Supplementary Materials and Methods

Thioalkalivibrio sp. 10fs10 genome sequencing

Thioalkalivibrio sp. 10fs10 genomic DNA was extracted by GenElute™ Bacterial Genomic DNA, following producer's instructions. DNA quantification was performed using Qubit® 3.0 (Invitrogen, Thermo Fisher Life Technologies) following producer's instructions. Thioalkalivibrio sp.10fs10 genome was sequenced in St. Petersburg state University, St. Petersburg (Russia). One Mate-Pair (MP) libraries was prepared using FC-132-1001 Nextera® Mate Pair Sample Prep Kit for 1µg DNA input with the following modifications: DNA was sizeselected after the tagmentation using 0.8 % agarose gel and the selected region was 2.5 - 6 kb. The libraries were sequenced in paired-end 2x100 mode on Illumina HiSeq 2500 using PE-402-4002 HiSeq® Rapid PE Cluster Kit v2 and FC-402- 4021 HiSeq® Rapid SBS Kit v2 (200 Cycle). Two Pair-End (PE) libraries were prepared using FC 121-1031 Nextera® DNA library preparation kit on the same amount of DNA and sequenced on MiSeq PE sequencing 2x300 using MS-102-3003 MiSeq® Reagent Kit v3 (600 cycle). Demultiplexed raw data were trimmed and quality filtered using Trimmomatic v0.36 [1] on paired-ends libraries and NxTrim v0.4.2 [2] on mate-paired library. Genome assembly was performed using the approach previously described [3], with some modifications. The draft genome of Thioalkalivibrio sp. isolate 10fs10 was generated performing multiple steps of assembly, using two assemblers: Abyss 2.0.1 [4] and SPAdes 3.10.1 [5]. A total of two fake reads libraries were generated using BBmap (BBMap - Bushnell B. - sourceforge.net/projects/bbmap/) from the first assembly (using minum lenght option of 1.5 Kbp and 10 Kbp respectively). The overlapping fake reads libraries were used to harmonize the two different libraries obtained with different sequencing platforms, to improve de novo assembly performance, as suggested by [6]). To resolve the gaps generated during scaffolding step, GapFiller v1.10 [7] was used. Finally, consensus sequences were processed using Prodigal 2.50 [8] for coding sequence (CDS) prediction. CDS aligned against different databases, such as Swissprot, TrEMBL, Pfam, Tigrfam, using Blast 2.5.0 [9] and HMMER [10]. Blast2go 4.1 [11] was used to align sequences against InterPro and Gene Ontology, BlastKoala [12] was used to annotate proteins in Kegg Orthology (KO) and tRNAscaSE 1.3 [13] was used to find tRNA sequences. Assembled DNA automatic annotations were also performed using RAST platform (http://rast.nmpdr.org) and IMG-ER platform [14]. Genome assembly and annotation project are available at IMG, under IMG-ER submission ID 183849.

Genes involved in bacterial homeostasis in saline and alkaline environments are reported in Table S1

 Table S1: Genes involved in bacterial homeostasis in saline and alkaline environments annotated in

 Thioalkalivibrio sp. 10fs10 genome. IMG-ER and Rast identifiers are reported

		IMG identifier	Rast identifier	Product name
osmolyte synthesis				Sarcosine/
				dimethylglycine
	Glycine/betaine	Ga0265412_1001641	fig 66666666.276697.peg.648	N-methyltransferase
	synthesis			Glycine/
				sarcosine
		Ga0265412_1001642	fig 66666666.276697.peg.649	N-methyltransferase
				Sucrose-phosphate
		Ga0265412_1001186	fig 6666666.276697.peg.199	synthase.

	Sucrose/sucrose-			
	phosphate			
	synthesis	Ga0265412_10012349	fig 66666666.276697.peg.2296	Sucrose synthase
		Ga0265412_1001303	fig 66666666.276697.peg.316	Dxs
		Ga0265412_1001626	fig 66666666.276697.peg.632	IspC/Dxr
		Ga0265412_1001647	fig 66666666.276697.peg.655	IspD
		Ga0265412_100157	fig 66666666.276697.peg.71	IspE
		Ga0265412_1001648	fig 66666666.276697.peg.656	IspF
	Squalene	Ga0265412_1001803	fig 66666666.276697.peg.802	IspG
	synthesis	Ga0265412_10012613	fig 66666666.276697.peg.2563	IspH
				Farnesyl diphosphate
		Ga0265412_1001304	fig 66666666.276697.peg.317	synthase (GTT)
nent		Ga0265412_10011010	fig 66666666.276697.peg.1007	HpnC
rcen		Ga0265412_10011009	fig 66666666.276697.peg.1006	HpnD
info		Ga0265412_10011008	fig 66666666.276697.peg.1005	HpnE
all re				Phosphatidyl-
ll wa				glycerolphosphate
ce		Ga0265412_10011218	fig 66666666.276697.peg.1200	synthase
				Phosphatidyl-
				glycerolphosphate
	Cardiolipin	Ga0265412_10011563	fig 66666666.276697.peg.1543	synthase
	synthesis			Phosphatidyl-
				glycerophosphatase
		Ga0265412_10011050	fig 66666666.276697.peg.1048	А
		Ga0265412_10011279	fig 66666666.276697.peg.1261	Cardiolipin synthase
		Ga0265412_10011784	fig 6666666.276697.peg.1748	Cardiolipin synthase
		Ga0265412_10011846	fig 6666666.276697.peg.1810	Cardiolipin synthase
		Ga0265412_10011966	fig 6666666.276697.peg.1927	RnfA
		Ga0265412_10011967	fig 66666666.276697.peg.1928	RnfB
		Ga0265412_10011968	fig 66666666.276697.peg.1929	RnfC
	Na⁺-dependent	Ga0265412_10011969	fig 66666666.276697.peg.1930	RnfD
	NADH: quinone	Ga0265412_10011970	fig 66666666.276697.peg.1931	RnfG
sd	oxidoreductase (2	Ga0265412_10011971	fig 66666666.276697.peg.1932	RnfE
und	complete	Ga0265412_10012911	fig 66666666.276697.peg.2848	RnfA
ary	operons)	Ga0265412_10012912	fig 66666666.276697.peg.2849	RnfB
prim	-	Ga0265412_10012913	fig 66666666.276697.peg.2850	RnfC
d		Ga0265412_10012914	fig 66666666.276697.peg.2851	RnfD
		Ga0265412_10012915	fig 66666666.276697.peg.2852	RnfG
		Ga0265412_10012916	fig 66666666.276697.peg.2853	RnfE
	NADH	Ga0265412_1001451	fig 66666666.276697.peg.460	NuoA
	dehydrogenase	Ga0265412_1001452	fig 66666666.276697.peg.461	NuoB
	ucity arogenase	Ga0265412_1001453	fig 66666666.276697.peg.462	NuoC
			2	

	(NDH-1) primary	Ga0265412_1001454	fig 66666666.276697.peg.463	NuoD
	proton pump	Ga0265412_1001455	fig 66666666.276697.peg.464	NuoE
		Ga0265412_1001456	fig 66666666.276697.peg.465	NuoF
		Ga0265412_1001457	fig 6666666.276697.peg.466	NuoG
		Ga0265412_1001458	fig 6666666.276697.peg.467	NuoH
		Ga0265412_1001459	fig 6666666.276697.peg.468	NuoI
		Ga0265412_1001460	fig 66666666.276697.peg.469	NuoJ
		Ga0265412_1001461	fig 66666666.276697.peg.470	NuoK
		Ga0265412_1001462	fig 66666666.276697.peg.471	NuoL
		Ga0265412_1001463	fig 66666666.276697.peg.472	NuoM
		Ga0265412_1001464	fig 66666666.276697.peg.473	NuoN
		Ga0265412_10011858	fig 66666666.276697.peg.1826	MrpG
secondary pumps		Ga0265412_10011859	fig 66666666.276697.peg.1825	MrpF
	Mrp sodium	Ga0265412_10011860	fig 66666666.276697.peg.1824	MrpE
	/proton	Ga0265412_10011861	fig 6666666.276697.peg.1823	MrpD
	complex	Ga0265412_10011862	fig 6666666.276697.peg.1822	MrpC
	complex	Ga0265412_10011863	fig 6666666.276697.peg.1821	MrpB
		Ga0265412_10011864	fig 6666666.276697.peg.1820	MrpA
	sodium/proton	Ga0265412_10011856	fig 66666666.276697.peg.1818	ArsB/NhaD
	antiporter NhaD			
	sulphate-			
	dependent	Ga0265412_10045	fig 6666666 076607 mag 2001	C11D
	bicarbonate		11g+0000000.270057.peg.3021	Juli
	antiporter			

Taxonomic characterisation of the Thioalkalivibrio sp. 10fs10

The full-length gene coding for the 16S rRNA of *Thioalkalivibrio* sp. 10fs10 isolate was extracted from draft genome. The sequences of the genes coding for the 16S rRNA of 77 different *Thioalkalivibrio* sp. strains were downloaded from Silva SSU database and from Joint Genome Institute (JGI) using IMG. All sequences were aligned using MUSCLE algorithm (gap open penalty -400.00, gap extension 0.0, UPGMA clustering method, 16 iterations), and trimmed to match the length of the shortest deposited sequence (1374 nucleotides). Maximum likelihood tree was computed using Tamura-Nei DNA evolutionary model. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories, +G = 0.4053 with evolutionary invariable 150 sites (+I =58.8102 %). Initial tree(s) for the heuristic search were obtained by applying NeighborIn review Joining and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. Highest log likelihood obtained was -5299.2315 and the accuracy of calculated tree was assessed by bootstrapping 1000 replicates.

Maximum likelihood tree based on Multi-Locus sequence (MLS) analysis

Maximum Likelihood MLS tree was computed using concatenated amino acid sequences of ClpA-DnaJ-GyrA-RpoH-RpoS-SecF proteins, codified by respective housekeeping genes obtained from genomic annotation of *Thioalkalivibrio* sp. 10fs10 and from available complete genomes of all *Thioalkalivibrio* spp. on IMG/M. DNA sequences of the aforementioned housekeeping genes were translated using genetic codes of table 11 (NCBI). The corresponding sequences of amino acids were aligned with MUSCLE algorithm (gap open penalty -400.00, gap extension 0.0, UPGMA clustering method, 16 iterations), equally trimmed to a final total length of 3158 amino acids and concatenated in the reported order. Maximum likelihood tree was computed using a method based on the Whelan and Goldman + Freq. model. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 1.5336). The rate variation model allowed for some sites to be evolutionarily invariable sites (+I = 7.08 %). Initial tree(s) for the heuristic search were obtained by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. Highest log likelihood obtained was -98651.57 and the accuracy of calculated tree was assessed by bootstrapping of 1000 replicates.

Classification of Thioalkalivibrio sp. 10fs10 by, Genome Taxonomy Database

Computation of Maximum likelihood tree, used for taxonomical classification as Genome Taxonomy Database protocol, was performed using a method based on the Whelan and Goldman + Freq. model. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 1.7814). The rate variation model allowed for some sites to be evolutionarily invariable sites (+I = 9.02 %). Initial tree(s) for the heuristic search were obtained by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, successively selecting the topology with superior log likelihood value. Highest log likelihood obtained was -68671.60 and the accuracy of calculated tree was assessed by bootstrapping of 500 replicates.

References of supplementary Materials and Methods

[1] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20. doi:10.1093/bioinformatics/btu170.

[2] O'Connell J, Schulz-Trieglaff O, Carlson E, Hims MM, Gormley NA, Cox AJ. NxTrim: optimized trimming of Illumina mate pair reads. Bioinformatics, 2015;31:2035-2037. doi: 10.1093/bioinformatics/btv057.

[3] Berben T, Sorokin DY, Ivanova N, Pati A, Kyrpides N, Goodwin LA, Woyke T, Muyzer G. Partial genome sequence of *Thioalkalivibrio* thiocyanodenitrificans ARhD 1T, a chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium capable of complete denitrification. Stand Genomic Sci 2015;10:84. doi:10.1186/s40793-015-0080-3.

[4] Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe L, Warren RL, Birol I. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 2017;27:768–77. doi:10.1101/gr.214346.116.

[5] Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, Prjibelski AD, Pyshkin A, Sirotkin A, Sirotkin Y, Stepanauskas R, Clingenpeel SR, Woyke T, McLean JS, Lasken R, Tesler G, Alekseyev MA, Pevzner PA. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol 2013;20:714–37. doi:10.1089/cmb.2013.0084.

[6] Utturkar SM, Klingeman DM, Land ML, Schadt CW, Doktycz MJ, Pelletier DA, Brown SD. Evaluation and validation of de novo and hybrid assembly techniques to derive high-quality genome sequences. Bioinformatics 2014;30:2709–16. doi:10.1093/bioinformatics/btu391.

[7] Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol 2012;13:R56. doi:10.1186/gb-2012-13-6-r56.

[8] Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119. doi:10.1186/1471-2105-11-119.

[9] McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 2004;32:W20–5. doi:10.1093/nar/gkh435.

[10] Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 2013;41:e121–e121. doi:10.1093/nar/gkt263.

[11] Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005;21:3674–6. doi:10.1093/bioinformatics/bti610.

[12] Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016;428:726–31. doi:10.1016/j.jmb.2015.11.006.

[13] Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997;25:955–64.

[14] Markowitz VM, Mavromatis K, Ivanova NN, Chen I-MA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009;25:2271–8. doi:10.1093/bioinformatics/btp393.