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Abstract: The delineation of precipitation regions is to identify homogeneous zones in which
the characteristics of the process are statistically similar. The regionalization process has three
main components: (i) delineation of regions using clustering algorithms, (ii) determining the optimal
number of regions using cluster validity indices (CVIs), and (iii) validation of regions for homogeneity
using L-moments ratio test. The identification of the optimal number of clusters will significantly
affect the homogeneity of the regions. The objective of this study is to investigate the performance of
the various CVIs in identifying the optimal number of clusters, which maximizes the homogeneity
of the precipitation regions. The k-means clustering algorithm is adopted to delineate the regions
using location-based attributes for two large areas from Canada, namely, the Prairies and the Great
Lakes-St Lawrence lowlands (GL-SL) region. The seasonal precipitation data for 55 years (1951–2005)
is derived using high-resolution ANUSPLIN gridded point data for Canada. The results indicate that
the optimal number of clusters and the regional homogeneity depends on the CVI adopted. Among
42 cluster indices considered, 15 of them outperform in identifying the homogeneous precipitation
regions. The Dunn, Det_ratio and Trace(W−1B) indices found to be the best for all seasons in both
the regions.
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1. Introduction

In hydro-climatology studies, a reliable estimate of precipitation is useful in planning, design,
and management of urban water infrastructure, integrated watershed management, and analysis
of extremes. The precipitation process is very complex and varies both spatially and temporally.
Numerous techniques are developed to model the spatio-temporal variations of precipitation data
over large areas. One of the popular techniques is regionalization (or to delineate the regions) based on
their analogous/statistical characteristics of precipitation data and its associated attributes. The major
factors effecting regionalization are: (i) the spatial correlations between the neighborhood stations;
(ii) the non-linearity in the precipitation processes; and (iii) the spatio-temporal resolution of the data.
The classical statistical methods [1,2] used to model the complex precipitation processes fail to capture
the spatial statistics of the region [3]. Further, these methods require the inherent assumption that the
process is Gaussian, which is not true in many practical applications [4]. On the other hand the advent
of data mining methods such as clustering, Prinicipal Component Analysis, multisite boostrap, etc.,
are able to capture the complex characteristics of hydroclimatic variables such as precipitation, without
any underlying assumptions of the process [5].
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Traditionally the precipitation statistics were used for the formation of regions. The major
limitation of using this approach for delineation is the ability to validate the regions for
future applications independently. Alternatively, the regions were delineated using the
attributes associated to the precipitation processes such as (i) seasonality timing of local
processes [6,7]; (ii) large-scale atmospheric variables [8,9], and (iii) geophysical or location-based
attributes [10,11]. Adamowski et al. [12] conducted delineation of rainfall regions using attributes
related to regional rainfall patterns. On the other hand, Satyanarayana and Srinivas [8] proposed
the use of large-scale attributes to delineate the precipitation regions for summer monsoon in India.
Recently, Asong et al. [10] and Irwin et al. [11] delineated large precipitation regions in Canada using
atmospheric and location-based attributes. The use of the alternative attributes against the precipitation
statistics facilitates the validation of regions. In such cases, the validation of regions is conducted using
L-moment homogeneity test [13] based on the precipitation statistics [8,10–12].

Clustering methods are used extensively in the delineation of precipitation regions [8,11,14–18].
The clustering algorithms are able to capture the spatial relationships by identifying the similarity
or dissimilarity in the characteristics of the data over a region or space [19,20]. These methods have
been extensively used in various domains such as psychology [21], biology [22], text mining [23],
intrusion detection [24], pattern recognition [25–27], image processing [28], computer security [29],
and engineering [30,31]. The process of clustering involves grouping of observations based on
two properties: (i) external isolation describing the situation when entities within one cluster are
well-separated from entities in another, and (ii) internal cohesion that describes the measure of
similarity between entities within the same cluster [32].

The major classification of clustering algorithms includes: (i) hierarchical clustering algorithms:
they are highly complex in nature which combines the groups to formulate one cluster containing all
the entities in the data, and (ii) nucleated clustering algorithms: the data set is strongly differentiated
and very distinct clusters are obtained [33]. Although the performance of the hierarchical clustering
algorithms is higher when compared to nucleated clustering algorithms, the later is very popular
majorly due to its computational efficiency. A number of nucleated clustering algorithms such as
k-means and its variations [11,34–38]; DBSCAN [39,40]; and Clustering in Quest [41] are used in
various applications. Among many clustering algorithms, k-means clustering has been popularly
used in regionalization of hydro-climatic variables [8,14,31,42,43], due to its inherent advantages such
as effective computation, simple mathematical background, and quick implementation. Further, the
algorithm is considered as dynamic, since the data entities are easily available for different clusters
depending on the objective function. However, the major limitations are the accuracy of the initial
location of the random centroids of the cluster and the identification of the number of clusters.

The cluster validity indices (CVIs) are used to identify optimal number of clusters, which provide
the effective partitions into homogeneous regions [20,44,45]. These indices evaluate the degree of
similarity or dissimilarity between the data. These validity indices are classified into two major
groups, (i) external Indices, and (ii) internal Indices. For validating a partition, external indices
compare with the precise partitions while internal indices examine the clustered data set [27]. Several
studies [27,46–50] have provided an extensive and systematic comparison of CVIs to derive the optimal
number of partitions in various datasets obtained from computational experiments, benchmark
synthetic data, and real case examples. The most commonly used CVIs in delineation of precipitation
regions [10,51,52] are Dunn’s index, Davies–Bouldin index, Calinski–Harabasz index, c-index, Dunn
Generalized index, Silhoutte index, and Xie–Beni index.

In spite of considerable progress in the delineation of precipitation regions and clustering
algorithms, challenges still exist in (i) preserving spatio-temporal characteristics of the precipitation
regions or improving the homogeneity of the regions; (ii) selection of the attributes based on
precipitation characteristics and its seasonal variations; (iii) selection of clustering algorithm; and
(iv) selection of cluster validity indices, i.e., identification of ideal number of clusters. Most of the
studies in hydroclimatology have focused on regionalization using various clustering algorithms
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and/or its performance based on the selection of the attributes. However, limited studies reported the
effect of CVI on the formation of homogeneous regions [9,10,51,52]. It is indicated that the CVIs do not
result in a single ideal number of clusters [27,48,49] and thereby, it is envisaged that the selection of
CVI plays a significant role in the delineation of precipitation regions.

The main objective of this study is to evaluate the performance of the cluster validity indices to
improve homogeneity of the delineated precipitation regions. In addition, the performance of the
CVIs due to seasonal variations are also examined. In this investigation, internal CVIs are employed to
obtain the optimal number of regions (partitions), since the fundamental structure of the precipitation
process is unknown (which is required for evaluation of external CVIs). The k-means clustering is
adopted for the delineation of two large precipitation regions in Canada, namely, the Prairie region and
the Great Lakes-St Lawrence (GL-SL) region. Both these areas have distinct climatic conditions due to
their dissimilar geophysical characteristics and proximity to large water bodies. The location-based
attributes such as elevation, latitude, and longitude are selected for the identification of homogeneous
precipitation zones.

The remainder of this paper is structured as follows. The methodology on (i) clustering of regions
using k-means algorithm; (ii) cluster validity indices; (ii) L-moments based homogeneity test are
presented in Section 2. In Section 3, the salient features of the case study and data are presented.
Section 4 provides the detailed results and discussion. Followed by the summary and conclusion of
the study in Section 5. The Appendix A provides the details about the CVI and its mathematical form
with selection criteria.

2. Methodology

Efficient clustering algorithms aim at identifying homogeneous precipitation regions and
discarding the irregularities present in the data distribution. In this section the three main steps
are presented: (i) delineation of regions using k-means clustering, (ii) cluster validity indices (CVI), and
(iii) validation of regions for homogeneity using L-moments ratio test, involved in the regionalization
of precipitation zones. The framework for the delineation of precipitation regions is presented in
Figure 1.

Figure 1. Framework for the delineation of precipitation regions.
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2.1. K–Means Clustering Algorithm

Clusters can be identified in a given set of data by determining a local minima solution through an
iterative procedure, as McQueen [53] illustrated. This commonly used procedure is known as k-means
clustering algorithm. This algorithm positions k centers amongst the data set and then assign the sites
to its nearest center [54]. Those attributes having higher value have a more significant effect on the
subsequent delineated clusters by k-means algorithm [9]. Therefore, the attributes are re-scaled to
reduce the effect of their variances and relative magnitudes using,

x′ji =
xji − µj

σj
(1)

where, i and j represent attribute and site, respectively; x′ji is the re-scaled value of xji; µj and σj are the
mean and the standard deviation, respectively for all sites.

Levine [55] proposed a procedure to cluster the data set by minimizing the distance of every site
to each of the k cluster centers by re-assigning the attributes among the clusters. The objective function
f is given as,

Minimize( f ) =
K

∑
k=1

n

∑
j=1

N

∑
i=1

{
d
(
x′ ji − cj

)}2 (2)

where n-dimensional attribute space is denoted by n; N total number of features in the cluster and cj is
the value of attribute j at the cluster’s centroid as defined in Equation (3); d() represents Euclidean
distance measure; and k defines the number of centroids initialized beforehand.

cj =

N
∑

i=1
x′ ji

N
(3)

The steps involved in k-means clustering is shown in Figure 2. One of the major challenges in
k-means clustering is to identify the initial guess for the number of clusters (k), before the procedure
starts. This has a significant effect on the performance of the objective function in attaining the optimal
number of clusters. Too many clusters will lead to outlining regions that do not exist, and too few will
lead to poor differentiation among distinctly different neighborhoods. In this study, the number of
clusters k is varied from 5 to 150 with an interval of 5. The CVIs are used to select the optimal value
of k.
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Figure 2. Steps involved in k-means clustering algorithm.

2.2. Cluster Validity Indices (CVIs)

Number of studies have used CVIs to obtain the optimal number of clusters (k) for a
given attribute [20,27,44–50]. In this paper, the performances of 27 internal CVIs presented by
Desgraupes [50] are compared for delineating the precipitation zones for two regions in Canada.
The Dunn index is further classified into an additional 15 indices, resulting in a total of 42 internal
CVIs. The goodness of the cluster is evaluated based on the information available from the data [56].
All the indices used in this study are presented in Appendix A, along with their mathematical form
and selection criteria. The readers are referred to R programming based cluster package clusterCrit [50]
for detailed information on the CVI.

2.3. L-Moments Homogeneity Test

Homogeneity tests are carried out to evaluate the statistical coherence of the clusters formed
based on the attributes adopted for delineation of precipitation regions [57]. One of the broadly used
procedure for testing the homogeneity of the clusters is L-moment homogeneity test [13]. The rationale
of the homogeneity test is that population L-moment ratios is the same for the homogeneous cluster
sites but different for their subset due to the variability in sampling. The advantages of the test are:
(i) higher-order moments are estimated with minimum possible error; (ii) test can be performed with a
wide range of distributions; (iii) test is robust to the data set; and (iv) results will be well interpreted
since the value of L-moments vary between −1 and 1.

In this study, the weighted standard deviation is used to calculate sample coefficient of at-site
L-variation (L-CV), which will be adopted as a heterogeneity measure [8]. Consider the cluster
to be validated to have N number of sites and the length of rainfall dataset of site i to be ni.
The Equations (4)–(6) provide L-moment ratios for site i, L-CV (l2

i ), L-skewness (l3
i ), and L-kurtosis (l4

i ).

l2
i =

2×
ni
∑

j=2

[
pj

(
j−1

ni−1

)]
−

ni
∑

j=1
pj

ni
∑

j=1
pj

(4)
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l3
i =

6×
ni
∑

j=3

[
pj

{
2

∏
k=1

(
j−k

ni−k

)}]
− 6×

ni
∑

j=2

[
pj

(
j−1

ni−1

)]
+

ni
∑

j=1
pj

2×
ni
∑

j=2

[
pj

(
j−1

ni−1

)]
−

ni
∑

j=1
pj

(5)

l4
i =

20×
ni
∑

j=4

[
pj

{
3

∏
k=1

(
j−k

ni−k

)}]
− 30×

ni
∑

j=3

[
pj

{
2

∏
k=1

(
j−k

ni−k

)}]
+ 12×

ni
∑

j=2

[
pj

(
j−1

ni−1

)]
−

ni
∑

j=1
pj

2×
ni
∑

j=2

[
pj

(
j−1

ni−1

)]
−

ni
∑

j=1
pj

(6)

where, pj is the jth observed precipitation measured at ith site. Therefore, the regional average L-CV
(lR

i ), L-skewness (lR
3 ), and L-kurtosis (lR

4 ) are computed, as shown in Equations (7)–(9). The regional
average mean (lR

1 ) is set to 1 by scaling precipitation totals at each site by their mean values.

lR
2 =

N
∑

i=1
nil2

i

N
∑

i=1
ni

(7)

lR
3 =

N
∑

i=1
nil3

i

N
∑

i=1
ni

(8)

lR
4 =

N
∑

i=1
nil4

i

N
∑

i=1
ni

(9)

Homogeneity of a cluster between site dispersion (D) is measured using,

D =

√√√√√√√√
N
∑

i=1
ni(li − lR)

2

N
∑

i=1
ni

(10)

The homogeneity of the clusters is compared using Kappa distribution derived from regional
average L-moment ratios. In this study, 500 realizations are simulated from Kappa distribution for the
study area. For each simulated regions, the value of D is determined. Let µD and σD be the mean and
standard deviation of 500 realizations, respectively. Then the heterogeneity measure for a cluster is
defined as,

H =
D− µD

σD
(11)

If H < 1, then the cluster will be considered as “acceptably homogeneous”; else if 1 ≤ H < 2, then
the cluster will be regarded as “possibly homogeneous”; else if H ≥ 2, then the delineated precipitation
region is stated as “definitely heterogeneous”. For detailed information on L-moments the readers are
referred to [13].

3. Case Study

The methodology is employed in two climatic regions of Canada as shown in Figure 3, namely,
the Prairies in Western Canada and the Great Lakes-St Lawrence lowlands (GL-SL) in Southern
Ontario. These regions play a significant impact on agriculture, water infrastructure and economics
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of major cities such as Calgary, Edmonton, Regina, Winnipeg, Ottawa, Quebec, Montreal, and
Toronto. The Prairie region largely depends on the frequency and the amount of precipitation.
The precipitation in the region is mainly governed by large-scale atmospheric circulation and
geophysical characteristics [10]. On the other hand, the climate of the GL-SL region is significantly
affected due to the variations in the moisture content drawn from the large water bodies surrounding
this region and the geophysical characteristics [58].

Prairie region is located at the southern border of Canada extending in three provinces (Alberta,
Saskatchewan, and Manitoba) and in north-east extending up to the Rocky Mountains, as shown
in Figure 3. The approximate extent of spatial boundaries varies from 49 to 54 degrees latitude and
from −117 to −95 degrees longitude. Across this region, the distribution of precipitation varies along
the provinces with maximum precipitation in Manitoba and minimum in the Saskatchewan [59].
The region is also characterized by seasonal precipitation variation[11]. The GL-SL region stretches
from Southern Ontario to Quebec provinces and lies approximately between latitudes and longitudes
of 42 to 48 degrees and −83 to −70 degrees respectively, as shown in Figure 3. The Great Lakes region
covers Southern Ontario to the south of the Canadian Shield. The region experiences variable weather
patterns due to the cold and dry air from the north, predominant winds and humid air blowing from
the west and the Gulf of Mexico, respectively [60]. In the period from November to February, a cold
air mass accumulates moisture by passing over the warm water bodies in the region and results in
downwind precipitation [61]. In general, the precipitation in summer season in the Great Lakes is
characterized by cloud bursts. In addition, the total annual precipitation varies across the region, with
highest in the eastern part, i.e., St. Lawrence Valley sub-region experiences more annual precipitation
than Great Lakes sub-region [11].

Figure 3. Location map of the climatic regions of Canada—Prairie region and Great Lakes-St Lawrence
lowlands region. The grid map represents the size of the ANUSPLIN gridded data.

Data

Regionalization of precipitation regions requires good quality of spatial and temporal data.
In the case of large-scale studies, the distribution of meteorological stations is not adequate for
accurate estimation of regional parameters. In recent years, several studies have adopted gridded
reanalysis or satellite data in the absence of historical data [11,16,62–64]. The major limitation of satellite
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data is the record length when compared to the reanalysis data. In this study, ANUSPLIN [65–67],
a high-resolution gridded precipitation data is used for delineation of precipitation zones. This dataset
has been used in several studies [11,68–70]. The grid map in Figure 3 shows the size of ANUSPLIN
grid locations for both the regions. The data is approximately 300 arc second, and it contains 10810
and 3840 grid point locations within Prairie and GL-SL regions, respectively. It is to be noted that
in Figure 3, due to the scale of the map, the grid location-based attributes appear to be a solid color.
The data is ranging between years 1951–2005, for a record length of 55 years. The meta-data from the
ANUSLIN is used to extract the location-based attributes for k-means clustering algorithm.

4. Results and Discussion

The daily precipitation series from ANUSPLIN point gridded data is aggregated to four seasons,
namely winter (DJF), spring (MAM), summer (JJA), and autumn (SON). In this study, the location-based
attributes such as elevation, latitude, and longitude are selected for delineation of precipitation regions.
Asong et al. [10] and Irwin et al. [11] have also shown that the location-based attributes have a
significant effect on the homogeneity of the regions. The Digital Elevation Model over the study
regions is obtained from the Canadian Digital Elevation Data (CDED), which can be accessed from
the Canadian GeoBase website (http://www.geobase.ca/). The elevation data from DEM is extracted
at the latitude and longitude of the ANUSPLIN grid locations using Natural Neighborhood based
interpolation method in ArcGIS 10.2.

4.1. Performance of the CVIs

The k-means clustering is adopted for the delineation of two large precipitation regions in Canada.
The major limitations of this algorithm are the accuracy of the initial random centroids location and the
identification of the optimal number of clusters, since it lacks theoretical background when compared
to supervised algorithms [49]. Several studies have used an iterative process with initial random
centroids to select the best clusters [11,15,71]. In this study, the k-means algorithm is executed for
50 iterations with varying initial random centroids, and the best cluster is selected for further analysis.
Followed by, the identification of the optimal number of clusters is carried out using the CVIs. Finally,
the optimal number of clusters is validated using the L-moments based homogeneity test. The regional
percentage homogeneity represents the ratio of the total number of homogeneous clusters to the
optimal number of clusters identified by CVI.

An illustrative example of the performance of two CVIs (Det-ratio and Log-SS-Ratio) is presented
in Figure 4. The comparison is based on the percentage homogeneity, number of clusters and the
CVI’s selection criteria. The Figure 4 describe: (i) CVI values (on y-axis); (ii) percentage homogeneity
(on x-axis); (iii) the numerical in the panel indicate number of clusters resulting in the pair of CVI value
and percentage homogeneity; (iv) horizontal y-intercept red line represents CVI’s ideal value based
on the selection criteria presented in Table A1; (v) vertical x-intercept blue line represents the value
of percentage homogeneity with respect to the CVI’s ideal value in (iv). In Figure 4, the CVI value,
number of clusters, and percentage homogeneity corresponding to the CVI’s ideal value (red lines) are
(82003, 85, 87.5%) and (3.900, 70, 80%) for Det-Ratio and Log-SS-Ratio, respectively. The selection of
CVI is based on the higher value of percentage homogeneity among the CVIs. In case, if the CVIs have
similar/equal percentage homogeneity, then the CVI with the lower number of clusters is selected.
In the example illustrated, it is evident that the Det-Ratio is able to obtain a higher value of percentage
homogeneity (87.5%) when compared to Log-SS-Ratio which is (72%) and hence the Det-Ratio based
CVI is selected. Similarly, the relative performance of several CVIs can be assessed based on the above
selection procedure.

http://www.geobase.ca/
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Figure 4. Illustrative example showing the performance comparison of two cluster validity indices
(CVIs). Horizontal y-intercept red line represents ideal CVI. Vertical x-intercept blue line represents
the value of percentage homogeneity corresponding to red line. Numericals in the plot represents the
number of clusters.

4.2. Application to Canadian Regions

The performance of the 42 CVIs for four seasons in the two Canadian Regions are presented
in Figures 5–12. The number of clusters is varied from 5 to 150 at an interval of 5, and the ideal
number of clusters is selected based on the CVI selection criteria as presented in Table A1. For brevity,
the results for the number of clusters is limited to 100, since no significant changes were observed
beyond this cluster number. In addition, the results are also compared with the performance of the
empirical formula. The number of clusters formed using empirical formula is 27 and 22 for the Prairie
and GL-SL region, respectively. It is to be noted that Irwin et al. [11] found that the optimal number
of clusters is significantly different from empirical formula for each season and both the regions of
Canada. The results for each region is presented as follows:

4.2.1. Prairie Region

The 10810 sites of Prairie region were regionalized into 27 clusters using the empirical formula,
thus giving the percentage homogeneity in, (i) Winter season—81%, (ii) Spring season—78%,
(iii) Summer season—78%, and (iv) Autumn season—76%. The variation of percentage of homogeneity
for each CVI and the number of clusters are presented in Figures 5–8. The coordinates of the same are
marked with the number of clusters which divided the region. Out of 42 CVIs, 14 of them outperform in
comparison to empirical formula in all the seasons. The selected 14 indices along with the best number
of clusters and their corresponding percentage homogeneity are listed in Table 1. The maximum
percentage homogeneity determined for each season is:

1. Winter season: Banfeld–Raftery index, C index, Dunn generalized 1, 3 index, McClain–Rao index,
SD [Scat] index, and Xie–Beni index suggest k = 100 as optimal partition giving 89 homogeneous
regions amongst them. The Dunn index and their modifications (GDI11) provide a similar
percentage of homogeneity (86%) with larger clusters (55 numbers).

2. Spring Season: |T||W| ratio index found to be the best in delineation of the region in 80 clusters out
of which 69 clusters are homogeneous.

3. Summer season: All the indices except, |T||W| index and Tr(W-1B) index recommend to divide the
area in 100 clusters, which further give 88 homogeneous ones.

4. Autumn season: Banfeld–Raftery index, G + index, Point–Biserial index, SD [Scat] index, and
Tau index regionalize the area in 100 clusters resulting in 89 homogeneous ones. The Trace_WiB
cluster index has resulted in the lower number of clusters (55) with homogeneity of 84%.
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In addition, with a notable comparison between seasons, seven CVIs delineate the region with
highest percentage homogeneity for the Autumn season, ten indices regionalize with best percentage
homogeneity in the Winter season, and three indices provide similar results for both winter and
autumn seasons as shown in Table 2. In addition, it is observed that among the selected best indices,
the Dunn and Trace_WiB index provides a smaller number of clusters when compared to other indices
in Winter and Autumn seasons.

Figure 5. Performance of cluster validity indices in Prairie region—Winter season. The numbers
indicate the percentage homogeneity for the number of clusters in the x-axis and index value on the
y-axis. The scientific notation ‘E’ used in labels of y-axis represent ‘10 to the power of’.
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Figure 6. Performance of cluster validity indices in Prairie region—Spring Season. The numbers
indicate the percentage homogeneity for the number of clusters in the x-axis and index value on the
y-axis. The scientific notation ‘E’ used in labels of y-axis represent ‘10 to the power of’.
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Figure 7. Performance of cluster validity indices in Prairie region—Summer Season. The numbers
indicate the percentage homogeneity for the number of clusters in the x-axis and index value on the
y-axis. The scientific notation ‘E’ used in labels of y-axis represent ‘10 to the power of’.
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Figure 8. Performance of cluster validity indices in Prairie region—Autumn Season. The numbers
indicate the percentage homogeneity for the number of clusters in the x-axis and CVI value on the
y-axis. The scientific notation ‘E’ used in labels of y-axis represent ‘10 to the power of’.

Table 1. Number of clusters and their corresponding percentage homogeneity values for the selected
CVI for each season in Prairie region.

Clustering
Indices

Winter Season Spring Season Summer Season Autumn Season

#Clusters 1 %Hom 2 #Clusters 1 %Hom 2 #Clusters 1 %Hom 2 #Clusters 1 %Hom 2

Banfeld_Raftery 100 89.48 100 85.26 100 88.42 100 89.47
C_index 100 89.48 100 85.26 100 88.42 95 88.89
Det_Ratio 85 87.50 80 86.67 85 87.50 95 88.89
Dunn 55 86.00 100 85.26 100 88.42 95 88.89
G_plus 95 88.89 100 85.26 100 88.42 100 89.47
GDI11 55 86.00 100 85.26 100 88.42 95 88.89
GDI12 80 88.00 90 84.71 100 88.42 95 88.89
GDI13 100 89.48 95 85.56 100 88.42 95 88.89
McClain_Rao 100 89.48 100 85.26 100 88.42 95 88.89
Point_Biserial 95 88.89 100 85.26 100 88.42 100 89.48
SD_Scat 100 89.48 100 85.26 100 88.42 100 89.48
Tau 95 88.89 100 85.26 100 88.42 100 89.48
Trace_WiB 95 88.89 75 84.29 70 84.61 55 84.00
Xie_Beni 100 89.48 100 85.26 100 88.42 95 88.89

1# Clusters: Number of Clusters; 2% Hom: Percentage Homogeneity.
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Table 2. Season-wise comparison of cluster validity indices.

Cluster Validity Index Prairies Region Great Lakes-St. Lawrence Lowlands Region

Banfeld_Raftery Winter and Autumn Season
Autumn Season

C_index Winter Season Autumn Season
Det_Ratio Autumn Season Autumn Season

Davies_Bouldin - Autumn Season
Dunn Autumn Season Autumn Season

G_plus Autumn Season Autumn Season
GDI11 Autumn Season Autumn Season
GDI12 Autumn Season Autumn Season
GDI13 Winter Season Autumn Season

McClain_Rao Winter Season Autumn Season
Point_Biserial Autumn Season Autumn Season

SD_Scat Winter and Autumn Season
Autumn Season

Tau Autumn Season Autumn Season
Trace_WiB Winter Season Autumn Season
Xie_Beni Winter Season Autumn Season

4.2.2. Great Lakes-St. Lawrence Lowlands (GL-SL) Region

Great Lakes-St. Lawrence lowlands region is comprised of 3840 sites. The region was divided
into 22 clusters based on the empirical formula, for which the percentage homogeneity are observed
to be: (i) Winter season—86%, (ii) Spring season—78%, (iii) Summer season—76%, and (iv) Autumn
season—81%. Figures 9–12 presents the results for the respective CVI, elucidating the value of indices
with respect to the percentage homogeneity. Table 3 illustrates the 15 cluster validity indices which
have performed well in the region, along with their determined number of clusters and corresponding
percentage homogeneity. It is observed from Table 3 that the percentage homogeneity is higher in Great
Lakes region when compared to Prairie region. This could be due to their differences in geophysical
characteristics, wherein the Prairie region is significantly affected by the Rocky Mountain ranges and
is difficult to model [11]. In addition, Table 3 shows that the indices have determined an absolute 100%
percentage homogeneity for the autumn season. In this region, the following are observed:

1. It is observed that all the selected 15 CVIs outperform the empirical formula for all the seasons.
2. Winter season: All the listed 15 indices have outperformed the results of the empirical formula.

Banfeld–Raftery index, G+ index, Point–Biserial index, SD [Scat] index, and Tau index provides
100 clusters of the region which give 98% homogeneous.

3. Spring season: Banfeld–Raftery index, Dunn index, Dunn generalized 1, 1 index, Dunn
generalized 1, 2 index, Dunn generalized 1, 3 index, SD [Scat] index, Xie–Beni index delineated
the region in 100 clusters with 99% homogeneity.

4. Summer season: All the listed 15 indices performed better in terms of percentage than the
empirical formula. Tr(W-1B) index determined the maximum percentage homogeneity of 99% by
delineating into 90 clusters.

5. Autumn season: In comparison to all other seasons in this region, it determined 100%
homogeneous clusters for all the CVIs. It is observed that the different number of clusters
for the region are found to be:

• 100 clusters for Banfeld–Raftery index, G+ index, Point–Biserial index, SD [Scat] index, Tau
index and Xie–Beni index.

• 95 clusters for C index, ratio index, and McClain–Rao index.
• 75 clusters for Dunn index, Dunn generalized (1, 1) index, Dunn generalized (1, 2) index,

and Dunn generalized (1, 3).
• 55 and 90 clusters for Det_Ratio and Tr(W-1B) index, respectively.
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Further, it is observed that for all the four seasons the best CVI show notably a narrow range
of percentage homogeneity for each region. The performance of the clusters is lower for the spring
season when compared to other seasons for both the regions. This could be due to weaker and/or
stronger influences of ENSO cycle usually makes it difficult in the prediction of precipitation in spring
season [72]. In addition, from Tables 1–3 it is observed that for both the regions the following CVI
are selected for regionalization studies based on the minimum number of clusters to achieve similar
percentage of homogeneity in respective seasons:

1. Winter season: Dunn index and Det_Ratio index.
2. Spring season: Det_ratio index.
3. Summer season: Det_ratio index and Trace(W−1B) index.
4. Autumn Season: Dunn index, Det_ratio index and Trace(W−1B) index.

Figure 9. Performance of cluster validity indices in Great Lakes-St Lawrence lowlands (GL-SL)
region—Winter season. The numbers indicate the percentage homogeneity for the number of clusters
in the x-axis and index value on the y-axis. The scientific notation ‘E’ used in labels of y-axis represent
‘10 to the power of’.
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Figure 10. Performance of cluster validity indices in GL-SL region—Spring season. The numbers
indicate the percentage homogeneity for the number of clusters in the x-axis and index value on the
y-axis. The scientific notation ‘E’ used in labels of y-axis represent ‘10 to the power of’.
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Figure 11. Performance of cluster validity indices in GL-SL region—Summer season. The numbers
indicate the percentage homogeneity for the number of clusters in the x-axis and index value on the
y-axis. The scientific notation ’E’ used in labels of y-axis represent ‘10 to the power of’.
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Figure 12. Performance of CVI in GL-SL region—Autumn season. The numbers indicate the percentage
homogeneity for the number of clusters in the x-axis and index value on the y-axis. The scientific
notation ‘E’ used in labels of y-axis represent ‘10 to the power of’.

Table 3. Number of clusters and their corresponding percentage homogeneity values for the selected
CVI for each season in GL-SL region.

Clustering
Indices

Winter Season Spring Season Summer Season Autumn Season

#Clusters 1 %Hom 2 #Clusters 1 %Hom 2 #Clusters 1 %Hom 2 #Clusters 1 %Hom 2

Banfeld_Raftery 100 98.95 100 98.95 100 97.89 100 100
C_index 90 98.82 90 98.82 85 97.50 95 100
Det_Ratio 85 98.75 65 98.33 25 95.00 55 100
Davies_Bouldin 90 98.82 90 98.82 85 97.50 95 100
Dunn 85 98.75 100 98.95 85 97.50 75 100
G_plus 100 98.95 95 97.78 100 97.89 100 100
GDI11 85 98.75 100 98.95 85 97.50 75 100
GDI12 85 98.75 100 98.95 85 97.50 75 100
GDI13 75 97.15 100 98.95 85 97.50 75 100
McClain_Rao 90 98.82 90 98.82 95 97.78 95 100
Point_Biserial 100 98.95 95 97.78 100 97.89 100 100
SD_Scat 100 98.95 100 98.95 100 97.89 100 100
Tau 100 98.95 95 97.78 100 97.89 100 100
Trace_WiB 85 98.75 95 97.78 90 98.82 90 100
Xie_Beni 95 98.89 100 98.95 95 97.78 100 100

1# Clusters: Number of Clusters; 2% Hom: Percentage Homogeneity.
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5. Conclusions

In this study, the performance of the various cluster validity indices are investigated in identifying
the optimal number of clusters, which maximizes the homogeneity of the precipitation regions for
Prairie and GL-SL regions in Canada. It is evident from the results that the optimal number of clusters
and the regional homogeneity depends on the CVI adopted, location of the study area, and seasonal
variations. Out of 42 CVIs, about 14–15 indices perform better in preserving the homogeneity of the
clusters, and there is no single CVI among the best-selected which outperform the others. The Dunn
index, Det_Ratio index, and Trace(W−1B) index, are found to be the best for all seasons in both the
regions. The study provides the possibility of improvement in the prediction of hydro-climatic variables
and their applications such as meteorological droughts, design of hydraulic regulatory structures,
downscaling of hydroclimatic variables, watershed management, and prediction in ungauged basins.
Further, the variations in homogeneity due to CVIs will be helpful in the quantification of uncertainty
and sensitivity of attributes in delineation of precipitation zones.

Limitations and Future Scope of the Current Work

• Although the k-means algorithm converges well there is a tendency of solutions not reaching
global optima. It requires a number of iterations to get the best solution using random sets of
initial centroids. The computational burden is high with an increase in number of grid points
(or stations) as well as length of records. The performance of the CVI can be evaluated using other
clustering algorithms which may elevate above issues. Further, investigation can be carried out to
represent/understand the regional processes by studying the similarity, separation, and cohesion
of the clusters in the region.

• The process is assumed to be stationary, which may not be true, especially under the effect
of climate change. The non-stationary algorithms can be used for delineation of precipitation
regions.

• The season-wise performances of CVIs vary significantly in both regions. This could be due to
the effect of combined influences of large-scale variables and geophysical characteristics [72].
These attributes are very important to study the effect of climate change on hydrological variables.
Moreover, it is envisaged that the selection of appropriate attributes according to the seasons
may result in better prediction of rainfall characteristics. In this study attributes are limited
to geophysical characteristics. The research is in progress to understand the role of CVI with
additional climate-based attributes and their seasonal variations.

• The other limitation is the non-availability of sub-daily data for ANUSPLIN [66,67].
For example, in case of design and management of water infrastructure, the development of
intensity-duration-frequency precipitation curves require sub-daily data which is not available in
ANUSPLIN. Alternatively, the availability of sub-daily reanalysis data such as NCEP-NARR [73]
(updated data release 2016) can be used. Further, a disaggregation model can be adopted to
generate sub-daily data from ANUSPLIN.

• The study is in progress to (i) identify the role of climate indices for various combinations of
attributes, clustering algorithms, and cluster validity indices; (ii) analyze number of study areas
across the globe to generalize the selection of CVI, or to identify the best set of CVIs for their
respective climate zones.
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Appendix A

The details of the CVI used in this study are presented in Table A1. The table provides the
mathematical equation and the selection criteria for each of the CVI.

Table A1. Cluster validity indices from clusterCrit R package developed by Desgraupes [50].
The clusterCrit name for each cluster index is presented in parenthesis. If the selection criteria is,
minimum difference or maximum difference then, the clusters corresponding to the index value at
which there is minimum slope or maximum slope difference versus number of clusters curve should
be chosen.

Cluster Validity Mathematical Equation Selection
Index Criteria

Ball-Hall

(Ball_Hall) C = 1
K

K
∑

k=1

1
nk

∑
i∈Ik

∥∥∥M[k]
i − G[k]

∥∥∥2
Maximum

where, C is the Cluster Validity Index; M[k] is the matrix of Difference
attributes of kth cluster; G[k] is the barycentre# of
attributes in kth cluster; nk is number of sites in kth cluster;
K is the total number of clusters

Banfeld–Raftery

(Banfeld_Raftery) C =
K
∑

k=1
nk log

(
1
nk

∑
i∈Ik

∥∥∥M[k]
i − G[k]

∥∥∥2
)

Minimum

C
(C_index) C = SW−Smin

Smax−Smin
Minimum

where, NW is the number of pairs of distinct sites in a
cluster; SW is the sum of NW distances between all the
pairs of sites inside each cluster; Smin is the sum of NW
smallest distances between all the pairs of sites in the
entire dataset; Smax is the sum of NW largest distances
between all the pairs of sites in the entire dataset

log
(

BGSS
WGSS

)
(Log_SS_Ratio) C = log


K
∑

k=1
‖G[k]−G‖2

K
∑

k=1
∑

i∈Ik

∥∥∥M[k]
i −G[k]

∥∥∥2

 Minimum

Difference

McClain–Rao

(McClain_Rao) C = NB
NW

K
∑

k=1
∑

i,j∈Ik
i<j

d(Mi ,Mj)

∑
k<k′

∑
i∈Ik ,j∈Ik′
i<j

d(Mi ,Mj)
Minimum

where, NB is the number of pairs of sites which do not
belong to the same cluster; Mi is the row matrix of ith site’s
attributes; d() is the Euclidean distance between sites

PBM

(PBM) C =

 1
K ×

N
∑

i=1
d(Mi ,G)

K
∑

k=1
∑

i∈Ik

d(Mi ,G[k])
×
{

max
k<k′

d
(

G[k], G[k′ ]
)}

2

Maximum



Water 2020, 12, 1372 21 of 28

Table A1. Cont.

Cluster Validity Mathematical Equation Selection
Index Criteria

Point Biserial

(Point_Biserial) C =


K
∑

k=1
∑

i,j∈Ik
i<j

d(Mi ,Mj)

NW
−

∑
k<k′

∑
i∈Ik ,j∈Ik′

i<j

d(Mi ,Mj)

NB

×
√

NW NB
NT

Maximum

where, NT is the total number of pairs of distinct sites
in the dataset

Calinski–Harabasz

(Calinski_Harabasz) C = N−K
K−1


K
∑

k=1
‖G[k]−G‖2

K
∑

k=1
∑

i∈Ik

∥∥∥M[k]
i −G[k]

∥∥∥2

 Maximum

Davies–Bouldin

(Davies_Bouldin) C = 1
K

K
∑

k=1
max
k′ 6=k


(

1
nk

∑
i∈Ik

∥∥∥M[k]
i −G[k]

∥∥∥)+( 1
nk′

∑
i∈Ik′

∥∥∥∥M[k′ ]
i −G[k′ ]

∥∥∥∥
)

∥∥∥G[k]−G[k′ ]
∥∥∥

 Minimum

|T|
|W|

(Det_Ratio) C =
det(t XX)

det
(

K
∑

k=1

t X[k]X[k]

) Minimum

where, X is the matrix formed by centred vectors Difference
vj = Vj − µj for entire dataset; X[k] is the matrix formed

by centred vectors v{k}j = V{k}j − µ
{k}
j for each cluster k;

Vj is the jth observed attribute; µj is the barycentre# of jth

observed attribute

Dunn

(Dunn) C =

min

 min
i∈Ik
j∈I

k′

∥∥∥∥M[k]
i −M[k′ ]

j

∥∥∥∥


k 6=k′

max
(

max
i,j∈Ik

∥∥∥M[k]
i −M[k]

j

∥∥∥)
1≤k≤K

Maximum

Dunn Generalized
(1, 1)

(GDI11) C =

mink 6=k′

 min
i∈Ik
j∈Ik′

d(Mi ,Mj)



maxk

 max
i,j∈Ik
i 6=j

d(Mi ,Mj)


Maximum

Dunn Generalized
(1, 2)

(GDI12) C =

mink 6=k′

 min
i∈Ik
j∈Ik′

d(Mi ,Mj)



maxk

 1
nk(nk−1) ∑

i,j∈Ik
i 6=j

d(Mi ,Mj)


Maximum
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Table A1. Cont.

Cluster Validity Mathematical Equation Selection
Index Criteria

Dunn Generalized
(1, 3)

(GDI13) C =

mink 6=k′

 min
i∈Ik
j∈Ik′

d(Mi ,Mj)


maxk

(
2

nk
∑

i∈Ik

d(Mi ,G{k})

) Maximum

Dunn Generalized
(2, 1)

(GDI21) C =

mink 6=k′

max
i∈Ik
j∈Ik′

d(Mi ,Mj)



maxk

 max
i,j∈Ik
i 6=j

d(Mi ,Mj)


Maximum

Dunn Generalized
(2, 2)

(GDI22) C =

mink 6=k′

max
i∈Ik
j∈Ik′

d(Mi ,Mj)



maxk

 1
nk(nk−1) ∑

i,j∈Ik
vci 6=j

d(Mi ,Mj)


Maximum

Dunn Generalized
(2, 3)

(GDI23) C =

mink 6=k′

max
i∈Ik
j∈Ik′

d(Mi ,Mj)


maxk

(
2

nk
∑

i∈Ik

d(Mi ,G{k})

) Maximum

Dunn Generalized
(3, 1)

(GDI31) C =

mink 6=k′

 1
nk nk′

∑
i∈Ik
j∈Ik′

d(Mi ,Mj)



maxk

 max
i,j∈Ik
i 6=j

d(Mi ,Mj)


Maximum

Dunn Generalized
(3, 2)

(GDI32) C =

mink 6=k′

 1
nk nk′

∑
i∈Ik
j∈Ik′

d(Mi ,Mj)



maxk

 1
nk(nk−1) ∑

i,j∈Ik
i 6=j

d(Mi ,Mj)


Maximum
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Table A1. Cont.

Cluster Validity Mathematical Equation Selection
Index Criteria

Dunn Generalized
(3, 3)

(GDI33) C =

mink 6=k′

 max
i∈Ik
j∈Ik′

d(Mi ,Mj)


maxk

(
2

nk
∑

i∈Ik

d(Mi ,G[k])

) Maximum

Dunn Generalized
(4, 1)

(GDI41) C =
mink 6=k′ d

(
G[k] ,G[k′ ]

)
maxk

 max
i,j∈Ik
i 6=j

d(Mi ,Mj)


Maximum

Dunn Generalized
(4, 2)

(GDI42) C =
mink 6=k′ d

(
G{k} ,G{k′}

)

maxk

 1
nk(nk−1) ∑

i,j∈Ik
i 6=j

d(Mi ,Mj)


Maximum

Dunn Generalized
(4, 3)

(GDI43) C =
mink 6=k′ d

(
G{k} ,G{k′}

)
maxk

(
2

nk
∑

i∈Ik

d(Mi ,G{k})

) Maximum

Dunn Generalized
(5, 1)

(GDI51) C =

mink 6=k′

(
1

nk+nk′

(
∑

i∈Ik

d(Mi ,G{k})+ ∑
j∈Ik′

d
(

Mj ,G{k′}
)))

maxk

 max
i,j∈Ik
i 6=j

d(Mi ,Mj)


Maximum

Dunn Generalized
(5, 2)

(GDI52) C =

mink 6=k′

(
1

nk+nk′

(
∑

i∈Ik

d(Mi ,G{k})+ ∑
j∈Ik′

d
(

Mj ,G{k′}
)))

maxk

 1
nk(nk−1) ∑

i,j∈Ik
i 6=j

d(Mi ,Mj)


Maximum

Dunn Generalized
(5, 3)

(GDI53) C =

mink 6=k′

(
1

nk+nk′

(
∑

i∈Ik

d(Mi ,G{k})+ ∑
j∈Ik′

d
(

Mj ,G{k′}
)))

maxk

(
2

nk
∑

i∈Ik

d(Mi ,G{k})

) Maximum
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Table A1. Cont.

Cluster Validity Mathematical Equation Selection
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Gamma
(Gamma) C = Γ = s+−s−

s++s− Maximum
where, s+ is the number of pairs of sites which are not in
same cluster and whose distance is less than those which
are in same cluster; s− is the number of pairs which are in
same cluster and whose distance is more than those
which are in same cluster

G+
(G_plus) C = 2s−

NT(NT−1) Minimum

k2

(Ksq_DetW) C = K2 det
(

K
∑

k=1

tX{k}X{k}
)

Maximum

where, det() is the determinant of the matrix Difference

Wemmet - Gan arski

(Wemmet _Gancarski) C = 1
N

K
∑

k=1
max

{
0, nk − ∑

i∈Ik

(
‖Mi−G{k}‖

min
k′ 6=k
‖Mi−G{k′ }‖

)}
Maximum

log
(
|T|
|W|

)
(Log_Det_Ratio) C = N log

 det(t XX)

det
(

K
∑

k=1

t X{k}X{k}
)
 Minimum

Difference

Ratkowsky–Lance

(Ratkowsky_Lance) C =

√√√√√ 1
p

p
∑

j=1

K
∑

k=1
nk

(
µ
{k}
j −µj

)2

N
∑

i=1
(aij−µj)

2

K Maximum
where, p is the total number of attributes; aij is the jth

attribute of ith site

Ray–Turi

(Ray_Turi) C = 1
N ×

K
∑

k=1
∑

i∈Ik

∥∥∥M{k}i −G{k}
∥∥∥2

min
∥∥∥G{k}−G{k′}

∥∥∥2

k<k′

Minimum

Scott–Symons

(Scott_Symons) C =
K
∑

k=1
nk log det

(
t X[k]X[k]

nk

)
Minimum

SD [Scat]

(SD_Scat)
1
K

K
∑

k=1

∥∥∥(Var
(

V{k}1

)
,......,Var

(
V{k}p

))∥∥∥
‖(Var(V1),......,Var(Vp))‖ Minimum

where, Var() of the attribute

SD [Dis]

(SD_Dis)
max
k=k′

∥∥∥G{k}−G{k′}
∥∥∥2

min
k=k′

∥∥∥G{k}−G{k′}
∥∥∥2

K
∑

k=1

1
K
∑

k′ 6=1
k′ 6=k

∥∥∥G{k}−G{k′}
∥∥∥2 Minimum
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S-Dbw

(S_Dbw)
C =

1
K

K
∑

k=1

∥∥∥Var
(

V{k}1

)
,.....,Var

(
V{k}p

)∥∥∥
‖Var(V1),...,Var(Vp)‖
+ 2

K(K−1) ∑
k<k′

γkk′ (Hkk′ )

max(γkk′ (G{k}),γkk′ (G{k′ }))

where, Hkk′ is the mid-point of Gk and G k′ ; γkk′ () is the
total number of sites in these kth and k

′th clusters
whose distance to the given point is less than

1
K

√
K
∑

k=1

∥∥∥Var
(

V{k}1

)
, ....., Var

(
V{k}p

)∥∥∥ Minimum

Silhouette

(Silhouette) C = 1
K

K
∑

k=1


1
nk

∑
i∈Ik

1
nk′

∑
i′∈Ik′

d(Mi ,Mi′ )− 1
nk−1 ∑

i′∈Ik
i 6=i′

d(Mi ,Mi′ )

max

 1
nk′

∑
i′∈Ik′

d(Mi ,Mi′ ),
1

nk−1 ∑
i′∈Ik
i 6=i′

d(Mi ,Mi′ )




Maximum

Tr(W)

(Trace_W) C = Tr

(
K
∑

k=1
∑

i∈Ik

∥∥∥M{k}i − G{k}
∥∥∥2
)

Maximum

where, Tr() is the trace of the matrix Difference

Tr(W-1B)

(Trace_WiB) C = Tr

{(
K
∑

k=1

tX{k}X{k}
)−1

.
(tBB

)}
Maximum

where, B is the matrix formed in rows by the vectors Difference
µ{k} − µ where 1 ≤ k ≤ K

Xie–Beni

(Xie_Beni) C = 1
N

K
∑

k=1
∑

i∈Ik

∥∥∥M{k}i −G{k}
∥∥∥2

min
k<k′

 min
i∈Ik
j∈Ik′

d(Mi ,Mj)


Minimum

Tau
(Tau) C = s+−s−√

NB NW

(
NT(NT−1)

2

) Maximum
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