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Abstract: The uncertainty assessment of urban hydrological models is important for understanding the
reliability of the simulated results. To satisfy the demand for urban flood management, we assessed the
uncertainty of urban hydrological models from a multiple-objective perspective. A multiple-criteria
decision analysis method, namely, the Generalized Likelihood Uncertainty Estimation-Technique for
Order Preference by Similarity to Ideal Solution (GLUE-TOPSIS) was proposed, wherein TOPSIS was
adopted to measure the likelihood within the GLUE framework. Four criteria describing different
urban stormwater characteristics were combined to test the acceptability of the parameter sets. The
TOPSIS was used to calculate the aggregate employed in the calculation of the aggregate likelihood
value. The proposed method was implemented in the Storm Water Management Model (SWMM),
which was applied to the Dahongmen catchment in Beijing, China. The SWMM model was calibrated
and validated based on the three and two flood events respectively downstream of the Dahongmen
catchment. The results showed that the GLUE-TOPSIS provided a more precise uncertainty boundary
compared with the single-objective GLUE method. The band widths were reduced by 7.30 m3/s in
the calibration period, and by 7.56 m3/s in the validation period. The coverages increased by 20.3% in
the calibration period, and by 3.2% in the validation period. The median estimates improved, with an
increase of the Nash–Sutcliffe efficiency coefficients by 1.6% in the calibration period, and by 10.0% in
the validation period. We conclude that the proposed GLUE-TOPSIS is a valid approach to assess the
uncertainty of urban hydrological model from a multiple objective perspective, thereby improving
the reliability of model results in urban catchment.

Keywords: urban hydrological model; Generalized Likelihood Uncertainty Estimation (GLUE);
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS); uncertainty analysis

1. Introduction

Land use modifications accompanied by urbanization, including the decrease of vegetation
cover, increase of impervious surfaces, and drainage channel modifications, result in changes in the
characteristics of the surface runoff hydrograph [1,2]. Urban flooding and waterlogging are severe
global environmental issues. Urban hydrological models play an important role in the planning and
construction of urban drainage and flood control systems [3,4]. The Storm Water Management Model
(SWMM), which was developed by the United States Environmental Protection Agency (EPA), has
become one of the most popular urban hydrological models [5,6] in urban stormwater simulation.
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Urban hydrological models typically require a large number of parameters, which are difficult
or impossible to measure with sufficient accuracy, and must generally be estimated or evaluated
from secondary information sources [7,8]. Hence, the obtained simulation results are typically laden
with notable degrees of uncertainty [9]. Thus, various methods have been developed to assess the
uncertainty in urban hydrological models, such as the Monte Carlo Markov chain [10,11], grey box
model [12], Bayesian approach [13], and Generalized Likelihood Uncertainty Estimation (GLUE)
method [14,15]. The selection of the objective function is critical for many of these uncertainty
analysis methods. According to GLUE method, the objective function and acceptability threshold
exert substantial influence on the final assessment results. The Nash–Sutcliffe Efficiency index (NSE) is
widely used as the objective function in the GLUE method for urban hydrological models [16,17].

In 1998, Gupta et al. [18] proposed that hydrological model calibration inherently comprises
multiple objectives, and that converting it into a single-objective model must involve some degree of
subjectivity. The complexity of urban stormwater management comes from flood characteristics such as
the flood volume, peak flood value, lag time, and overflow characteristics such as the overflow volume
and duration. These characteristics concern different management system components [15,19] and are
difficult to be captured by a single-objective function during model calibration and validation. Moreover,
the adoption of the single-objective function introduces additional uncertainties in applications because
it may consider unacceptable parameter sets [20,21]. The controversy can also be found in the use of
informal likelihood measures based on the NSE, which involves subjective decisions [22].

This paper proposes a new framework for analyzing the uncertainty of an urban hydrological
model. TOPSIS (evaluation technique for order performance by similarity to ideal solution), which
is a multiple-criteria decision analysis (MCDA) method developed by Hwang and Yoon [23,24], was
adopted as the likelihood criterion of the GLUE method using four important objective criteria in
urban flood modelling. The proposed method was used to quantify the parameter uncertainties in the
SWMM model and was applied to the Dahongmen (DHM) catchment located in Beijing, China. We
attempted to improve the uncertainty assessment of an urban hydrological model by comprehensively
investigating the performance of the parameter sets during simulation.

2. Methods

The proposed uncertainty analysis method is based on the GLUE framework, which was developed
by Beven and Binley [25]. In the GLUE method, a likelihood measure is selected and calculated to
reflect the goodness of fit between the model simulation and the observations. The model simulations
are considered as non-behavioral when the values of the likelihood measures are lower than the cut-off

threshold. The selection of the likelihood measure and cut-off threshold has been discussed in various
papers, owing to the subjective decisions involved [22,26–28]. Because the single objective always
involves some degree of subjectivity [18], the proposed method uses MCDA to carry out the likelihood
measure; the critical points are summarized as follows:

• The performance of the parameter sets was comprehensively investigated by considering the
threshold of each objective function. Only the parameter sets for which all objective function
values exceeded their threshold were considered as behavioral.

• An integrated likelihood measure was carried out using TOPSIS, which was used as a weighting
factor to derive the posterior probability density functions for both the parameters and the
predictions. The prominent advantage of TOPSIS is that different types of objective functions can
be easily integrated into a unified evaluation index by setting the benefit criteria and loss criteria.

The uncertainty assessment process can be described as follows:

1. Based on Monte Carlo sampling from feasible parameter spaces with a defined prior distribution,
wherein uniform probability distributions are often adopted without prior knowledge [29,30].

2. Instead of a unique likelihood measure, multiple thresholds from multiple criteria are used to
determine the behavioral parameter sets. In urban stormwater management, not only the precision
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of the flood process but also the precision of the flood volume and flood peak is considered by the
modeler [31]. A behavior parameter set should be able to achieve these objectives. The criteria
typically used in flood prediction are as follows:

NSE = 1−

∑n
i=1 (y obs,i− ysim,i

)2

∑n
i=1 (y obs,i − yobs,i

)2 (1)

VB =

∣∣∣∑n
i=1 yobs,i−

∑n
i=1 ysim,i

∣∣∣∑n
i=1 yobs,i

(2)

PB =

∣∣∣∣∣max
1≤i≤n

{yobs,i}− max
1≤i≤n

{ysim,i}
∣∣∣∣∣

max
1≤i≤n

{yobs,i}
(3)

and

R =

∑(
yobs,i − yobs

)(
ysim,i − ysim

)
√∑(

yobs,i − yobs

)2(
ysim,i − ysim

)2
(4)

where yobs is the observed flow, ysim is the simulated flow, yobs is the average measured flow,
ysim is the average simulated flow, and n is the number of the observed flow points. In the above
formula, NSE is the widely used Nash–Sutcliffe efficiency index [32]. The flood volume bias
(VB) and flood peak bias (PB) are the modified expressions for the flood volume and flood peak
deviation [18,33], respectively. The parameter R represents the consistency between the observed
flow and the simulated flow [34]. The threshold of these criteria can be defined with reference to
practical demand [35]. The reasonable range of the four criteria is between 0 to 1. The optimum
value of NSE and R is 1, and optimum value of VB and PB is 0, which means the simulation
results of the model completely fit the measured results. In this study, the behavioral parameter
sets whose likelihood values of the four criteria were greater than the corresponding thresholds
were chosen for further analysis.

3. TOPSIS, which is a well-known MCDA method and can provide the ranking order of all
alternatives [36,37], was employed in the calculation of the aggregate likelihood value L(θi) of the
behavioral parameter set θi. In the TOPSIS method, the four criteria of all parameter sets should
be normalized by the classification of the benefit and cost criterion, where the benefit criterion
means that a larger value is more valuable, and vice-versa for the cost criterion [37]. In this study,
NSE and R are benefit criteria, while VB and PB are cost criteria; xij is the ith criterion of the jth
parameter set. For the benefit criteria, the normalized value (rij) is calculated as follows:

rij =
xij√∑n
i=1 xij

2
. (5)

For the cost criteria, the normalized value (rij) is calculated as follows:

rij =

1
xij√∑n
i=1

1
xij

2
. (6)
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In many situations, the criterion should be weighted according its importance [36]. Because it
is difficult to identify which criterion is more important, we assume that all criteria are equally
important. The ideal solution Rj

+ and negative-ideal solution Rj
− can be calculated as follows:

Rj
+= max{x1j, x2j, . . . , xnj} (7)

Rj
+= min{x1j, x2j, . . . , xnj}. (8)

Then, the separation of each alternative from the ideal and negative-ideal solutions are expressed,
respectively, as follows:

D+
i =

√√√ n∑
j=1

(
rij −R+

j

)2
(9)

D−i =

√√√ n∑
j=1

(rij −R−j )
2 (10)

The aggregate likelihood value L(θi) is evaluated by comparing the distance from the ideal
solution and the distance from the negative-ideal solution:

L(θi) =
Di

+

Di
++Di

−
(11)

4. Finally, the predictions from the behavioral parameter sets are ranked in the order of the likelihood
weights W(i), which is defined as follows:

W(i) =
L(θi)∑N

i=1 L(θi)
(12)

where N is the number of behavioral parameter sets. Additionally, the cumulative probability
distribution for the ranked discharge predictions can be obtained as follows:

P(Q < Q i) =

∑i
j=1 W(j)∑n
j=1 W(j)

(13)

where Q denotes the discharge, and Qi is the discharge prediction ranked at the ith position; n
has the same meaning as in Equation (2). According to the cumulative probability distribution,
the uncertainty bound can be obtained for a given certainty level.

3. Study Area and SWMM Model

3.1. Study Area

The Dahongmen catchment is a typical urbanized area in Beijing, PRC, with a high population
density and heavily built-up underlying surface. The catchment covers an area of approximately
131.49 km2 and is located upstream of the Liangshui River basin in Beijing, between 39◦48’–39◦55’ N and
116◦90’–116◦24’ E. In the catchment, the terrain exhibits a downward trend from the western mountains
to the eastern plains. The annual average precipitation is 522.4 mm, and 80% of the precipitation occurs
during the period from June to September. The river systems and hydro-meteorological stations of the
Dahongmen catchment are shown in Figure 1.
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3.2. SWMM Model 

The SWMM is a dynamic hydrological simulation model used in single-event or long-term 
(continuous) simulations of runoff quantity and quality from primarily urban areas. The runoff 
component of SWMM operates on a collection of subcatchment areas that receive precipitation and 
generate runoff and pollutant loads. The routing portion of the SWMM transports this runoff through 
a system of pipes, channels, storage/treatment devices, pumps, and regulators [38,39]. Additionally, 
the SWMM tracks the quantity and quality of the runoff generated within each subcatchment, and 
the flow rate, flow depth, and quality of the water in each pipe and channel during a simulation 
period with multiple time steps. In this study, SWMM version 5.1 was used; its technical details have 
been reported by Rossman et al. [40]. The best performance of SWMM before and after urbanization 
in the Dahonmen catchment was addressed by Xu and Zhao (2017) [41]. 

In this study, five heavy storms (accumulated precipitation > 50 mm) occurred between 2011 
and 2012 in the Dahongmen catchment were used for model calibration and verification. Precipitation 
on 23 June 2011, 26 July 2011, and 14 August 2011 were used to calibrate the model, and the other 
two on 24 June 2012 and 21 July 2012 were used for validation. The accumulated precipitation of the 
five events was 110.6, 66.8, 66.9, 63.9, and 197.4 mm, respectively. The rainfall duration of the five 
storms was14, 5, 3, 16, and 18 h, respectively. As shown in Figure 1, the hourly series from three 
precipitation stations and a DHM gauge station were obtained from the Hydrographic Station of 
Beijing, CHINA. The hourly inflow data of the Youanmen station were obtained from the Liangshui 
River Basin Authority. The floodwater from this gate only account for very small amount of 
streamflow thus will not have great impact on the results of uncertainly analysis. The Digital 
Elevation Model (DEM) and sewer system map were provided by the National Aeronautics and 
Space Administration (NASA, ASTER GDEM) and Beijing Municipal Institute of City Planning and 
Design. These datasets include the locations, section shapes, and conveyance capacities of the river 
and sewer system in the study area. The catchment was divided into 13 subcatchments, jointly 
controlled by the river and pipe network, wherein there existed a total of 351 drainage channels (282 
watercourses and 69 road drainage channels), as shown in Figure 2. 

Figure 1. Station distribution at Dahongmen catchment.

3.2. SWMM Model

The SWMM is a dynamic hydrological simulation model used in single-event or long-term
(continuous) simulations of runoff quantity and quality from primarily urban areas. The runoff

component of SWMM operates on a collection of subcatchment areas that receive precipitation and
generate runoff and pollutant loads. The routing portion of the SWMM transports this runoff through
a system of pipes, channels, storage/treatment devices, pumps, and regulators [38,39]. Additionally,
the SWMM tracks the quantity and quality of the runoff generated within each subcatchment, and the
flow rate, flow depth, and quality of the water in each pipe and channel during a simulation period
with multiple time steps. In this study, SWMM version 5.1 was used; its technical details have been
reported by Rossman et al. [40]. The best performance of SWMM before and after urbanization in the
Dahonmen catchment was addressed by Xu and Zhao (2017) [41].

In this study, five heavy storms (accumulated precipitation > 50 mm) occurred between 2011 and
2012 in the Dahongmen catchment were used for model calibration and verification. Precipitation
on 23 June 2011, 26 July 2011, and 14 August 2011 were used to calibrate the model, and the other
two on 24 June 2012 and 21 July 2012 were used for validation. The accumulated precipitation of
the five events was 110.6, 66.8, 66.9, 63.9, and 197.4 mm, respectively. The rainfall duration of the
five storms was14, 5, 3, 16, and 18 h, respectively. As shown in Figure 1, the hourly series from three
precipitation stations and a DHM gauge station were obtained from the Hydrographic Station of
Beijing, CHINA. The hourly inflow data of the Youanmen station were obtained from the Liangshui
River Basin Authority. The floodwater from this gate only account for very small amount of streamflow
thus will not have great impact on the results of uncertainly analysis. The Digital Elevation Model
(DEM) and sewer system map were provided by the National Aeronautics and Space Administration
(NASA, ASTER GDEM) and Beijing Municipal Institute of City Planning and Design. These datasets
include the locations, section shapes, and conveyance capacities of the river and sewer system in the
study area. The catchment was divided into 13 subcatchments, jointly controlled by the river and
pipe network, wherein there existed a total of 351 drainage channels (282 watercourses and 69 road
drainage channels), as shown in Figure 2.
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Figure 2. Structure of Storm Water Management Model (SWMM) model in Dahongmen catchment.

Table 1 lists the parameters used in the uncertainty analysis of this study, along with their units and
distribution. The minimum and maximum values were obtained from the SWMM user’s manual [40]
and relevant literature [42,43]. The values for the selected model parameters were randomly selected
from uniform probability distributions.

Table 1. Distribution of SWMM parameters.

Category Parameter Description Units Distribution

Basic characteristic %Imperv Percent of impervious area % 60–80

Manning
roughness

N-Imperv Manning coefficient for impervious area 0.025–0.045
N-perv Manning coefficient for pervious area 0.1–0.5
N-river Manning coefficient for riverway 0.03–0.06

N-conduit Manning coefficient for conduit 0.01–0.03

Reservoir in
depressions

D-imperv Depth of depression storage on impervious
area mm 15–40

D-perv Depth of depression storage on pervious area mm 20–50

Infiltration
parameters

MaxRate Maximum rate on Horton infiltration curve mm/h 100–150
MinRate Minimum rate on Horton infiltration curve mm/h 10–90

Decay Decay constant for the Horton infiltration curve h−1 0–50

3.3. Interval Evaluation Index

To analyze the effectiveness of the range of uncertainty, we selected three evaluation indices,
namely, the average band width (B), coverage (CR), and average relative deviation (RD) [41,44], which
are defined as follows:

B =
1
n

n∑
i=1

(Q i
s,upper− Qi

s,lower

 (14)

CR =
nQin

n
× 100% (15)

RD =
1
n

n∑
i=1

∣∣∣∣ 1
2

(
Qi

s,upper +Qi
s,lower

)
− Qi

o

∣∣∣∣
Qi

o
(16)

Here, Qi
s,upper and Qi

s,lower are the upper and lower boundary values of the confidence interval;

Qi
o is the observed flow; and nQin is the number of observed values in the confidence interval.
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4. Results

4.1. Comparison of Different Acceptability Thresholds

By the application of Monte Carlo method, 10,000 parameter sets were generated within the
ranges listed in Table 1. The four objective criteria illustrated in Equations (1)–(4) were calculated by
running the SWMM with these sampled parameter sets.

We set the threshold of each objective criterion according to the catchment characteristics and time
scale, which are list in Table 2. The number of parameter sets which met the threshold requirements
are also list in the table.

Table 2. Numbers of behavior parameter sets under different criteria.

Criterion Number Criterion Number Criterion Number Criterion Number

NSE ≥ 0.7 2506 NSE ≥ 0.7 and VB ≤ 0.3 2226 NSE ≥ 0.7 and VB ≤
0.3 and PB ≤ 0.2 1598 NSE ≥ 0.7

and VB ≤
0.3 and PB
≤ 0.2 and

R ≥ 0.8

1598VB ≤ 0.3 3958 NSE ≥ 0.7 and PB ≤ 0.2 1772 NSE ≥ 0.7 and VB ≤
0.3 and R ≥ 0.8 2226

PB ≤ 0.2 4215 NSE ≥ 0.7 and R ≥ 0.8 2506 NSE ≥ 0.7 and PB ≤
0.2 and R ≥ 0.8 1772

R ≥ 0.8 6918 VB ≤ 0.3 and PB ≤ 0.2 2557 VB ≤ 0.3 and PB ≤ 0.2
and R ≥ 0.8 2396

VB ≤ 0.3 and R ≥ 0.8 3413
PB ≤ 0.2 and R ≥ 0.8 3927

As shown in Table 2, 2506 parameter sets could satisfy the requirement of NSE threshold, which
is the least in the 4 criteria and indicates NSE is the strictest criterion among them. Nevertheless,
R threshold is the most flexible one, 6918 parameter sets can satisfy the criterion. Additionally, all
parameter sets that satisfied other criteria thresholds can satisfy R threshold simultaneously.

From Table 2 we can also observe that the number of behavioral parameter sets decreased when
more criteria were considered. There are 2226 parameter sets that satisfied the NSE and VB thresholds
simultaneously, and 1772 parameter sets that satisfied the NSE and PB thresholds. When we considered
all criteria thresholds in GLUE-TOPSIS, the number of behavioral parameter sets reduced to 1598 finally.

4.2. Comparison of Posterior Distribution

We can obtain the posterior probability distributions of the SWMM parameters from the behavioral
parameter sets listed in Table 2. The posterior probability distributions from the single criterion (NSE)
and GLUE-TOPSIS are shown in Figure 3.

Obvious difference can be observed between the posterior probability distributions from single
criterion (NSE) and those from GLUE-TOPSIS. In general, we can find the obvious areas with high
frequency distributions in the posterior probability distribution curves from GLUE-TOPSIS. However,
those from single criterion (NSE) are relative flat.

Overall, the posterior probability distributions of Imperv, N-perv, D-perv, MaxRate, Decay, and
N-conduit are similar for the two methods. Nevertheless, N-imperv, D-imperv, MinRate, and N-river
exhibit a significantly higher frequency interval under GLUE-TOPSIS conditions, which results in
higher sensitivity. Notably, there are obvious high-frequency intervals in the parameters characterizing
the impervious area, owing to the large impervious area in the DHM catchments. Additionally, the
parameter spatial distribution has more than one high frequency interval, which may reflect the
“equifinality” of parameter sets proposed by Beven and Binley [25].
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4.3. Uncertainty Estimation of Discharge Simulation

We simulated the SWMM discharge with parameter sets from the single-criterion and
GLUE-TOPSIS method. The normalized simulations were sorted by the likelihood value to determine
the 95% and 5% uncertainty bounds (90 confidence interval). Figures 4 and 5 present the plotted
simulation results obtained by the single criterion and GLUE-TOPSIS methods for five rainfall events
during the calibration and validation periods. To analyze the effectiveness of the uncertainty ranges,
the evaluation results of the uncertainty indices under the two methods are listed in Table 3.
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Table 3. Uncertainty interval evaluation results.

Method Criteria B(m3/s) CR (%) RD (m3/s)

Calibration
period

20110623
Single criteria 48.308 54.5 13.606
GLUE-TOPSIS 35.17 54.5 12.804

20110726
Single criteria 50.563 20.0 41.454
GLUE-TOPSIS 43.723 40.0 40.551

20110814
Single criteria 39.829 50.0 18.995
GLUE-TOPSIS 37.908 62.5 16.276

Average Single criteria 46.233 41.5 24.685
GLUE-TOPSIS 38.934 52.3 23.211

Validation
period

20120624
Single criteria 17.100 10.0 17.100
GLUE-TOPSIS 14.100 10.0 14.150

20120721
Single criteria 53.953 81.8 17.140
GLUE-TOPSIS 41.839 84.8 13.358

Average Single criteria 35.526 45.9 17.120
GLUE-TOPSIS 27.970 47.4 13.754

As shown in Figures 4 and 5, the widths of the uncertainty bound from GLUE-TOPSIS method
obviously narrower than those from single criterion method, particularly for the flood peak area and
drop section of the discharge curve. Most of the observations fell within the 90% confidence interval,
except rainstorm 20120624, which is the smallest storm and may influenced by the strobe operation.
However, SWMM model show high performance in rainstorm 20120721, which is one of the most
disastrous rainstorms in history.
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As presented in Table 3, the band width (B), coverage (CR), and relative deviation (RD) were
46.233, 41.5%, and 24.685, respectively, for single criterion method in the calibration period, and 38.934,
52.3%, and 23.211, respectively, for GLUE-TOPSIS method. In the verification period, B, CR, and RD
were 35.526, 45.9%, and 17.120, respectively, for the single criterion method, and 27.970, 47.4%, and
13.754, respectively, for GLUE-TOPSIS method. The results indicate that the GLUE-TOPSIS method
show superiority in uncertainty bounds assessment over the single criterion methods, with lower
values in average band width (B), average relative deviation (RD) and higher values in coverage (CR).

From the simulation results of the median GLUE estimates in Table 4, it can be seen that under
the GLUE-TOPSIS method, the simulation results of NSE, VB are significantly improved compared
with the single criterion method, although the VB of 20110623 has a slight increase. The median
estimates improved, with an increase of the NSE by 1.6% in the calibration period, and by 10.0% in
the validation period. However, the cost criteria PB increased by 0.010 during the calibration period,
from the perspective of single field precipitation, the PB of the 20110814 precipitation and the 20120624
precipitation have increased, indicating that the flood peak flow simulation effect is poor. And the
benefit criteria R decreased by 0.078.

Table 4. Simulation results of the median Generalized Likelihood Uncertainty Estimation (GLUE) estimates.

Method Criteria NSE VB PB R

Calibration
period

20110623
Single criteria 0.863 0.003 0.118 0.994
GLUE-TOPSIS 0.876 0.02 0.112 0.995

20110726
Single criteria 0.936 0.086 0.096 0.955
GLUE-TOPSIS 0.949 0.123 0.077 0.941

20110814
Single criteria 0.966 0.184 0.085 0.962
GLUE-TOPSIS 0.982 0.103 0.138 0.991

Average Single criteria 0.921 0.091 0.099 0.970
GLUE-TOPSIS 0.936 0.082 0.109 0.975

Validation
period

20120624
Single criteria 0.429 0.402 0.375 0.790
GLUE-TOPSIS 0.530 0.300 0.428 0.663

20120721
Single criteria 0.936 0.041 0.077 0.989
GLUE-TOPSIS 0.974 0.005 0.059 0.962

Average Single criteria 0.683 0.222 0.226 0.890
GLUE-TOPSIS 0.752 0.153 0.244 0.812

5. Discussion

The uncertainties of urban hydrological models have been addressed by several researches [45–48].
Most researches used single objective function such as NSE or VB as evaluation index [45,46]. As shown
in the Figure 6a,b, we found that VB and PB still involved large uncertainties when the NSE was higher
than 0.8. This means that a high NSE value can still lead to the poor simulation of the flow volume and
flood peak.
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Some attempts were made to construct one likelihood function [47,49] considering different
objectives. This likelihood function will not work when the objective change. Other important
objectives such as overflow and flow in sewer system should be considered in uncertainty analysis of
urban hydrological model [15]. The proposed method avoids the process of function construction and
is feasible to be applied considering different objectives.

Considering the completeness and consistent of data, five heavy storms between 2011 to 2012
were selected for uncertainty analysis. These are representative enough to test the model reliability for
heavy storms. However, small storms are easily affected by local Blue-Green Infrastructure in urban
areas that make it difficult to predict [50,51]. Further work needs to test the reliability of the propose
method for different magnitude of flood.

6. Conclusions

Urban hydrological models are extensively used in flood forecasting, sponge cities design, and
pollution management, etc. The uncertainty assessment of an urban hydrological model is important
when evaluating the model’s reliability. Because of the various applications of urban hydrological
models, a single criterion is hard to evaluate their performance. In this research, we proposed a
multiple-criteria uncertainty analysis method, namely GLUE-TOPSIS, and applies it to the uncertainty
assessment of SWMM model in Dahongmen catchment, Beijing. Five typical rainstorm events that
occurred during 2011–2012 were investigated and used to test the performance of the proposed method.
The conclusions can be summarized as follows:

1. 10,000 parameter sets generated by the Monte Carlo sampling in GLUE framework revealed
that none of the four commonly used objective criteria could fully represent the urban flow
process. Notably, the NSE, which is widely used in assessing the performance of hydrological
models also cannot describe the flow characteristics alone, which highlights the need for adopting
multi-criteria methods.

2. The GLUE-TOPSIS method provided more precise uncertainty bounds and median estimates
than traditional GLUE method which used NSE as single criterion. The GLUE-TOPSIS method
reduced the bandwidth and deviation of the uncertainty bounds with a higher coverage than
these from single criterion. The median estimates of GLUE-TOPSIS are also superior to these
from single criterion according to the four objective criteria.

3. The SWMM model performed well in the flood simulation of Dahongmen catchment in Beijing,
PRC. Most observed flows fell within the 90% uncertainty interval, which suggests that the
parameter uncertainty analysis has a relatively high contribution toward improving the simulation
accuracy of flood prediction. The comparison results for the posterior distribution revealed that
the parameters characterizing the impervious area had obvious high frequency intervals, owing
to the large impervious area of Dahongmen catchment.



Water 2020, 12, 1393 13 of 15

The GLUE-TOPSIS method provide a feasible way to assess the uncertainty of urban hydrological
models, which have been used various aspects in urban water resources management. The users
can select objective criteria flexibly and combine them in the GLUE-TOPSIS framework according to
their actual needs. We will proceed our research and apply GLUE-TOPSIS to a wider area in water
resource management.

Author Contributions: Conceptualization, B.P., G.Z. and R.S.; methodology, B.P., D.P. and Z.Z.; validation, S.S.;
writing—original draft preparation, B.P. and G.Z.; writing—review and editing, S.S. and G.Z.; visualization, S.S.;
supervision, B.P. and G.Z.; project administration, B.P.; funding acquisition, B.P. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by three research programs: (1) National Natural Science Funds of China (Grant
No. 51879008); (2) China Scholarship Council (Grant No. 201906045024); (3) China Scholarship Council-University
of Bristol Joint PhD Scholarships Programme (Grant No. 201700260088)

Acknowledgments: We thank Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English
text of a draft of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shukla, S.; Gedam, S. Assessing the impacts of urbanization on hydrological processes in a semi-arid river
basin of Maharashtra, India. Modell. Earth Sys. Environ. 2018, 4, 699–728. [CrossRef]

2. Barbosa, A.E.; Fernandes, J.N.; David, L.M. Key issues for sustainable urban stormwater management. Water
Res. 2012, 46, 6787–6798. [CrossRef]

3. Hapuarachchi, H.A.P.; Wang, Q.J.; Pagano, T.C. A review of advances in flash flood forecasting. Hydrol.
Process. 2011, 25, 2771–2784. [CrossRef]

4. Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim.
Chang. 2013, 3, 802–806. [CrossRef]

5. Suttles, K.M.; Singh, N.K.; Vose, J.M.; Martin, K.L.; Emanuel, R.E.; Coulston, J.W.; Saia, S.M.; Crump, M.T.
Assessment of hydrologic vulnerability to urbanization and climate change in a rapidly changing watershed
in the Southeast US. Sci. Total Environ. 2018, 645, 806–816. [CrossRef]

6. Cristiano, E.; Ten Veldhuis, M.; van de Giesen, N. Spatial and temporal variability of rainfall and their effects
on hydrological response in urban areas—a review. Hydrol. Earth Syst. Sc. 2017, 21, 3859–3878. [CrossRef]

7. Cullmann, J.; Krausse, T.; Philipp, A. Enhancing flood forecasting with the help of processed based calibration.
Phys. Chem. Earth 2008, 33, 1111–1116. [CrossRef]

8. Xu, Z. Hydrological Models: Past, present and feature. J. Beijing Normal Univ. Nat. Sci. 2010, 46, 278–289.
9. Fonseca, A.; Ames, D.P.; Yang, P.; Botelho, C.; Boaventura, R.; Vilar, V. Watershed model parameter estimation

and uncertainty in data-limited environments. Environ. Modell. Softw. 2014, 51, 84–93. [CrossRef]
10. Zahmatkesh, Z.; Karamouz, M.; Nazif, S. Uncertainty based modeling of rainfall-runoff: Combined differential

evolution adaptive Metropolis (DREAM) and K-means clustering. Adv. Water Resour. 2015, 83, 405–420.
[CrossRef]

11. Blasone, R.; Vrugt, J.A.; Madsen, H.; Rosbjerg, D.; Robinson, B.A.; Zyvoloski, G.A. Generalized likelihood
uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling. Adv. Water Resour.
2008, 31, 630–648. [CrossRef]

12. Lindblom, E.; Madsen, H.; Mikkelsen, P.S. Comparative uncertainty analysis of copper loads in stormwater
systems using GLUE and grey-box modeling. Water Sci. Technol. 2007, 56, 11–18. [CrossRef] [PubMed]

13. Liu, Y.R.; Li, Y.P.; Huang, G.H.; Zhang, J.L.; Fan, Y.R. A Bayesian-based multilevel factorial analysis method
for analyzing parameter uncertainty of hydrological model. J. Hydrol. 2017, 553, 750–762. [CrossRef]

14. Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of
complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249, 11–29. [CrossRef]

15. Thorndahl, S.; Beven, K.J.; Jensen, J.B.; Schaarup-Jensen, K. Event based uncertainty assessment in urban
drainage modelling, applying the GLUE methodology. J. Hydrol. 2008, 357, 421–437. [CrossRef]

16. Setegn, S.G.; Srinivasan, R.; Melesse, A.M.; Dargahi, B. SWAT model application and prediction uncertainty
analysis in the Lake Tana Basin, Ethiopia. Hydrol. Process. 2010, 24, 357–367. [CrossRef]

www.liwenbianji.cn/ac
http://dx.doi.org/10.1007/s40808-018-0446-9
http://dx.doi.org/10.1016/j.watres.2012.05.029
http://dx.doi.org/10.1002/hyp.8040
http://dx.doi.org/10.1038/nclimate1979
http://dx.doi.org/10.1016/j.scitotenv.2018.06.287
http://dx.doi.org/10.5194/hess-21-3859-2017
http://dx.doi.org/10.1016/j.pce.2008.03.001
http://dx.doi.org/10.1016/j.envsoft.2013.09.023
http://dx.doi.org/10.1016/j.advwatres.2015.06.012
http://dx.doi.org/10.1016/j.advwatres.2007.12.003
http://dx.doi.org/10.2166/wst.2007.585
http://www.ncbi.nlm.nih.gov/pubmed/17898439
http://dx.doi.org/10.1016/j.jhydrol.2017.08.048
http://dx.doi.org/10.1016/S0022-1694(01)00421-8
http://dx.doi.org/10.1016/j.jhydrol.2008.05.027
http://dx.doi.org/10.1002/hyp.7457


Water 2020, 12, 1393 14 of 15

17. Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE
performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91.
[CrossRef]

18. Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Toward improved calibration of hydrologic models: Multiple and
noncommensurable measures of information. Water Resour. Res. 1998, 34, 751–763. [CrossRef]

19. Madsen, H. Automatic Calibration of a Conceptual Rainfall-Runoff Model Using Multiple Objectives. J.
Hydrol. 2000, 235, 276–288. [CrossRef]

20. Fenicia, F.; Savenije, H.H.G.; Matgen, P.; Pfister, L. A comparison of alternative multiobjective calibration
strategies for hydrological modeling. Water Resour. Res. 2007, 43, 93–99. [CrossRef]

21. Gill, M.K.; Kaheil, Y.H.; Khalil, A.; Mckee, M.; Bastidas, L. Multiobjective particle swarm optimization for
parameter estimation in hydrology. Water Resour. Res. 2006, 42, 257–271. [CrossRef]

22. Beven, K.; Binley, A. GLUE: 20 years on. Hydrol. Process. 2014, 28, 5897–5918. [CrossRef]
23. Hwang, C.L.; Lai, Y.J.; Liu, T.Y. A new approach for multiple-objective decision-making. Comput. Oper. Res.

1993, 20, 889–899. [CrossRef]
24. Hwang, C.; Yoon, K. Methods for Multiple Attribute Decision Making, 3rd ed.; Springer: Berlin/Heidelberg,

Germany, 1981; pp. 58–191.
25. Beven, K.; Binley, A. The future of distribute models-model calibration and uncertainty prediction. Hydrol.

Process. 1992, 6, 279–298. [CrossRef]
26. Mantovan, P.; Todini, E. Hydrological forecasting uncertainty assessment: Incoherence of the GLUE

methodology. J. Hydrol. 2006, 330, 368–381. [CrossRef]
27. Stedinger, J.R.; Vogel, R.M.; Lee, S.U.; Batchelder, R. Appraisal of the Generalized Likelihood Uncertainty

Estimation (GLUE) Method. Water Resour. Res. 2009, 42. [CrossRef]
28. Clark, M.P.; Kavetski, D.; Fenicia, F. Pursuing the method of multiple working hypotheses for hydrological

modeling. Water Resour. Res. 2011, 47, 178–187. [CrossRef]
29. Freer, J.; Beven, K.; Ambroise, B. Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of

Data: An Application of the GLUE Approach. Water Resour. Res. 1996, 32, 2161–2173. [CrossRef]
30. Beven, K.; Smith, P.; Freer, J. Comment on “Hydrological forecasting uncertainty assessment: Incoherence of

the GLUE methodology” by Pietro Mantovan and Ezio Todini. J. Hydrol. 2007, 338, 315–318. [CrossRef]
31. Loperfido, J.V.; Noe, G.B.; Jarnagin, S.T.; Hogan, D.M. Effects of distributed and centralized stormwater best

management practices and land cover on urban stream hydrology at the catchment scale. J. Hydrol. 2014,
519, 2584–2595. [CrossRef]

32. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles.
J. Hydrol. 1970, 10, 290. [CrossRef]

33. Pang, B.; Guo, S.; Xiong, L.; Li, C. A nonlinear perturbation model based on artificial neural network. J.
Hydrol. 2007, 333, 504–516. [CrossRef]

34. Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance
measures and evaluation criteria. T. Asabe 2015, 58, 1763–1785.

35. Yilmaz, K.K.; Gupta, H.V.; Wagener, T. A multi-criteria penalty function approach for evaluating a priori
model parameter estimates. J. Hydrol. 2015, 525, 165–177. [CrossRef]

36. Cheng, K.; Lien, Y.; Wu, Y.; Su, Y. On the criteria of model performance evaluation for real-time flood
forecasting. Stoch. Env. Res. Risk A. 2017, 31, 1123–1146. [CrossRef]

37. Zanakis, S.H.; Solomon, A.; Wishart, N.; Dublish, S. Multi-attribute decision making: A simulation comparison
of select methods. Eur. J. Oper. Res. 1998, 107, 507–529. [CrossRef]

38. Zoppou, C. Review of urban storm water models. Environ. Modell. Softw. 2001, 16, 195–231. [CrossRef]
39. Gironas, J.; Roesner, L.A.; Rossman, L.A.; Davis, J. A new applications manual for the Storm Water

Management Model (SWMM). Environ. Modell. Softw. 2010, 25, 813–814. [CrossRef]
40. Rossman, L.A. Storm Water Management Model User’s Manual, 5th ed.; Environment Protection Agency:

Cincinnati, OH, USA, 2005; pp. 125–137.
41. Xu, Z.; Zhao, G. Impact of urbanization on rainfall-runoff processes: Case study in the Liangshui River Basin

in Beijing, China. Proc. Int. Assoc. Hydrol. Sci. 2016, 373, 7–12. [CrossRef]
42. Zhao, G.; Pang, B.; Xu, Z.; Du, L.; Zhong, Y. Simulation of urban storm an Dahongmen drainage area by

SWMM. J. Beijing Normal Univ. Nat. Sci. 2014, 50, 452–455.

http://dx.doi.org/10.1016/j.jhydrol.2009.08.003
http://dx.doi.org/10.1029/97WR03495
http://dx.doi.org/10.1016/S0022-1694(00)00279-1
http://dx.doi.org/10.1029/2006WR005098
http://dx.doi.org/10.1029/2005WR004528
http://dx.doi.org/10.1002/hyp.10082
http://dx.doi.org/10.1016/0305-0548(93)90109-V
http://dx.doi.org/10.1002/hyp.3360060305
http://dx.doi.org/10.1016/j.jhydrol.2006.04.046
http://dx.doi.org/10.1029/2008WR006822
http://dx.doi.org/10.1029/2010WR009827
http://dx.doi.org/10.1029/95WR03723
http://dx.doi.org/10.1016/j.jhydrol.2007.02.023
http://dx.doi.org/10.1016/j.jhydrol.2014.07.007
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/j.jhydrol.2006.09.015
http://dx.doi.org/10.1016/j.jhydrol.2015.03.012
http://dx.doi.org/10.1007/s00477-016-1322-7
http://dx.doi.org/10.1016/S0377-2217(97)00147-1
http://dx.doi.org/10.1016/S1364-8152(00)00084-0
http://dx.doi.org/10.1016/j.envsoft.2009.11.009
http://dx.doi.org/10.5194/piahs-373-7-2016


Water 2020, 12, 1393 15 of 15

43. Shi, R.; Zhao, G.; Pang, B.; Jinag, Q.; Zhen, T. Uncertainty Analysis of SWMM Model Parameters Based on
GLUE Method. J. China Hydrol. 2016, 36, 1–6.

44. Xiong, L.; Wan, M.; Wei, X.; O’Connor, K.M. Indices for assessing the prediction bounds of hydrological
models and application by generalised likelihood uncertainty estimation. Hydrolog. Sci. J. 2009, 54, 852–871.
[CrossRef]

45. Zhao, D.; Chen, J.; Wang, H.; Tong, Q. Application of a Sampling Based on the Combined Objectives of
Parameter Identification and Uncertainty Analysis of an Urban Rainfall-Runoff Model. J. Irrig. Drain. Eng.
2013, 139, 66–74. [CrossRef]

46. Wagner, B.; Reyes-Silva, J.D.; Forster, C.; Benisch, J.; Helm, B.; Krebs, P. Automatic Calibration Approach
for Multiple Rain Events in SWMM Using Latin Hypercube Sampling. In Green Energy and Technology;
Mannina, G., Ed.; Springer: Cham, Switzerland, 2019; Volume 23, pp. 435–440.

47. Sun, N.; Hall, M.; Hong, B.; Zhang, L. Impact of SWMM Catchment Discretization: Case Study in Syracuse,
New York. J. Hydrol. Eng. 2014, 19, 223–234. [CrossRef]

48. Zhang, W.; Li, T. The Influence of Objective Function and Acceptability Threshold on Uncertainty Assessment
of an Urban Drainage Hydraulic Model with Generalized Likelihood Uncertainty Estimation Methodology.
Water Resour. Manag. 2015, 29, 2059–2072. [CrossRef]

49. Sun, N.; Hong, B.; Hall, M. Assessment of the SWMM model uncertainties within the generalized likelihood
uncertainty estimation (GLUE) framework for a high-resolution urban sewershed. Hydrol. Process. 2014, 28,
3018–3034. [CrossRef]

50. Zhu, Z.; Chen, X. Evaluating the Effects of Low Impact Development Practices on Urban Flooding under
Different Rainfall Intensities. Water 2017, 9, 548. [CrossRef]

51. Elliott, A.H.; Trowsdale, S.A. A review of models for low impact urban stormwater drainage. Environ. Modell.
Softw. 2007, 22, 394–405. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1623/hysj.54.5.852
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000522
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000777
http://dx.doi.org/10.1007/s11269-015-0928-8
http://dx.doi.org/10.1002/hyp.9869
http://dx.doi.org/10.3390/w9070548
http://dx.doi.org/10.1016/j.envsoft.2005.12.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Study Area and SWMM Model 
	Study Area 
	SWMM Model 
	Interval Evaluation Index 

	Results 
	Comparison of Different Acceptability Thresholds 
	Comparison of Posterior Distribution 
	Uncertainty Estimation of Discharge Simulation 

	Discussion 
	Conclusions 
	References

