers. The program design is relatively simple, and it can secure the advantages of
economic and programming optimizations [66].

Therefore, this paper adopts the parallel computing method of CPU-OpenMP that is applied
to a single machine and a multi-core to calculate the new SPH-SWEs framework for the parallel
computing of the test case of 2-D dry-bed dam break with particle splitting [67,68] and a 2-D debris flow with
a rectangular obstacle downstream the dam [2]. The accuracy of the new SPH-SWEs framework was then
verified by comparing the serial algorithm, and the advantages of CPU-OpenMP parallel computing
were analyzed.

The paper is organized as follows: Section 2 describes the methodology adopted presenting
the theoretical derivation of the numerical model applied and the governing equations. Section 3
explains the setup of the SPH-SWEs method used. Section 4 provides the results of the application tested
with a discussion of the results obtained. Lastly, Section 5 produces a brief summary and concluding
remarks of the whole study.

2. Methodology

Ata et al., [30] and Paz and Bonet [32] have initiated the idea of SPH-SWE model solution, which is
described in Section 2.1 with all the governing equations.

2.1. Governing Equations

By ignoring the Coriolis effect and the fluid viscosity, SWEs can be written in the Lagrangian form
as follows:

dd
dt = −d∇·v
dv
dt = −g∇d + g(∇b + Sf)

(1)

d represents the water depth, g the acceleration of gravity, v is velocity, b represents the riverbed
elevation, and Sf represents the riverbed friction. In the SWEs, the area density is defined as:

ρ = ρwd (2)

ρ represents the density, and ρw represents the density of water.

2.2. Water Depth Solutions

According to the SPH idea, the area density (i.e., water depth) of particles is solved as shown
below in the implicit function:

ρi =
∑
j

m jWi(xi − x j, hi)

hi = h0
(ρ0
ρi

)1/dm
(3)

xi/xj represents the particle coordinates; mj represents the particle mass of j; hi and ρi represent
the smooth length and the area density of the particle i; h0 and ρ0 represent the initial values of
the smooth length and the area density, respectively; dm represents the latitude (1 represents one
dimension, 2 represents two dimensions) and W represents the kernel function.

Water 2020, 12, 1395 4 of 27

2.3. Speed Solution

According to the Lagrangian equation of motion [69], ai is the acceleration of the particle i,
and the solution formula of each particle can be obtained as follows:

ai =
g + vi·kivi + ti·∇bi

1 +∇bi·∇bi
∇bi − ti + S f ,i (4)

ki = ∇(∇bi) represents b(x) of the curvature tensor [70]; ti represents the acceleration caused by
the internal force; ∇bi represents the riverbed gradient of the particle i, and in order to deal with any
complex terrain problem, the riverbed gradient can be modified as follows [71,72]:

∇bi =
∑

j

b j∇̃Wi
(
xi − x j, hi

)
V j (5)

∇̃Wi denotes the gradient of the modified kernel function, which is modified by the correction matrix
Li, as shown below:

∇̃Wi
(
xi − x j, hi

)
= Li∇Wi

(
xi − x j, hi

)
Li =

∑
j

∇Wi
(
xi − x j, hi

)
×

(
xi − x j

)
V j


−1

(6)

In order to reduce the numerical oscillation and ensure the stability of the calculation, one method
is to increase the viscosity term as introduced below [73]:

ti =
∑
j

m j
g

2ρw

[
(1
β j
+ πi j)∇W j(xi − x j, h j) − (

1
βi
+ πi j)∇Wi(x j − xi, hi)

]
βi = − 1

ρidm

∑
j

m jri j
dWi j
dri j

πi j =
ci jνi j·xi j

ρi j

√∣∣∣xi j
∣∣∣2+ζ2

(7)

β represents the correction coefficient caused by variable smooth length; rij represents the particle
spacing; πij represents the numerical viscosity added to maintain stability. However, this method has
the problem of numerical dissipation.

To reduce this issue, the interaction between two particles was treated as a Riemann problem [74],
as follows:

ti =
∑
j

m jp∗
[

1
ρ2

j β j
∇W j(xi − x j, h j) −

1
ρ2

i βi
∇Wi(x j − xi, hi)

]
p∗ = 0.5gρw(d∗)

2

d∗ =
gldl+grdr+νl,n−νr,n

gl+gr

gk =
√

0.5 g(d0+dk)
d0dk

d0 = 1
g

[
0.5(cl + cr) + 0.25(νl,n − νr,n)

]2

(8)

dl and dr represent the water depth on the left and right sides, respectively; k = l and k = r represent
the left and right states, respectively; d0 represents the initial estimated water depth; c =

√
gh

represents the shallow water wave velocity.

Water 2020, 12, 1395 5 of 27

2.4. Time Integration and Boundary Processing

In order to update the particle velocity and displacement, the leap-frog time integration scheme [75]
was used. By using this method, both time and space are of second-order accuracy, and the storage
demand is relatively low, however the calculation efficiency is relatively high, as shown below:

νn+1/2
i = νn−1/2

i + ∆tan
i

xn+1
i = xn

i + ∆tνn+1/2
i

νn+1
i = νn+1/2

i + 1
2 ∆tan

i

(9)

∆t represents the time step; where the time step must meet the Courant number condition [76] displayed
as follows:

∆t = CFL
N

min
i = 1

(
hi

ci + ‖νi‖

)
(10)

To solve the boundary problem, this study adopts the Modified Virtual Boundary Particle (MVBP)
method [36]. MVBP method is an improvement of the virtual boundary particle (VBP) method [77].
The virtual particles on the boundary will neither move with the fluid particles nor interact with them
but generate the virtual particles similar to the mirror image through point symmetry. This method is
easier and simpler in dealing with the complex boundary.

Compared with the VBP method, the MVBP method has two improvements: (1) When a virtual
boundary particle is within the range of the kernel function of a fluid particle, two layers of newly
generated virtual particles can be added (Xk,1 = 2Xv − Xi and Xk,2 = 4Xv − Xi). Among them, Xk,1
and Xk,2 represent the coordinates of the newly generated virtual particles, and Xv represents the virtual
boundary particles; (2) When the internal angle of the boundary is less than or equal to 180◦, two newly
generated virtual particles are added outside the corner. Compared with the single point of the VBP
method, this improvement reduces the kernel truncation error.

In order to verify the effect of different kernel functions to simulate the dam break, this paper
used the SPH-SWE open source code [34–37,68] and applied different kernel functions (B-spline,
super Gauss, quadratic spline, Gauss, quartic spline, quintic and Bell) to simulate case 2 open source
scenario [68]. These were the initial conditions considered for the dam-break: (i) simulation area
was 2000 m long; (ii) the river bed elevation was 0 m; (iii) the initial fluid particle area was 1000 m
long; (iv) the particle spacing was 10 m; (v) the initial water depth was 10 m, (vi) and the simulation
duration was 50 s. The position, the water depth, and speed of the fluid particles were obtained
as an output every 10 s. After verification, the advantages and disadvantages of different kernel
functions and different numerical oscillation processing methods (see Equations (7)–(8)) identified from
the results are consistent. At t = 50 s, the water depth dissipated after 1500 m, and the results of different
kernel functions and different numerical oscillation processing methods can be visually reflected
through the graphs in Figure 1; at the same time, it also illustrates the continuity of the numerical
oscillation issue. Therefore, the data of t = 50 s (Figure 1 results) was selected for analysis in this study.

It can be noticed from Figure 1 that in the numerical simulation of dam break based on SPH-SWEs
approach, all kernel functions are characterized by numerical oscillation except the option where
the Bell kernel function is considered. The three kernel functions that provide a more accurate
estimation of the water depth and the velocity are B-spline, quadratric spline, and quartic spline
(above 85.7%). Figure 2a–d shows the absolute error between the calculated water depths and velocities
using these three kernel functions vs. the analytical solution. Results displayed confirm the optimal
performance of the B-spline kernel function in dam break simulations.

Water 2020, 12, 1395 6 of 27
Water 2020, 12, x FOR PEER REVIEW 6 of 31

0 500 1000 1500 2000

0

2

4

6

8

10

12

W
at

er
 d

ep
th

 (
m

)

X (m)

 kernel function (Gaussian)
 kernel function (Quintic spline)
 kernel function (Super gaussian)
 kernel function (Bell)
 Finite difference method
 1D analytical

(a)
0 500 1000 1500 2000

0

2

4

6

8

10

12

14

16

18

V
el

oc
it

y
(m

/s
)

X (m)

 kernel functio (Gaussian)
 kernel function (Quintic spline)
 kernel function (Super gaussian)
 kernel function (Bell)
 Finite difference method
 1D analytical

(b)

300 400 500 600

0

1

2

0 500 1000 1500 2000
0

2

4

6

8

10

12

W
at

er
 d

ep
th

 (
m

)

X (m)

 kernel function (B- spline)
 kernel function (Quartic spline)
 kernel function (Quadratic smooth)
 Finite difference method
 1D analytical

(c)

300 400 500 600
9

10

11

12

0 500 1000 1500 2000

0

2

4

6

8

10

12

14

16

18

V
el

oc
ity

 (
m

/s
)

X (m)

 kernel function (B- spline)
 kernel function (Quartic spline)
 kernel functiom (Quadratic smooth)
 Finite difference method
 1D analytical

(d)

300 400 500 600

0

1

2

Figure 1. Simulation results of different kernel functions. (a),(c) Results of water depths calculations.
(b),(d) Results of velocity calculations.

It can be noticed from Figure 1 that in the numerical simulation of dam break based on SPH-
SWEs approach, all kernel functions are characterized by numerical oscillation except the option
where the Bell kernel function is considered. The three kernel functions that provide a more accurate
estimation of the water depth and the velocity are B-spline, quadratric spline, and quartic spline
(above 85.7%). Figure 2a–d shows the absolute error between the calculated water depths and
velocities using these three kernel functions vs. the analytical solution. Results displayed confirm the
optimal performance of the B-spline kernel function in dam break simulations.

Figure 1. Simulation results of different kernel functions. (a,c) Results of water depths calculations.
(b,d) Results of velocity calculations.

Water 2020, 12, x FOR PEER REVIEW 7 of 31

0 200 400 600 800 1000 1200 1400 1600 1800
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
bs

ol
ut

e
E

rr
or

 (
B

-s
pl

in
e)

X (m)

 Absolute Error of Water Depth
 Absolute Error of Velocity

(a)
0 200 400 600 800 1000 1200 1400 1600 1800

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
bs

ol
ut

e
E

rr
or

 (
Q

ua
rt

ic
 s

pl
in

e)

X (m)

 Absolute Error of Water Depth
 Absolute Error of Velocity

(b)

0 200 400 600 800 1000 1200 1400 1600 1800
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
bs

ol
ut

e
E

rr
or

 (
Q

ua
dr

at
ic

 s
m

oo
th

)

X (m)

 Absolute Error of Water Depth
 Absolute Error of Velocity

(c)
0 200 400 600 800 1000 1200 1400 1600 1800

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
bs

ol
ut

e
E

rr
or

 (
A

rt
if

ic
ia

l V
is

co
si

ty
)

X (m)

 Absolute Error of Water Depth
 Absolute Error of Velocity

(d)

Figure 2. Absolute errors of different kernel functions and processing methods. (a–c) The absolute
errors of water depth and velocity calculated by B-spline kernel function, quartic spline, and quadratic
spline kernel function, respectively. (d) The absolute errors of water depth and velocity calculated by
using the artificial viscosity method.

If the kernel function adopted is B-spline, the numerical oscillation is treated as adding the
viscosity term (numerical viscosity, lax Friedrichs flux [78]). The results are shown in Figures 2d and
3. It is shown in Figure 3 that the Riemann solvers method has better characteristics in dealing with
numerical oscillation problems when using the same kernel function. This confirms that it is possible
to increase the viscosity by increasing πij in Equation (7), which helps to reduce the numerical
oscillation; however, this can cause a decrease in the accuracy of the calculation results and an
possible increase on computational time.

0 500 1000 1500 2000
0

2

4

6

8

10

12

W
at

er
 d

ep
th

 (
m

)

X (m)

 Finite difference method
 Artificial viscosity
 Lax Friedrichs flux
 Two shocks Riemann solver
 1D analytical

300 400 500 600
9

10

11

0 500 1000 1500 2000

0

2

4

6

8

10

12

14

16

18

V
el

oc
it

y
(m

/s
)

X (m)

 Finite difference method
 Artificial viscosity
 Lax Friedrichs flux
 Two shocks Riemann solver
 1D analytical

300 400 500 600

0

1

2

Figure 3. Simulation results of different processing methods.

According to Figures 2a,d and 3, it can be found that the two-shocks Riemann solver is more
advantageous in dealing with numerical oscillations when considering dam break cases. The absolute
error of the solutions considered is significantly small. Table 1 displays the errors of the three
methods adopted, and it can be seen that the standard deviations of the velocity and water depth
(WD) of the three methods are small and, basically, of similar magnitude. However, the average

Figure 2. Absolute errors of different kernel functions and processing methods. (a–c) The absolute
errors of water depth and velocity calculated by B-spline kernel function, quartic spline, and quadratic
spline kernel function, respectively. (d) The absolute errors of water depth and velocity calculated by
using the artificial viscosity method.

Water 2020, 12, 1395 7 of 27

If the kernel function adopted is B-spline, the numerical oscillation is treated as adding the viscosity
term (numerical viscosity, lax Friedrichs flux [78]). The results are shown in Figures 2d and 3. It is
shown in Figure 3 that the Riemann solvers method has better characteristics in dealing with numerical
oscillation problems when using the same kernel function. This confirms that it is possible to increase
the viscosity by increasing πij in Equation (7), which helps to reduce the numerical oscillation; however,
this can cause a decrease in the accuracy of the calculation results and an possible increase on
computational time.

Water 2020, 12, x FOR PEER REVIEW 7 of 31

0 200 400 600 800 1000 1200 1400 1600 1800
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
bs

ol
ut

e
E

rr
or

 (
B

-s
pl

in
e)

X (m)

 Absolute Error of Water Depth
 Absolute Error of Velocity

(a)
0 200 400 600 800 1000 1200 1400 1600 1800

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
bs

ol
ut

e
E

rr
or

 (
Q

ua
rt

ic
 s

pl
in

e)

X (m)

 Absolute Error of Water Depth
 Absolute Error of Velocity

(b)

0 200 400 600 800 1000 1200 1400 1600 1800
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
bs

ol
ut

e
E

rr
or

 (
Q

ua
dr

at
ic

 s
m

oo
th

)

X (m)

 Absolute Error of Water Depth
 Absolute Error of Velocity

(c)
0 200 400 600 800 1000 1200 1400 1600 1800

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
bs

ol
ut

e
E

rr
or

 (
A

rt
if

ic
ia

l V
is

co
si

ty
)

X (m)

 Absolute Error of Water Depth
 Absolute Error of Velocity

(d)

Figure 2. Absolute errors of different kernel functions and processing methods. (a–c) The absolute
errors of water depth and velocity calculated by B-spline kernel function, quartic spline, and quadratic
spline kernel function, respectively. (d) The absolute errors of water depth and velocity calculated by
using the artificial viscosity method.

If the kernel function adopted is B-spline, the numerical oscillation is treated as adding the
viscosity term (numerical viscosity, lax Friedrichs flux [78]). The results are shown in Figures 2d and
3. It is shown in Figure 3 that the Riemann solvers method has better characteristics in dealing with
numerical oscillation problems when using the same kernel function. This confirms that it is possible
to increase the viscosity by increasing πij in Equation (7), which helps to reduce the numerical
oscillation; however, this can cause a decrease in the accuracy of the calculation results and an
possible increase on computational time.

0 500 1000 1500 2000
0

2

4

6

8

10

12

W
at

er
 d

ep
th

 (
m

)

X (m)

 Finite difference method
 Artificial viscosity
 Lax Friedrichs flux
 Two shocks Riemann solver
 1D analytical

300 400 500 600
9

10

11

0 500 1000 1500 2000

0

2

4

6

8

10

12

14

16

18

V
el

oc
it

y
(m

/s
)

X (m)

 Finite difference method
 Artificial viscosity
 Lax Friedrichs flux
 Two shocks Riemann solver
 1D analytical

300 400 500 600

0

1

2

Figure 3. Simulation results of different processing methods.

According to Figures 2a,d and 3, it can be found that the two-shocks Riemann solver is more
advantageous in dealing with numerical oscillations when considering dam break cases. The absolute
error of the solutions considered is significantly small. Table 1 displays the errors of the three
methods adopted, and it can be seen that the standard deviations of the velocity and water depth
(WD) of the three methods are small and, basically, of similar magnitude. However, the average

Figure 3. Simulation results of different processing methods.

According to Figure 2a,d and Figure 3, it can be found that the two-shocks Riemann solver is more
advantageous in dealing with numerical oscillations when considering dam break cases. The absolute
error of the solutions considered is significantly small. Table 1 displays the errors of the three methods
adopted, and it can be seen that the standard deviations of the velocity and water depth (WD) of
the three methods are small and, basically, of similar magnitude. However, the average relative errors
of water depth and speed solved by the two-shocks Riemann solver seem to be the smallest, 0.92%
and 5.86%, respectively.

Table 1. Error analysis.

Parameters Artificial Viscosity Lax Friedrichs Flux Two-Shocks
Riemann Solver

Mean Absolute Error
Speed 0.0617 0.0476 0.0351
WD 0.0515 0.0482 0.0356

Mean Relative Error
Speed 0.0718 0.0667 0.0586
WD 0.0142 0.0089 0.0092

Standard deviation of error
Speed 0.1042 0.0728 0.0568
WD 0.0681 0.0633 0.0484

• WD = Water Depth.

In order to verify the effect of the selected B-spline kernel function and the numerical oscillation
processing method, a wet case was simulated (simulation range of 2000 m, initial water depth in
the range of 0–1000 m is 10 m, and water depth in the range of 1000–2000 m is 5 m. The simulation
time was 50 s, and the calculation results are generated every 10 s). The results are summarized in
Table 2 and are shown in Figure 4.

According to the numbers displayed in Table 2, using the SPH-SWE model adopting the B-spline
kernel function and the two-shocks Riemann solver method to solve the wet case, the simulation results
are better, and their mean absolute errors to simulate velocity and water depth are within the 6%.

Based on these results, it was decided to select the B-spline kernel function and the two-shocks
Riemann solver method to perform the two-dimensional dam-break numerical simulation to verify
the computational efficiency of the new SPH-SWE model solution framework proposed.

Water 2020, 12, 1395 8 of 27

Table 2. Error analysis for the wet case.

Parameters 30 s 50 s

Mean Absolute Error
Speed 0.0529 0.0603

Water Depth 0.0567 0.0613

Mean Relative Error
Speed 0.0548 0.1037

Water Depth 0.0075 0.0081

Standard deviation of error
Speed 0.1543 0.1514

Water Depth 0.1257 0.1238Water 2020, 12, x FOR PEER REVIEW 9 of 31

0 500 1000 1500 2000

5

6

7

8

9

10

D
ep

th
 (

m
)

X (m)

 Stoker Theory Solution
 SPH-SWE

(a)

0 500 1000 1500 2000

0

1

2

3

V
el

oc
it

y
(m

/s
)

X (m)

 Stoker Theory Solution SPH-SWE(b)

0 500 1000 1500 2000

5

6

7

8

9

10

D
ep

th
 (

m
)

X (m)

 Stoker Theory Solution
 SPH-SWE

(c)

0 500 1000 1500 2000

0

1

2

3

V
el

oc
it

y
(m

/s
)

X (m)

 Stoker Theory Solution SPH-SWE(d)

Figure 4. Simulation results of the SPH-SWE module. (a),(b) water depth and velocity diagram at t =
30 s; (c),(d) water depth and velocity diagram at t = 50 s.

According to the numbers displayed in Table 2, using the SPH-SWE model adopting the B-spline
kernel function and the two-shocks Riemann solver method to solve the wet case, the simulation
results are better, and their mean absolute errors to simulate velocity and water depth are within the
6%.

Based on these results, it was decided to select the B-spline kernel function and the two-shocks
Riemann solver method to perform the two-dimensional dam-break numerical simulation to verify
the computational efficiency of the new SPH-SWE model solution framework proposed.

3. SPH-SWE Model Solution Framework

When simulating dam break cases with a large number of particles involved, there is a challenge
to be faced associated with low calculation efficiency. The code runs in serial steps and before each
variable calculation, the mesh is divided into small grids (mesh size is 2H, smooth length, in order to
calculate the corresponding parameters of each particle), making the process more repetitive and
requiring a lot of calculation time. Moreover, the code framework is complex and it is demanding to
complete any modification. As the open source code solves the model with a large number of
particles, it has the problem of low calculation efficiency and cannot even be calculated (the reason is
that the array overflows). This paper proposes a new SPH-SWE model solution framework, which
can dynamically allocate the storage space of particle information, solve the problems of repeated
particle search and unsuccessful memory allocation of the array of stored particle information, and
can quickly solve the large-scale SPH-SWE model. Furthermore, the model framework proposed is
simple, and any modification can be made easily to this algorithm.

Figure 4. Simulation results of the SPH-SWE module. (a,b) water depth and velocity diagram at t = 30 s;
(c,d) water depth and velocity diagram at t = 50 s.

3. SPH-SWE Model Solution Framework

When simulating dam break cases with a large number of particles involved, there is a challenge to
be faced associated with low calculation efficiency. The code runs in serial steps and before each variable
calculation, the mesh is divided into small grids (mesh size is 2H, smooth length, in order to calculate
the corresponding parameters of each particle), making the process more repetitive and requiring
a lot of calculation time. Moreover, the code framework is complex and it is demanding to complete
any modification. As the open source code solves the model with a large number of particles, it has
the problem of low calculation efficiency and cannot even be calculated (the reason is that the array
overflows). This paper proposes a new SPH-SWE model solution framework, which can dynamically
allocate the storage space of particle information, solve the problems of repeated particle search
and unsuccessful memory allocation of the array of stored particle information, and can quickly solve

Water 2020, 12, 1395 9 of 27

the large-scale SPH-SWE model. Furthermore, the model framework proposed is simple, and any
modification can be made easily to this algorithm.

For this study, Algorithm 1 was developed to solve the problem of data analysis and realize
the CPU-OpenMP parallel computing.

Algorithm 1. Calculation framework of the SPH-SWEs model. This algorithm is needed to read the particles
data (include fluid particles/virtual particles/open boundary particle/riverbed particles).

Read parameters
Output initial data of the model
Mesh riverbed particles and calculate fluid particles and the net water depth

{
Loop 1

}
Search particles

{
Loop 2

}
do t = 0→ total_number_of_timesteps

Step 1: Calculate the water depth of fluid particles
{
Loop 3

}
.

ρi =
∑

j

m jWi(xi − x j, hi) hi = h0

(
ρ0

ρi

)1/dm

Step 2: Calculate time water depth of fluid particles and the speed gradient
{
Loop 4

}
.

∇ni =
∑

j

V j(ni − n j, hi)∇Wi(xi − x j, hi) (n = d/u/v)

Step 3: Calculate time increments. ∆t = CFL
N

min
i = 1

(
hi

ci+‖νi‖

)
Step 4: Calculate accelerations of fluid particle,corrections of riverbed gradients,speeds, and displacements{

Loop 5
}
.
→
a i =

g+
→

v i·
→

k i
→

v i+
→

t i·∇bi
1+∇bi·∇bi

∇bi −
→

t i +
→

S f ,i

Step 5: Calculate displacements of open boundary particles.

Step 6: Fluid particle division. νk = cν
dN
dk νN cν = AN∑M

k = 1 Ak

Step 7: Calculate fluid particle of the riverbed
{
Loop 1

}
.

di =
∑
j

d jWi(xi − x j, hi)V j
Si =

∑
j

Wi(xi − x j, hi)V j

shepard correction : di = di
Si

Step 8: Search partilces
{
Loop 2

}
.

end do

The calculation of each time step includes five parts, which can be summarized as follows:

1. Calculation of fluid particles in the riverbed;
2. Particle search, and calculation of the water depth;
3. Calculation of the fluid particle depth and velocity gradient;
4. Acceleration and riverbed gradient correction;
5. Calculation of velocity and displacement rate.

In this paper, multiple two-dimensional arrays were used to store the information of fluid particles,
riverbed particles, virtual particles, and open boundary particles. When calculating the parameters
related to the above five parts, each particle can be calculated separately, and there is no dependency
between particles.

Water 2020, 12, 1395 10 of 27

Therefore, the CPU-OpenMP parallel computing can be realized (since each cycle is for all fluid
particles, the calculation amount is known, so the schedule in the cycle configuration is set to Static
mode) and the SPH-SWE model with a large number of particles can also be calculated.

3.1. Fluid Particle Riverbed Calculation

When calculating the riverbed particles in each time step, considering that the bed range
and the smooth length of the riverbed particles are the same and there is no relationship between them,
the calculation of the riverbed fluid particles was carried as follows.

Firstly, the grid division was completed, then the calculation of the riverbed fluid particles was
conducted. It was verified that the calculation efficiency has no advantage, and additional array
was needed to store riverbed particle information and increase data reading time. Please see below
Algorithm 2 for the calculation framework adopted to achieve this task.

Algorithm 2. Computing fluid particle riverbed.

1. Stage 1: h_t/sum_h_t = 0, initialize to 0
2. !$OMP PARALLEL DO PRIVATE(private variable),&
3. !$OMP& SHARED(shared variable), DEFAULT(none), SCHEDULE(static)
4. do i = 1→ total_number_of_fluid particles
5. if particle_i is valid then
6. Calculate particles’ mesh locations based on the riverbed’s mesh
7. !sum_h_t(i) is used to make shepard correction(CSPM)
8. CALL PURE celij_hb (i, h_t(i), sum_h_t(i))
9. endif
10. enddo
11. !$OMP END PARALEL DO

Because the calculated variables were two arrays, h_t and sum_h_t, it was not difficult to realize
OpenMP parallel, and multiple threads were set to calculate the riverbed fluid particles at the same
time, following these formulae:

h_t(i) =
∑
j

hb(j)·Wi(xi − x j, hb(j))·Vol_b(j)

sum_h_t(i) =
∑
j

Wi(xi − x j, hb(j))·Vol_b(j)
(11)

After the calculation, the CSPM [79] was corrected, as shown in the next formula:

h_t(i) =
h_t(i)

sum_h_t(i)
(12)

3.2. Particle Search

In this paper, the particle search technique [80,81] was used as a separate module to prepare for
the calculation of parameters such as water depth, acceleration, and velocity.

In the particle search, the mesh was firstly divided, and then the mesh area of each particle search
was calculated; in order to ensure the symmetry of particle interaction, less than 2hi or 2hj was used
as the judgment condition of i effective particles.

The specific steps of the particle search technique adopted [82] (see Figure 5) are described
as follows:

1. Before each time step, the temporary grid position was updated, and each grid was assigned to
a unique number; the grid size can be set to a fixed size dx_grid/dy_grid;

2. According to the position of the current SPH particles, all the SPH particles were allocated to
the temporary mesh space, and the particle chain in the mesh was established;

Water 2020, 12, 1395 11 of 27

3. According to the range (2hi) of the tight support region of particle i, the search of other meshes
(- xsize to xsize, - ysize to ysize) was completed in the tight support region of the mesh, storing
the mesh number;

4. All the SPH particles i and j in the mesh were searched (icell-xsize to icell + size, jcell-ysize to jcell
+ ysize) in the tight support domain.

Water 2020, 12, x FOR PEER REVIEW 12 of 31

3. According to the range (2hi) of the tight support region of particle i, the search of other meshes
(- xsize to xsize, - ysize to ysize) was completed in the tight support region of the mesh, storing the
mesh number;

4. All the SPH particles i and j in the mesh were searched (icell-xsize to icell + size, jcell-ysize to jcell
+ ysize) in the tight support domain.

dx_grid xsize

+
+

+

+

+

+

+

+

+
+

+

+
+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+ +

+

+
+

+
+

+

+

+

+

+

+
+

+

+

dy_grid
ysize

+

+

:The searched particle(i)
+ :Particles participating into search(j)

Figure 5. Framework of particle search [81].

To avoid high time consumption caused by repeated particle search in the meshless SPH-SWE
model, Algorithm 3 was produced.

Figure 5. Framework of particle search [81].

To avoid high time consumption caused by repeated particle search in the meshless SPH-SWE
model, Algorithm 3 was produced.

In the open source code, the information of particles was stored in a three-dimensional array,
and the grid was divided by a maximum smooth length of 2hmax (by adopting this, all particles can be
stored into a cell, causing failure of memory allocation; however, the particle search method mentioned
above solved this issue).

3.3. Water Depth Calculation

According to the Newton-iteration method, the water depth of particles was calculated,
and the maximum number of iterations and the iteration-errors were taken as a criteria to terminate
the iterations. In order to reduce the calculation time while ensuring the accuracy of the results,
the maximum number of iterations of each particle was generally set to 50, and the iteration
error was setup to 10−3. Nevertheless, different approaches can be selected according to different
calculation models.

Before each calculation step, the water depth and smooth length of each particle were guessed.
At the same time, the smooth length h and the correction coefficient αi

k were re-calculated and updated.
In the same time step, the updated smooth length was then used for the sub-sequent SPH interpolation.
The calculation framework is displayed in Algorithm 4.

Water 2020, 12, 1395 12 of 27

Algorithm 3: The particle search. Read in the particles data (include fluid particles/virtual parti‘cles/open
boundary particle/riverbed particles).

1. In each timestep
2. Mesh all particles based on fixed size dx_grid/dy_grid(generally select the maximum smooth length) and particles into
nc array
3. ncx/ncy: total number of grids in x/y direction
4. iboxvv/iboxff/iboxob: store the virtual particles, fluid particles and open boundary particles within the affected
region into two dimensional arrays
5. !$OMP PARALLEL DO PRIVATE (private variable),SHARED(shared variable),&
6. !$OMP& SHARED(shared variable),DEFAULT(none)
7. do i = 1→ total_number_of_fluid particles
8. if particle_i is valid then
9. Calculate mesh of the particle i:icell/jcell
10. Calculate search mesh range of particle i:xsize/yszie
11. do row ∈ -ysize,ysize
12. irow=jcell+1
13. do column ∈ -xsize,xsize
14. icolumn=icell+column
15. Calculate number of search grid: gridn
16. gridn=icolumn+(irow-1)*ncx
17. !Search for Virtual particles in the scope of I particle
18. do j ∈ nc(grindn,1)
19. if particle_i and particle_j are neighbours then
20. Write particle_j to iboxvv array
21. endif
22. enddo
23. !Search for Fluid particles in the scope of i particle
24. do j ∈ nc(grindn,2)
25. if particle_i and particle_j are neighbours then
26. Write particle_j to iboxff array
27. endif
28. enddo
29. !Search for Open boundary particles in the scope of i particle
30. do j ∈ nc(grindn,3)
31. if particle_i and particle_j are neighbours then
32. Write particle_j to iboxob array
33. endif
34. enddo
35. enddo
36. enddo
37. endif
38. enddo
39. !$OMP END PARALLEL DO

After each water depth calculation, each particle was judged on whether the error requirements
were met, and re-calculation was then completed for the particles that did not meet them. After this
iteration cycle, the water depth, speed of the water, and volume were constantly updated.

Water 2020, 12, 1395 13 of 27

Algorithm 4: Water depth calculation.

1. Stage 1: Guess for density and smoothed length
2. !$OMP PARALLEL DO PRIVATE(private variable),&
3. !$OMP& SHARED(shared variable),DEFAULT(none),SCHDULE(static)
4. do i = 1→ total_number_of_fluid particles
5. if particle_i is valid then
6. 1a: rhop(i) = rhop(i) + dt · rhop(i) · ar(i)
7. 1b: h_var(i) = h_var(i) − (dt/dm)·h_var(i)·ar(i)
8. endif
9. enddo
10. !$OMP END PARALLEL DO
11. CALL particle search() %Search particles
12. Stage 2: Calculate depth
13. do while ((maxval(resmax) .gt. Minimum error) .and. (Iterationtimes .lt. max)
14. !$OMP PARALLEL DO PRIVATE(private variable),&
15. !$OMP& SHARED(shared variable),DEFAULT(none),SCHEDULE(static)
16. do i = 1→ total_number_of_fluid particles
17. if particle_i is valid then
18. CALL PURE fluid particle(i,rhop_sum(i),alphap(i))
19. CALL PURE virtual particle(i,rhop_sum(i),alphap(i))
20. CALL PURE open boundary particle((i,rhop_sum(i),alphap(i))
21. %Calculate next step’s water depth and the smooth length

22. ϕk
i = rhop(i)

[
ρk

i

]
− rhop_sum(i)

∑
j

m jWi(xi − x j, hi)


23. αk

i = alphap(i)

− 1
ρidm

∑
j

m jri j
dWi
dri j


24. ρk+1

i = rhop(i)
[
1−

ϕk
i

ϕk
i +ρ

k
i α

k
i

]
25. hi = ho

(
ρ0

ρk+1
i

)1/dm

26. endif
27. enddo
28. !$OMP END PARALLEL DO
29. enddo

3.4. Velocity Calculations

In order to calculate the acceleration (
⇀
a) caused by internal force, the gradient of velocity and water

depth had to be calculated, and the kernel function was adopted to complete this task as shown below:

∇pi =
∑

j

V j
(
pi − p j

)
× ∇̃Wi

(
xi − x j, hi

)
(p = d /u /v) (13)

where pi is the depth/velocity of particle i. The calculation conducted for this step is displayed in
Algorithm 5.

If a variable time-step was implemented, the next step was to calculate the time-step according to
Equation (9). The calculation framework of the time step included a loop and no sub-routine. It was
found that the speed-up of time step parallel computing was less than 2 to perform serially variable
time step calculations.

Water 2020, 12, 1395 14 of 27

Algorithm 5: Calculation of fluid particle velocity and water depth gradient.

1. Stage 1: sum_f/alphap/grad_up/grad_vp/grad_dw=0, Initialize to 0
2. !$OMP PARALLEL DO PRIVATE(private variable),&
3. !$OMP& SHARED(shared variable),DEFAULT(none),SCHDULE(static)
4. do i = 1→ total_number_of_fluid particles
5. if particle_i is valid then
6. !First conduct matrix for gradient correction
7. CALL PURE celij_corr(i,sum_f (I,1:4))
8. CALL PURE celij_alpha(i,alphap(i),grad_dw(i,1:2),grad_up(i,1:2), grad_vp(i,1:2))
9. CALL PURE celij_alpha_vir(i,alphap(i))
10. CALL PURE celij_alphap_ob(i,alphap(i),grad_dw(i,1:2),grad_up(i,1:2), grad_vp(i,1:2))
11. endif
12. enddo
13. !$OMP END PARALLEL DO

3.5. Calculation of Fluid Particle Acceleration, Riverbed Scouring, Speed, and Displacement

The acceleration (
⇀
t) caused by the internal force was firstly calculated, followed by the riverbed

gradient and the total acceleration (
⇀
a). After these calculations, the velocity and the displacement of

fluid particles needed to be regularly updated as shown in the calculation framework Algorithm 6.

Algorithm 6: Calculation of acceleration, velocity, and position. The Lagrangian equation of motion for
a particle i is d/dt ∂L/(∂v_i)-∂L/(∂x_i)=0, where the Lagrangian functional L is defined in term of kinetic
energy K and potential energy π as L = K-π, where π is a function of particles position but not velocity.

1. Stage 1: Calculate
→

t i(ax(i)/ay(i))
2. !$OMP PARALLEL DO PRIVATE(private variable),&
3. !$OMP& SHARED(shared variable),DEFAULT(none),SCHDULE(static)
4. do i = 1→ total_number_of_fluid particles
5. if particle_i is valid then

6. 1a. use Riemann solution to calculate
→

t i

7. 1b. use Numerical viscosity to calculate
→

t i
8. ! ar(i) is used to calculate depth
9. CALL PURE fluid particle(i,ar(i),ay(i),ar(i))
10. CALL PURE virtual particle(i,ar(i),ay(i),ar(i))
11. CALL PURE open boundary particle(i,ar(i),ay(i),ar(i))
12. endif
13. Stage 2: Calculate ∇bi =

∑
j

b j∇̃Wi
(
xi − x j, hi

)
V j

14. Stage 3: Calculate
→
a i =

g+
→

v i·
→

k i
→

v i+
→

t i·∇bi
1+∇bi·∇bi

∇bi −
→

t i +
→

S f ,i

15. Stage 4: Calculate velocity and position of fluid particle i
16. enddo
17. !$OMP END PARALLEL DO

If the open boundary was adopted, the displacement was updated, and it was checked whether
it became a fluid particle or a buffer zone; if the case under investigation had a particle splitting
zone, the fluid particles that meet the conditions identified were split [37]. Achieved this landmark,
the calculation process was then completely repeated according to Algorithm 1.

Water 2020, 12, 1395 15 of 27

4. Applications

4.1. Validation 1: 2-D Dry Bed Dam Break with Particle Splitting

In order to test the performance of the new computing SPH-SWE framework according to
the CPU-OpenMP parallel computing, the open source case “2-D dry bed dam break with particle splitting”,
referred to as DBDB case [67,68], was considered. Initial conditions of this open source DBDB case were
setup as follows: area of 2.6 m × 1.2 m, initial fluid particle layout of 0.8 m × 1.2 m, and initial water
depth equal to 0.15 m, as shown in Figure 6.Water 2020, 12, x FOR PEER REVIEW 17 of 31

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fluid particles

water depth = 0.15 m

Y
 (

m
)

X (m)

• Virtual particles

•

Figure 6. 2-D dry bed dam break with particle splitting (DBDB) case setup.

The spacing of the fluid particles was 0.015 m × 0.015 m, 0.01 m × 0.01 m, and 0.005 m × 0.005 m,
respectively. Table 3 shows the number of fluid particles, virtual particles, and riverbed particles
selected for the 3 cases tested (considering that no inflow and outflow conditions were set, the
number of open boundary particles was maintained equal to 0).

Table 3. Particle numbers for each case tested (unit: pcs).

Case
Number of

Fluid Particles
Number of

Virtual Particles
Number of

Riverbed Particles
Case 1 4374 1276 14,094
Case 2 9801 3300 31,581
Case 3 38,801 9424 125,561

The particles arrangements in the three cases were calculated using the open source code [67,68]
and the CPU-OpenMP parallel code (in terms of 1000 particles per thread and 2000 particles per
thread) to ensure that the calculation results were consistent and comparison of each model’s
performance could be completed.

For t = 0, the instantaneous burst occurs and the fluid flows downstream. Figure 7 shows flow
velocities for T = 1.2 s under the three fluid particle arrangements displayed in Table 3. It can be seen
from Figure 7 that the more fluid particles there were, the more water flow characteristics and
velocity distribution characteristics after dam break were seen. Figure 8 shows the comparison
between numerical and experimental results for the three cases tested in Table 3.

Figure 6. 2-D dry bed dam break with particle splitting (DBDB) case setup.

The spacing of the fluid particles was 0.015 m × 0.015 m, 0.01 m × 0.01 m, and 0.005 m × 0.005 m,
respectively. Table 3 shows the number of fluid particles, virtual particles, and riverbed particles
selected for the 3 cases tested (considering that no inflow and outflow conditions were set, the number
of open boundary particles was maintained equal to 0).

Table 3. Particle numbers for each case tested (unit: pcs).

Case Number of Fluid Particles Number of Virtual Particles Number of Riverbed Particles

Case 1 4374 1276 14,094
Case 2 9801 3300 31,581
Case 3 38,801 9424 125,561

The particles arrangements in the three cases were calculated using the open source code [67,68]
and the CPU-OpenMP parallel code (in terms of 1000 particles per thread and 2000 particles per thread)
to ensure that the calculation results were consistent and comparison of each model’s performance
could be completed.

For t = 0, the instantaneous burst occurs and the fluid flows downstream. Figure 7 shows flow
velocities for T = 1.2 s under the three fluid particle arrangements displayed in Table 3. It can be seen
from Figure 7 that the more fluid particles there were, the more water flow characteristics and velocity
distribution characteristics after dam break were seen. Figure 8 shows the comparison between
numerical and experimental results for the three cases tested in Table 3.

It can be concluded that with the increase of fluid particles (Case 3), the error between the numerical
and the experimental results was smaller.

Hence, bigger is the number of fluid particles computed, and more valuable are the water depth
and velocity calculations for each time step and location across the dam system, therefore providing
more support for the formulation of dam break mitigation plans. This also reflects the superiority of
SPH-SWE model in dealing with large deformation and free surface problems.

Water 2020, 12, 1395 16 of 27

Water 2020, 12, x FOR PEER REVIEW 18 of 31

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0
Y

 (
ve

lo
ci

ty
 m

/s
)

X (m)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Velocity(a)

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

Y
 (

ve
lo

ci
ty

 m
/s

)

X (m)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Velocity(b)

Figure 7. Results of 2-D Dry-Bed Dam Break with particle splitting at 1.2 s obtained from the
simulations with: (a) 4374 particles; (b) 9801 particles; (c) 38,801 particles.

Figure 7. Results of 2-D Dry-Bed Dam Break with particle splitting at 1.2 s obtained from the simulations
with: (a) 4374 particles; (b) 9801 particles; (c) 38,801 particles.

Water 2020, 12, 1395 17 of 27
Water 2020, 12, x FOR PEER REVIEW 19 of 31

1.6 1.8 2.0 2.2 2.4 2.6 2.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2
V

el
oc

ity
 (

m
/s

)

X (m)

 4374 Particles(serial,parallel)
 9801 Particles(serial,parallel)
 38801 Particles(serial,parallel)
 Experiment

1.6 1.8 2.0 2.2 2.4 2.6

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

W
at

er
 D

ep
th

 (
m

)

X (m)

 4374 Particles (serial,parallel)
 9801 Particles (serial,parallel)
 38801 Particles (serial,parallel)
 Experiment

Figure 8. Numerical vs. experimental results comparison (velocities on the left and water depths on
the right).

It can be concluded that with the increase of fluid particles (Case 3), the error between the
numerical and the experimental results was smaller.

Hence, bigger is the number of fluid particles computed, and more valuable are the water depth
and velocity calculations for each time step and location across the dam system, therefore providing
more support for the formulation of dam break mitigation plans. This also reflects the superiority of
SPH-SWE model in dealing with large deformation and free surface problems.

The time and speedup of total time t(s) (Equation 14) required for calculating water depth,
acceleration, speed, and displacement were quantified according to open source code and CPU-
OpenMP parallel code (under different thread configurations) as shown in Table 4.

()
()

()

t k
t s

t c
= (14)

where t(k) represents the running time of open source code and t(c) represents the running time of the
parallel code. In Table 4, R(t) represents the particle search time; C(t) represents the time to calculate
the water depth; A(t) represents the time to calculate the acceleration, speed, and displacement; T(t)
represents the total running time of the case (including t(k) and t(c)); the time unit is always seconds
(s). It can be seen from the results that the number of particles computed was higher, and the parallel
calculation was larger, based on CPU-OpenMP (Figure 9).

20

40

60

80

100

Case 3Case 2Case 1

Sp
ee

du
p

of
 to

ta
l t

im
e:

 t(
s)

 Single thread
 2000 particles
 1000 particles

Figure 9. Speedup of total runtime for validation 1.

Figure 8. Numerical vs. experimental results comparison (velocities on the left and water depths on
the right).

The time and speedup of total time t(s) (Equation (14)) required for calculating water depth,
acceleration, speed, and displacement were quantified according to open source code and CPU-OpenMP
parallel code (under different thread configurations) as shown in Table 4.

t(s) =
t(k)
t(c)

(14)

where t(k) represents the running time of open source code and t(c) represents the running time of
the parallel code. In Table 4, R(t) represents the particle search time; C(t) represents the time to calculate
the water depth; A(t) represents the time to calculate the acceleration, speed, and displacement;
T(t) represents the total running time of the case (including t(k) and t(c)); the time unit is always seconds
(s). It can be seen from the results that the number of particles computed was higher, and the parallel
calculation was larger, based on CPU-OpenMP (Figure 9).

Water 2020, 12, x FOR PEER REVIEW 19 of 31

1.6 1.8 2.0 2.2 2.4 2.6 2.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
el

oc
ity

 (
m

/s
)

X (m)

 4374 Particles(serial,parallel)
 9801 Particles(serial,parallel)
 38801 Particles(serial,parallel)
 Experiment

1.6 1.8 2.0 2.2 2.4 2.6

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

W
at

er
 D

ep
th

 (
m

)

X (m)

 4374 Particles (serial,parallel)
 9801 Particles (serial,parallel)
 38801 Particles (serial,parallel)
 Experiment

Figure 8. Numerical vs. experimental results comparison (velocities on the left and water depths on
the right).

It can be concluded that with the increase of fluid particles (Case 3), the error between the
numerical and the experimental results was smaller.

Hence, bigger is the number of fluid particles computed, and more valuable are the water depth
and velocity calculations for each time step and location across the dam system, therefore providing
more support for the formulation of dam break mitigation plans. This also reflects the superiority of
SPH-SWE model in dealing with large deformation and free surface problems.

The time and speedup of total time t(s) (Equation 14) required for calculating water depth,
acceleration, speed, and displacement were quantified according to open source code and CPU-
OpenMP parallel code (under different thread configurations) as shown in Table 4.

()
()

()

t k
t s

t c
= (14)

where t(k) represents the running time of open source code and t(c) represents the running time of the
parallel code. In Table 4, R(t) represents the particle search time; C(t) represents the time to calculate
the water depth; A(t) represents the time to calculate the acceleration, speed, and displacement; T(t)
represents the total running time of the case (including t(k) and t(c)); the time unit is always seconds
(s). It can be seen from the results that the number of particles computed was higher, and the parallel
calculation was larger, based on CPU-OpenMP (Figure 9).

20

40

60

80

100

Case 3Case 2Case 1

Sp
ee

du
p

of
 to

ta
l t

im
e:

 t(
s)

 Single thread
 2000 particles
 1000 particles

Figure 9. Speedup of total runtime for validation 1.

Figure 9. Speedup of total runtime for validation 1.

CPU-OpenMP allocated a thread according to 1000 fluid particles in parallel and calculated case 2
and case 3, in 26.7 s and 91.36 s, respectively.

In parallel computing, S(p) (the speedup ratio) and E(p) (parallel efficiency) were important
indexes to evaluate the parallel effect. S(p) was the ratio between the serial time and the multi-core
parallel time when threads calculate (p) and solved the iteration at the same time, as follows:

S(p) =
Ts

Tp
(15)

Water 2020, 12, 1395 18 of 27

where, Ts is the time spent by a single processor in the serial mode; Tp is the time spent by threads (p)
in the parallel mode. E(p) (parallel efficiency) is the ratio of the acceleration ratio to the number of
CPU cores used in the calculation (and E(p)≤ 1), indicating the average execution efficiency of each
processor. When the acceleration ratio was close to the number of cores, the parallel efficiency was
higher, and the utilization rate of each thread was higher, as calculated below.

E(p) =
S(p)

p
(16)

Table 4. Run time in different configurations for 2-D Dry-Bed Dam Break with particle splitting.

Cases R(t) C(t) A(t) T(t) t(s)

Open Source Code (Case 1) N/A 1040.44 213.12 1253.56 1.0

Parallel Operation Code
Single Core 87.47 174.95 49.99 312.41 4.01

2000 60.27 118.38 36.59 215.24 5.82
1000 36.43 70.34 18.84 125.61 9.98

Open Source Code (Case 2) N/A 5892.29 1039.82 6932.11 1.0

Parallel Operation Code
Single Core 338.853 643.8207 146.8363 1129.51 6.14

2000 116.8514 218.6252 41.4634 376.94 18.39
1000 75.2985 150.597 33.7545 259.65 26.70

Open Source Code (Case 3) N/A 107,218.04 16,021.09 123,239.13 1.0

Parallel Operation Code Single Core 5498.28 10,481.09 1202.75 17,182.12 7.17
2000 554.20 990.83 134.35 1679.38 73.38

In order to check the parallel effect of CPU-OpenMP, case 3 was calculated with different
threads. The acceleration ratio and parallel efficiency of different threads are shown in Table 5,
and the performances of parallel algorithms are displayed in Figure 10.

Table 5. Case 3 speed-up and parallel efficiency under different threads.

Number of Single-Thread Particles (pcs) p (pcs) Tp (s) S(p) (s) E(p) (%)

2000 20 1679.38 10.23 51.16
2500 16 1759.15 9.77 61.05
3000 13 1833.58 9.37 72.08
4000 10 1935.12 8.88 88.79
5000 8 2300.79 7.47 93.35
6000 7 2579.88 6.66 95.14
7000 6 2934.02 5.86 97.60
8000 5 3455.94 4.97 99.44

10,000 4 4312.39 3.98 99.61
20,000 2 8616.82 1.99 99.70

According to Table 5 and Figure 10, as the number of enabled threads increased, the speedup
ratio, parallel efficiency and calculation time were affected by the following trends: (1) the calculation
time decreases with the increase of threads, but when the number of online processes exceeded
10, the time-consuming reduction speed changed from fast to slow reaching towards a balance;
(2) the acceleration ratio increased all the time, but the improvements varied, and after 10 threads,
the increase rate was from fast to slow; (3) the parallel efficiency decreased with the increase of threads,
but the decrease rate fluctuated. When calculating the number of 10 threads, the parallel efficiency
started to be less than 90%; therefore, case 3 could allocate one thread according to 5000 particles,
with the acceleration ratio of 7.47 and the parallel efficiency of 93.35%.

Water 2020, 12, 1395 19 of 27
Water 2020, 12, x FOR PEER REVIEW 21 of 31

0 5 10 15 20
0

20

40

60

80

100

E
ff

ic
ie

nc
y

(%
)

 Time of consuming (/100)
 Efficiency (%)
 Speedup ratio

Number of threads

T
im

e
of

 c
on

su
m

in
g

(/
10

0)

2

4

6

8

10

12

14

 S
pe

ed
up

 r
at

io

Figure 10. CPU-OpenMP model parallel computing performances.

According to Table 5 and Figure 10, as the number of enabled threads increased, the speedup
ratio, parallel efficiency and calculation time were affected by the following trends: (1) the calculation
time decreases with the increase of threads, but when the number of online processes exceeded 10,
the time-consuming reduction speed changed from fast to slow reaching towards a balance; (2) the
acceleration ratio increased all the time, but the improvements varied, and after 10 threads, the
increase rate was from fast to slow; (3) the parallel efficiency decreased with the increase of threads,
but the decrease rate fluctuated. When calculating the number of 10 threads, the parallel efficiency
started to be less than 90%; therefore, case 3 could allocate one thread according to 5000 particles,
with the acceleration ratio of 7.47 and the parallel efficiency of 93.35%.

4.2. Validation 2: 2-D Dam Break with A Rectangular Obstacle Located in the Downstream Area

In order to solidify the accuracy and advantages of the new SPH-SWE model proposed
calculated by CPU-OpenMP, a second case has been considered for validation. This case involved the
dam break flow with a rectangular obstacle located in the downstream area as shown in Figure 11
[2–83].

Figure 10. CPU-OpenMP model parallel computing performances.

4.2. Validation 2: 2-D Dam Break with A Rectangular Obstacle Located in the Downstream Area

In order to solidify the accuracy and advantages of the new SPH-SWE model proposed calculated
by CPU-OpenMP, a second case has been considered for validation. This case involved the dam break
flow with a rectangular obstacle located in the downstream area as shown in Figure 11 [2–83].Water 2020, 12, x FOR PEER REVIEW 22 of 31

Figure 11. Scheme of the second model used for validation of the new SPH-SWE model proposed
[2–83].

For this second validation scheme, the fluid particles were arranged according to the particle
spacing of 0.01, 0.005, and 0.002 m. Figures 12 and 13 display the results for t = 0.74 s and t = 1.76 s.
for the same particle spacing used by Gu et al., [2] (0.01 m) and increasing number of fluid particles
involved.

Figure 11. Scheme of the second model used for validation of the new SPH-SWE model proposed [2–83].

For this second validation scheme, the fluid particles were arranged according to the particle
spacing of 0.01, 0.005, and 0.002 m. Figures 12 and 13 display the results for t = 0.74 s and t = 1.76 s for
the same particle spacing used by Gu et al., [2] (0.01 m) and increasing number of fluid particles involved.

Water 2020, 12, 1395 20 of 27

In Table 6, it is possible to check the number of particles involved in each simulation, and it can be
noticed that the speed up of total time (t) slightly increased with the rise of particles (using 8 threads in
all three processes) (Figure 14).

Table 6. Particle numbers for each case tested (unit: pcs). Remarks: In all three cases, 8 threads were
used for parallel calculation.

Case Particle Spacing Number of Fluid
Particles

Number of
Virtual Particles

Number of
Riverbed Particles T8 (s) T (s)

Case 4 0.01 12,423 4798 129,645 1511.38 7.12
Case 5 0.005 51,858 9582 516,889 14,538.83 7.32
Case 6 0.002 323,145 23,934 807,111 108,868.42 7.46

Water 2020, 12, x FOR PEER REVIEW 23 of 31

Figure 12. Velocity distribution at 0.74 s for Case 4 (a1), 5 (b1) and 6 (c1) displayed in Table 6.

Figure 12. Velocity distribution at 0.74 s for Case 4 (a1), 5 (b1) and 6 (c1) displayed in Table 6.

Water 2020, 12, 1395 21 of 27
Water 2020, 12, x FOR PEER REVIEW 24 of 31

Figure 13. Velocity distribution at 1.76 s for Case 4 (a2), 5 (b2) and 6 (c2) displayed in Table 6.

In Table 6, it is possible to check the number of particles involved in each simulation, and it can
be noticed that the speed up of total time (t) slightly increased with the rise of particles (using 8
threads in all three processes) (Figure 14).

Table 6. Particle numbers for each case tested (unit: pcs). Remarks: In all three cases, 8 threads were
used for parallel calculation.

Case
Particle
Spacing

Number of
Fluid Particles

Number of
Virtual Particles

Number of
Riverbed
Particles

T8 (s)
T
(s)

Case 4 0.01 12,423 4798 129,645 1511.38 7.12
Case 5 0.005 51,858 9582 516,889 14,538.83 7.32
Case 6 0.002 323,145 23,934 807,111 108,868.42 7.46

Figure 13. Velocity distribution at 1.76 s for Case 4 (a2), 5 (b2) and 6 (c2) displayed in Table 6.
Water 2020, 12, x FOR PEER REVIEW 25 of 31

7.0

7.1

7.2

7.3

7.4

7.5

Case 6Case 5Case 4

Sp
ee

du
p

of
 to

ta
l t

im
e:

 t(
s)

Figure 14. Speedup of total runtime for validation 2.

Table 7 unveils values of R(t), which represents the particle search time; C(t), which represents
the time to calculate the water depth; and A(t), which represents the time to calculate the acceleration,
speed, and displacement. It can be seen from the results (Figure 14) that when the number of particles
computed was higher, the parallel calculation was slightly larger, based on CPU-OpenMP.

Figure 14. Speedup of total runtime for validation 2.

Water 2020, 12, 1395 22 of 27

Table 7 unveils values of R(t), which represents the particle search time; C(t), which represents
the time to calculate the water depth; and A(t), which represents the time to calculate the acceleration,
speed, and displacement. It can be seen from the results (Figure 14) that when the number of particles
computed was higher, the parallel calculation was slightly larger, based on CPU-OpenMP.

Table 7. Run time in different configurations for 2-D Dam Break with a rectangular obstacle downstream.

Cases R (t) C (t) A (t) T8 (s) t (s)

Case 4 468.53 876.60 166.25 1511.38 7.12
Case 5 4216.26 8432.52 1890.05 14,538.83 7.32
Case 6 34,837.91 66,409.72 7620.80 108,868.42 7.46

The simulation results are consistent with the previous case to demonstrate the improvement
made by the proposed SPH-SWE calculation framework. When analyzing the same parameters
as in the paper by Gu et al., [2], 12,423 fluid particles were involved. Results displayed in Figure 15
confirmed that the agreement between numerical results and experimental datasets improved even
when simulating an increase of the number of fluid particles. However, the improvements do not
involve the entire domain because in some positions (for example (a) H4 gauge, x = 1.3 m–1.8 m;
(b) H2 gauge, x = 3.50 m–4.5 m) there are still minor inaccuracies (caused by the truncation error of
the kernel function and the processing of boundary particles in the SPH method), even with the model
with 323,145 fluid particles; hence, future work will focus on improving the algorithm to progress
the calculation accuracy.

Water 2020, 12, x FOR PEER REVIEW 26 of 31

Table 7. Run time in different configurations for 2-D Dam Break with a rectangular obstacle
downstream.

Cases R (t) C (t) A (t) T8 (s) t (s)
Case 4 468.53 876.60 166.25 1511.38 7.12
Case 5 4216.26 8432.52 1890.05 14,538.83 7.32
Case 6 34,837.91 66,409.72 7620.80 108,868.42 7.46

The simulation results are consistent with the previous case to demonstrate the improvement
made by the proposed SPH-SWE calculation framework. When analyzing the same parameters as in
the paper by Gu et al., [2], 12,423 fluid particles were involved. Results displayed in Figure 15
confirmed that the agreement between numerical results and experimental datasets improved even
when simulating an increase of the number of fluid particles. However, the improvements do not
involve the entire domain because in some positions (for example (a) H4 gauge, x = 1.3 m – 1.8 m; (b)
H2 gauge, x = 3.50 m – 4.5 m) there are still minor inaccuracies (caused by the truncation error of the
kernel function and the processing of boundary particles in the SPH method), even with the model
with 323,145 fluid particles; hence, future work will focus on improving the algorithm to progress the
calculation accuracy.

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

D
ep

th
 (

m
)

Time (s)

 Experiment
 Open SWE-SPH
 12423 Particles
 51858 Particles
 323145 Particles

(a)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

D
ep

th
 (

m
)

Time (s)

 Experiment
 Open SWE-SPH
 12423 Particles
 51858 Particles
 323145 Particles

(b)

Figure 15. Comparison between experimental and numerical results water depth datasets: (a) gauge
H4 in [2] and [80]; (b) gauge H2 in [2] and [80].

5. Conclusions

Vacondio et al. [34–37] made an open source version called SWE-SPHysics, which has been
optimized and adapted based on the hydrodynamics investigated by other researchers during the
last decade [38–47]. However, despite continuous progress, there was still a limitation related to the

Figure 15. Comparison between experimental and numerical results water depth datasets: (a) gauge
H4 in [2] and [80]; (b) gauge H2 in [2] and [80].

Water 2020, 12, 1395 23 of 27

5. Conclusions

Vacondio et al. [34–37] made an open source version called SWE-SPHysics, which has been
optimized and adapted based on the hydrodynamics investigated by other researchers during
the last decade [38–47]. However, despite continuous progress, there was still a limitation related to
the computational efficiency when the number of particles to simulate is very large, and this aspect
still needs to be improved.

To fill this gap, in this study, a new solution to the SPH-SWE model introduced by
Vacondio et al. [34–37] was proposed, and it was validated against two open source case studies of
a 2-D dry-bed dam break with particle splitting [67,68] and of a 2-D dam break with a rectangular obstacle
downstream [2,83]. To test the computing performance against the first case study, when involving large
numbers of particles, three cases, involving different particles numbers, were tested (case 1—4374
particles; case 2—9801 particles; case 3—38,801 particles). Furthermore, this paper adopted the parallel
computing method of CPU-OpenMP that is applied to a single machine and a multi-core to calculate
the new SPH-SWEs framework.

By applying this CPU-OpenMP method, results have confirmed that the computing speeds
of case 1/case 2/case 3 were increased by 4.01 times/6.14 times/7.17 times, respectively, to compute
the new solution framework of the SPH-SWE model proposed to the open source case study previously
mentioned [67,68]. According to the new solution framework of SPH-SWE model, case 3, characterized
by the highest number of particles, was also calculated by using different threads. It was found that
the speedup ratio can reach 7.47 when the parallel efficiency was more than 90%, which fully proves
the good calculation performance of the CPU- OpenMP parallel new SPH-SWE model. Additionally,
in the new solution framework of the SPH-SWE model proposed, particle search was used as a separate
module for parallel computing, which greatly improved the computing efficiency and could replace
the meshless SPH-SWE model in the open source code [67,68].

Therefore, using CPU-OpenMP parallel computing demonstrated that the SPH-SWE model new
framework can accurately and timely simulate the flood evolution after a dam break.

In future works, the SPH-SWE model can be put into existing clusters to achieve more threads
and further improve the calculation efficiency. Furthermore, this would enable the possibility of
introducing more effective new algorithms into the SPH-SWE model (i.e., debris flow or water
pollution modules) in order to expand its application. Continuous development of technology aids
the improvement of new tools to design and inspect more accurate solutions, and this is an area in
continuous development that needs to be addressed to support local and national authorities in making
decisions to mitigate drastic effects generated by dam break.

Author Contributions: All authors contributed to the work. Conceptualization, S.G. and L.T.; methodology Y.W.,
M.R. and T.Y.; validation, Q.Z.; formal analysis, S.G., Y.W., M.R. and Z.X.; investigation, L.T., S.G., and M.R.;
resources, S.G.; data curation, L.T. and M.R.; writing—review and editing, P.C., X.W., and M.R.; visualization, Q.Z.;
supervision, S.G., M.R.; project administration, S.G.; funding acquisition, S.G. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the following projects: National Key R&D Program of China
(No. 2017YFC0404303), National Natural Science Foundation of China (No.51869025, 51769028, 51868066),
Qinghai Science and Technology Projects (No. 2018-ZJ-710), Youth Fund of Qinghai University (Grant No.
2017-QGY-7), National Key Laboratory Project for Water Sand Science and Water and Hydropower Engineering,
Tsinghua University (Grant No. sklhse-2018-B-03), Beijing Institute of Structure and Environment Engineering
Fund(Grant No. BQ2019001).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chang, Y.S.; Chang, T.J. SPH simulations of solute transport in flows with steep velocity and concentration
gradients. Water 2017, 9, 132. [CrossRef]

2. Gu, S.; Zheng, X.; Ren, L.; Xie, H.; Huang, Y.; Wei, J.; Shao, S. SWE-SPHysics simulation of dam break flows
at South-Gate Gorges Reservoir. Water 2017, 9, 387. [CrossRef]

http://dx.doi.org/10.3390/w9020132
http://dx.doi.org/10.3390/w9060387

Water 2020, 12, 1395 24 of 27

3. Chen, R.; Shao, S.; Liu, X.; Zhou, X. Applications of shallow water SPH model in mountainous rivers. J. Appl.
Fluid Mech. 2015, 8, 863–870. [CrossRef]

4. Peng, X.; Yu, P.; Chen, G.; Xia, M.; Zhang, Y. Development of a Coupled DDA–SPH Method and its
Application to Dynamic Simulation of Landslides Involving Solid–Fluid Interaction. Rock Mech. Rock Eng.
2020, 53, 113–131. [CrossRef]

5. Verbrugghe, T.; Dominguez, J.M.; Altomare, C.; Tafuni, A.; Vacondio, R.; Troch, P.; Kirtenhaus, A. Non-linear
wave generation and absorption using open boundaries within DualSPHysics. Comput. Phys. Commun. 2019,
240, 46–59. [CrossRef]

6. Ni, X.; Feng, W.; Huang, S.; Zhao, X.; Li, X. Hybrid SW-NS SPH models using open boundary conditions for
simulation of free-surface flows. Ocean Eng. 2020, 196, 106845. [CrossRef]

7. Gonzalez-Cao, J.; Altomare, C.; Crespo, A.J.C.; Dominguez, J.M.; Gomez-Gesteira, M.; Kisacik, D.
On the accuracy of DualSPHysics to assess violent collisions with coastal structures. Comput. Fluids
2019, 179, 604–612. [CrossRef]

8. Atif, M.M.; Chi, S.W.; Grossi, E.; Shabana, A. Evaluation of breaking wave effects in liquid sloshing problems:
ANCF/SPH comparative study. Nonlinear Dyn. 2019, 97, 45–62. [CrossRef]

9. Meringolo, D.D.; Marrone, S.; Colagrossi, A.; Liu, Y. A dynamic δ-SPH model: How to get rid of diffusive
parameter tuning. Comput. Fluids 2019, 179, 334–355. [CrossRef]

10. Shu, A.; Wang, S.; Rubinato, M.; Wang, M.; Qin, J.; Zhu, F. Numerical Modeling of Debris Flows Induced by
Dam-Break Using the Smoothed Particle Hydrodynamics (SPH) Method. Appl. Sci. 2020, 10, 2954. [CrossRef]

11. Wu, S.; Rubinato, M.; Gui, Q. SPH Simulation of interior and exterior flow field characteristics of porous
media. Water 2020, 12, 918. [CrossRef]

12. Wang, S.; Shu, A.; Rubinato, M.; Wang, M.; Qin, J. Numerical Simulation of Non-Homogeneous Viscous
Debris-Flows based on the Smoothed Particle Hydrodynamics (SPH) Method. Water 2019, 11, 2314. [CrossRef]

13. Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical
stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389. [CrossRef]

14. Hopkins, P. A general class of Lagrangian smoothed particle hydrodynamics methods and implications for
fluid mixing problems. Mon. Not. R. Astron. Soc. 2013, 428, 2840–2856. [CrossRef]

15. Cremonesi, M.; Meduri, S.; Perego, U. Lagrangian-Eulerian enforcement of non-homogeneous boundary
conditions in the Particle Finite Element Method. Comput. Part. Mech. 2020, 7, 41–56. [CrossRef]

16. Sugiyama, K.; Li, S.; Takeuchi, S.; Takagi, S.; Matsumoto, Y. A full Eulerian finite difference approach for
solving fluid-structure coupling problems. J. Comput. Phys. 2011, 230, 596–627. [CrossRef]

17. Miller, G.H.; Colella, P. A conservative three-dimensional Eulerian method for coupled solid-fluid shock
capturing. J. Comput. Phys. 2002, 183, 26–82. [CrossRef]

18. Liu, M.B.; Liu, G.R. Smoothed Particle Hydrodynamics (SPH): An Overview and Recent Developments.
Arch. Comput. Methods Eng. 2010, 17, 25–76. [CrossRef]

19. Liu, G.R.; Liu, M.B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method; World Scientific: Singapore,
2003.

20. Dalrymple, R.A.; Rogers, B.D. Numerical modeling of water waves with the SPH method. Coast. Eng. 2006,
53, 141–147. [CrossRef]

21. Huang, C.; Lei, J.M.; Peng, X.Y. A kernel gradient free (KGF) SPH method. Int. J. Numer. Methods Fluids 2015,
78. [CrossRef]

22. Monaghan, J.J.; Kocharyan, A. SPH simulation of multi-phase flow. Comput. Phys. Commun. 1995, 87, 225–235.
[CrossRef]

23. Chen, A.S.; Djordjevic, S.; Leandro, J. An analysis of the combined consequences of pluvial and fluvial
flooding. Water Sci. Technol. 2010, 62, 1491–1498. [CrossRef]

24. Liang, Q.; Borthwick, A.G.L.; Stelling, G. Simulation of dam and dyke break hydrodynamics on dynamically
adaptive quadtree grids. Int. J. Numer. Methods Fluids 2004, 46. [CrossRef]

25. Chang, T.J.; Kao, H.M.; Chang, K.H.; Hsu, M.H. Numerical simulation of shallow water dam break flows in
open channels using smoothed particle hydrodynamics. J. Hydrol. 2011, 408, 78–90. [CrossRef]

26. Kao, H.M.; Chang, T.J. Numerical modeling of dambreak-induced flood inundation using smoothed particle
hydrodynamics. J. Hydrol. 2012, 448–449, 232–244. [CrossRef]

27. Colagrossi, A.; Landrini, M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics.
J. Comput. Phys. 2003, 191, 448–475. [CrossRef]

http://dx.doi.org/10.18869/acadpub.jafm.67.223.23311
http://dx.doi.org/10.1007/s00603-019-01900-x
http://dx.doi.org/10.1016/j.cpc.2019.02.003
http://dx.doi.org/10.1016/j.oceaneng.2019.106845
http://dx.doi.org/10.1016/j.compfluid.2018.11.021
http://dx.doi.org/10.1007/s11071-019-04927-5
http://dx.doi.org/10.1016/j.compfluid.2018.11.012
http://dx.doi.org/10.3390/app10082954
http://dx.doi.org/10.3390/w12030918
http://dx.doi.org/10.3390/w11112314
http://dx.doi.org/10.1093/mnras/181.3.375
http://dx.doi.org/10.1093/mnras/sts210
http://dx.doi.org/10.1007/s40571-019-00245-0
http://dx.doi.org/10.1016/j.jcp.2010.09.032
http://dx.doi.org/10.1006/jcph.2002.7158
http://dx.doi.org/10.1007/s11831-010-9040-7
http://dx.doi.org/10.1016/j.coastaleng.2005.10.004
http://dx.doi.org/10.1002/fld.4037
http://dx.doi.org/10.1016/0010-4655(94)00174-Z
http://dx.doi.org/10.2166/wst.2010.486
http://dx.doi.org/10.1002/fld.748
http://dx.doi.org/10.1016/j.jhydrol.2011.07.023
http://dx.doi.org/10.1016/j.jhydrol.2012.05.004
http://dx.doi.org/10.1016/S0021-9991(03)00324-3

Water 2020, 12, 1395 25 of 27

28. Yang, F.L.; Zhang, X.F.; Tan, G.M. One and two-dimensional coupled hydrodynamics model for dam break
flow. J. Hydrodyn. 2007, 19, 769–775. [CrossRef]

29. Wang, Z.; Shen, H.T. Lagrangian simulation of one-dimensional dam-break flow. Hydraul. Eng. 1999,
125, 1217–1220. [CrossRef]

30. Ata, R.; Soulaimani, A. A stabilized SPH method for inviscid shallow water flows. Int. J. Numer. Methods
Fluids 2005, 47, 139–159. [CrossRef]

31. Leffe, M.D.; Touzé, D.L.; Alessandrini, B. SPH Modeling of a shallow-water coastal flows. Hydraul. Res. 2010,
48, 118–125. [CrossRef]

32. Rodriguez-Paz, M.; Bonet, J. A corrected smooth particle hydrodynamics formulation of the shallow-water
equations. Comput. Struct. 2005, 83, 1396–1410. [CrossRef]

33. Panizzo, A.; Longo, D.; Bellotti, G.; De Girolamo, P. Tsunamis early warning system. Part 3: SPH
modeling of nlswe. In Proceedings of the XXX Convegno di Idraulica e Costruzioni Idrauliche, Rome, Italy,
10–15 September 2006.

34. Vacondio, R.; Rogers, B.D.; Stansby, P.K.; Mignosa, P. A correction for balancing discontinuous bed slopes in
two-dimensional smoothed particle hydrodynamics shallow water modeling. Int. J. Numer. Methods Fluids
2013, 71, 850–872. [CrossRef]

35. Vacondio, R.; Rogers, B.D.; Stansby, P.K.; Mignosa, P. SPH Modeling of Shallow Flow with Open Boundaries
for Practical Flood Simulation. J. Hydraul. Eng. 2012, 138, 530–541. [CrossRef]

36. Vacondio, R.; Rogers, B.D.; Stansby, P.K.; Mignosa, P. Smoothed Particle Hydrodynamics: Approximate
zero-consistent 2-D boundary conditions and still shallow water tests. Int. J. Numer. Methods Fluids 2011,
69, 226–253. [CrossRef]

37. Vacondio, R.; Rogers, B.D.; Stansby, P.K. Accurate particle splitting for SPH in shallow water with shock
capturing. Int. J. Numer. Methods Fluids 2012, 69, 1377–1410. [CrossRef]

38. Skillen, A.; Lind, S.J.; Stansby, P.K.; Rogers, B.D. Incompressible Smoothed Particle Hydrodynamics (SPH)
with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient
wave-body interaction. Comput. Methods Appl. Mech. Eng. 2013, 265, 163–173. [CrossRef]

39. Fourtakas, G.; Rogers, B.D.; Laurence, D.R.P. Modelling Sediment resuspension in Industrial tanks using
SPH. Houille Blanche 2013, 2, 39–45. [CrossRef]

40. St-Germain, P.; Nistor, I.; Townsend, R.; Shibayama, T. Smoothed-Particle Hydrodynamics Numerical
Modeling of Structures Impacted by Tsunami Bores. J. Waterw. Port Coast. Ocean Eng. 2014, 140, 66–81.
[CrossRef]

41. Cunningham, L.S.; Rogers, B.D.; Pringgana, G. Tsunami wave and structure interaction: An investigation
with smoothed-particle hydrodynamics. Proc. Inst. Civ. Eng. Eng. Comput. Mech. 2014, 167, 106–116.
[CrossRef]

42. Aureli, F.; Dazzi, S.; Maranzoni, A.; Mignosa, P.; Vacondio, R. Experimental and numerical evaluation of
the force due to the impact of a dam-break wave on a structure. Adv. Water Resour. 2015, 76, 29–42. [CrossRef]

43. Canelas, R.B.; Domínguez, J.M.; Crespo, A.J.C.; Gómez-Gesteira, M.; Ferreira, R.M.L. A Smooth Particle
Hydrodynamics discretization for the modelling of free surface flows and rigid body dynamics. Int. J. Numer.
Methods Fluids 2015, 78, 581–593. [CrossRef]

44. Heller, V.; Bruggemann, M.; Spinneken, J.; Rogers, B.D. Composite modelling of subaerial landslide–tsunamis
in different water body geometries and novel insight into slide and wave kinematics. Coast. Eng. 2016,
109, 20–41. [CrossRef]

45. Fourtakas, G.; Rogers, B.D. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid
flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a graphics processing unit (GPU).
Adv. Water Resour. 2016, 92, 186–199. [CrossRef]

46. Mokos, A.; Rogers, B.D.; Stansby, P.K. A multi-phase particle shifting algorithm for SPH simulations of
violent hydrodynamics with a large number of particles. J. Hydraul. Res. 2017, 55, 143–162. [CrossRef]

47. Alshaer, A.W.; Rogers, B.D.; Li, L. Smoothed Particle Hydrodynamics (SPH) modelling of transient heat
transfer in pulsed laser ablation of Al and associated free-surface problems. Comput. Mater. Sci. 2017,
127, 161–179. [CrossRef]

48. Sun, P.N.; Colagrossi, A.; Marrone, S.; Antuono, M.; Zhang, A.M. A consistent approach to particle shifting
in the δ-Plus-SPH model. Mech. Eng. 2019, 348, 912–934. [CrossRef]

http://dx.doi.org/10.1016/S1001-6058(08)60016-5
http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:11(1217)
http://dx.doi.org/10.1002/fld.801
http://dx.doi.org/10.1080/00221686.2010.9641252
http://dx.doi.org/10.1016/j.compstruc.2004.11.025
http://dx.doi.org/10.1002/fld.3687
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000543
http://dx.doi.org/10.1002/fld.2559
http://dx.doi.org/10.1002/fld.2646
http://dx.doi.org/10.1016/j.cma.2013.05.017
http://dx.doi.org/10.1051/lhb/2013014
http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000225
http://dx.doi.org/10.1680/eacm.13.00028
http://dx.doi.org/10.1016/j.advwatres.2014.11.009
http://dx.doi.org/10.1002/fld.4031
http://dx.doi.org/10.1016/j.coastaleng.2015.12.004
http://dx.doi.org/10.1016/j.advwatres.2016.04.009
http://dx.doi.org/10.1080/00221686.2016.1212944
http://dx.doi.org/10.1016/j.commatsci.2016.09.004
http://dx.doi.org/10.1016/j.cma.2019.01.045

Water 2020, 12, 1395 26 of 27

49. Sun, P.; Zhang, A.M.; Marrone, S.; Ming, F. An accurate and efficient SPH modeling of the water entry of
circular cylinders. Appl. Ocean Res. 2018, 72, 60–75. [CrossRef]

50. Zheng, X.; Shao, S.; Khayyer, A.; Duan, W.; Ma, Q.; Liao, K. Corrected first-order derivative ISPH in water
wave simulations. Coast. Eng. J. 2017, 59. [CrossRef]

51. Luo, M.; Reeve, D.; Shao, S.; Karunarathna, H.; Lin, P.; Cai, H. Consistent Particle Method simulation
of solitary wave impinging on and overtopping a seawall. Eng. Anal. Bound. Elem. 2019, 103, 160–171.
[CrossRef]

52. Ran, Q.; Tong, J.; Shao, S.; Fu, X.; Xu, Y. Incompressible SPH scour model for movable bed dam break flows.
Adv. Water Resour. 2015, 82, 39–50. [CrossRef]

53. Xia, X.; Liang, Q. A GPU-accelerated smoothed particle hydrodynamics (SPH) model for the shallow water
equations. Environ. Model. Softw. 2016, 75, 28–43. [CrossRef]

54. Liang, Q.; Xia, X.; Hou, J. Catchment-scale High-resolution Flash Flood Simulation Using the GPU-based
Technology. Procedia Eng. 2016, 154, 975–981. [CrossRef]

55. Satake, S.I.; Yoshimori, H.; Suzuki, T. Optimazations of a GPU accelerated heat conduction equation by
a programming of CUDA Fortran from an analysis of a PTX file. Comput. Phys. Commun. 2012, 183, 2376–2385.
[CrossRef]

56. Yang, C.T.; Huang, C.L.; Lin, C.F. Hybrid CUDA, OpenMP, and MPI parallel programming on multicore
GPU clusters. Comput. Phys. Commun. 2011, 182, 266–269. [CrossRef]

57. Ohshima, S.; Hirasawa, S.; Honda, H. OMPCUDA: OpenMP Execution Framework for CUDA Based on
Omni OpenMP Compiler. In Beyond Loop Level Parallelism in OpenMP: Accelerators, Tasking and More; Sato, M.,
Hanawa, T., Müller, M.S., Chapman, B.M., de Supinski, B.R., Eds.; IWOMP 2010. Lecture Notes in Computer
Science, 6132; Springer: Berlin/Heidelberg, Germany, 2010. [CrossRef]

58. Loncar, V.; Young, S.L.E.; Skrbic, S.; Muruganandam, P.; Adhikari, S.; Balaz, A. OpenMP, OpenMP/MPI,
and CUDA/MPI C programs for solving the time-dependent dipolar Gross-Pitaevskii equation. Comput.
Phys. Commun. 2016, 209, 190–196. [CrossRef]

59. Bronevetsky, G.; Marques, D.; Pingali, K.; McKee, S.; Rugina, R. Compiler-enhanced incremental
checkpointing for OpenMP applications. In Proceedings of the 2009 IEEE International Symposium
on Parallel & Distributed Processing, Rome, Italy, 23–29 May 2009; pp. 1–12. [CrossRef]

60. Dagum, L.; Menon, R. OpenMP: An industry standard API for shared-memory programming. IEEE Comput.
Sci. Eng. 1998, 5, 46–55. [CrossRef]

61. Slabaugh, G.; Boyes, R.; Yang, X. Multicore Image Processing with OpenMP [Applications Corner]. IEEE Signal
Process. Mag. 2010, 27, 134–138. [CrossRef]

62. Chorley, M.J.; Walker, D.W. Performance analysis of a hybrid MPI/OpenMP application on multi-core clusters.
J. Comput. Sci. 2010, 1, 168–174. [CrossRef]

63. Adhianto, L.; Chapman, B. Performance modeling of communication and computation in hybrid MPI
and OpenMP applications. Simul. Model. Pract. Theory 2007, 15, 481–491. [CrossRef]

64. Wright, S.J. Parallel algorithms for banded linear systems. Siam J. Sci. Stat. Comput. 1991, 12, 824–842.
[CrossRef]

65. Jiao, Y.-Y.; Zhao, Q.; Wang, L. A hybrid MPI/OpenMP parallel computing model for spherical discontinuous
deformation analysis. Comput. Geotech. 2019, 106, 217–227. [CrossRef]

66. Przemysław, S. Algorithmic and language-based optimization of Marsa-LFIB4 pseudorandom number
generator using OpenMP, OpenACC and CUDA. J. Parallel Distrib. Comput. 2020, 137, 238–245.

67. Vacondio, R. Shallow Water and Navier-Stokes SPH-Like Numerical Modelling of Rapidly Varying
Free-Surface Flows. Ph.D. Thesis, Università degli Studi di Parma, Parma, Italy, 2010.

68. Vacondio, R.; Rodgers, B.D.; Stansby, P.K.; Mignosa, P. User Guide for the SWE-SPHysics Code. 2013.
Available online: https://wiki.manchester.ac.uk/sphysics/images/SWE-SPHysics_v1.0.00.pdf (accessed on
2 April 2020).

69. Marion, J.; Thornton, S. Classical Dynamics of Particles and Systems; Harcourt Brace Jovanovich Inc.: San Diego,
CA, USA, 1988.

70. Monaghan, J.J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 2005, 68, 1703–1759. [CrossRef]
71. Bonet, J.; Lok, T.-S.L. Variational and momentum preservation aspects of Smooth Particle Hydrodynamic

formulations. Comput. Methods Appl. Mech. Eng. 1999, 180, 97–115. [CrossRef]

http://dx.doi.org/10.1016/j.apor.2018.01.004
http://dx.doi.org/10.1142/S0578563417500103
http://dx.doi.org/10.1016/j.enganabound.2019.03.012
http://dx.doi.org/10.1016/j.advwatres.2015.04.009
http://dx.doi.org/10.1016/j.envsoft.2015.10.002
http://dx.doi.org/10.1016/j.proeng.2016.07.585
http://dx.doi.org/10.1016/j.cpc.2012.06.005
http://dx.doi.org/10.1016/j.cpc.2010.06.035
http://dx.doi.org/10.1007/978-3-642-13217-9_13
http://dx.doi.org/10.1016/j.cpc.2016.07.029
http://dx.doi.org/10.1109/IPDPS.2009.5160999
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1109/MSP.2009.935452
http://dx.doi.org/10.1016/j.jocs.2010.05.001
http://dx.doi.org/10.1016/j.simpat.2006.11.014
http://dx.doi.org/10.1137/0912044
http://dx.doi.org/10.1016/j.compgeo.2018.11.004
https://wiki.manchester.ac.uk/sphysics/images/SWE-SPHysics_v1.0.00.pdf
http://dx.doi.org/10.1088/0034-4885/68/8/R01
http://dx.doi.org/10.1016/S0045-7825(99)00051-1

Water 2020, 12, 1395 27 of 27

72. Vila, J.P. On particle weighted methods and smooth particle hydrodynamics. Math. Models Methods Appl. Sci.
1999, 9, 161–209. [CrossRef]

73. Dinshaw, B.S. Von Neumann stability analysis of smoothed particle hydrodynamics—Suggestions for optimal
algorithms. J. Comput. Phys. 1995, 121, 357–372.

74. Toro, E. Direct Riemann solvers for the time-dependent Euler equations. Shock Waves 1995, 5, 75–80.
[CrossRef]

75. Hernquist, L.; Katz, N. TREESPH: A unification of SPH with the hierarchical tree method. Astrophys. J. Suppl.
1989, 70, 419–446. [CrossRef]

76. Toro, E. Shock Capturing Methods for Free Surface Shallow Water Flows; Wiley: New York, NY, USA, 1999.
77. Nikolaos, D.K. A dissipative galerkin scheme for open-channel flow. Hydraul. Eng. 1984, 110, 337–352.
78. Majda, A.; Osher, S. Numerical viscosity and the entropy condition. Commun. Pure Appl. Math. 1979.

[CrossRef]
79. Stranex, T.; Wheaton, S. A new corrective scheme for SPH. Comput. Methods Appl. Mech. Eng. 2011, 200, 392–402.

[CrossRef]
80. Monaghan, J.J.; Gingold, R.A. Shock simulation by the particle method SPH. J. Comput. Phys. 1983, 52, 374–389.

[CrossRef]
81. Monaghan, J.J. Particle methods for hydrodynamics. Comput. Phys. Rep. 1985, 3, 71–124. [CrossRef]
82. Chen, F.; Qiang, H.; Gao, W. Coupling of smoothed particle hydrodynamics and finite volume method for

two-dimensional spouted beds. Comput. Chem. Eng. 2015, 77, 135–146. [CrossRef]
83. Kleefsman, K.M.T.; Fekken, G.; Veldman, A.E.P.; Iwanowski, B.; Buchner, B. A volume-of-fluid based

simulation method for wave impact problems. J. Comput. Phys. 2005, 206, 363–393. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1142/S0218202599000117
http://dx.doi.org/10.1007/BF02425037
http://dx.doi.org/10.1086/191344
http://dx.doi.org/10.1002/cpa.3160320605
http://dx.doi.org/10.1016/j.cma.2010.09.003
http://dx.doi.org/10.1016/0021-9991(83)90036-0
http://dx.doi.org/10.1016/0167-7977(85)90010-3
http://dx.doi.org/10.1016/j.compchemeng.2015.04.002
http://dx.doi.org/10.1016/j.jcp.2004.12.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Governing Equations
	Water Depth Solutions
	Speed Solution
	Time Integration and Boundary Processing

	SPH-SWE Model Solution Framework
	Fluid Particle Riverbed Calculation
	Particle Search
	Water Depth Calculation
	Velocity Calculations
	Calculation of Fluid Particle Acceleration, Riverbed Scouring, Speed, and Displacement

	Applications
	Validation 1: 2-D Dry Bed Dam Break with Particle Splitting
	Validation 2: 2-D Dam Break with A Rectangular Obstacle Located in the Downstream Area

	Conclusions
	References

