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Abstract: An understanding of streamflow variability and its response to changes in climate conditions
is essential for water resource planning and management practices that will help to mitigate the
impacts of extreme events such as floods and droughts on agriculture and other human activities.
This study investigated the relationship between precipitation, soil moisture, and streamflow over a
wide range of watersheds across the United States using Google Earth Engine (GEE). The correlation
analyses disclosed a strong association between precipitation, soil moisture, and streamflow, however,
soil moisture was found to have a higher correlation with the streamflow relative to precipitation.
Results indicated different strength of the association depends on the watershed classes and lag
times assessments. The perennial watersheds showed higher coherence compared to intermittent
watersheds. Previous month precipitation and soil moisture have a stronger influence on the
current month streamflow, particularly in the snow-dominated watersheds. Monthly streamflow
forecasting models were developed using an autoregressive integrated moving average (ARIMA) and
support vector machine (SVM). The results showed that the SVM model generally performed better
than the ARIMA model. Overall streamflow forecasting model performance varied considerably
among watershed classes, and perennial watersheds tend to exhibit better predictably compared to
intermittent watersheds due to lower streamflow variability. The SVM models with precipitation and
streamflow inputs performed better than those with streamflow input only. Results indicated that the
inclusion of antecedent root-zone soil moisture improved the streamflow forecasting in most of the
watersheds, and the largest improvements occurred in the intermittent watersheds. In conclusion,
this work demonstrated that knowing the relationship between precipitation, soil moisture, and
streamflow in different watershed classes will enhance the understanding of the hydrologic process
and can be effectively utilized in improving streamflow forecasting for better satellite-based water
resource management strategies.
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1. Introduction

Streamflow is an important hydroclimatic variable, which is influenced both by change in climate
(e.g., precipitation, temperature) condition and by human activities, including land-use changes, and
water use by the agricultural and industrial sectors. Wet soil moisture conditions result in overland
flow and possible flooding during an extreme precipitation event [1]. On the contrary, dry soil moisture
conditions amplify the occurrence of temperature extremes [2]. Therefore, changes in climate result
in changes in hydrologic process which lead to changes in the magnitude and frequency of extreme
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hydrologic events [3,4]. Thus, it is of great scientific and practical importance to analyze and quantify
the effect of climate-related drivers on streamflow for improved implementation of sustainable and
efficient management of water-related systems.

A considerable amount of research has been conducted regarding streamflow response to
precipitation changes. Zhao et al. (2009) evaluated the relationship between precipitation and
streamflow using sensitivity and simulation-based methods over the yellow river basin in China, where
they found that the changes of streamflow are more sensitive to precipitation than evapotranspiration [5].
Hodgkins et al. (2011) investigated the summer base flow and storm flow in the New England region of
the United States. They found an increase in summer storm flows by 50% due to a significant increase
in summer precipitation [6]. In the specific context of the soil moisture-streamflow relationship, several
studies have documented to enhance the understanding of the influence of soil moisture on streamflow
generation. For instance, Maurer and Lettenmaier et al. (2003) explored the potential of climatic
indicators and the initial condition of simulated snow and soil moisture for runoff predictability
throughout the Mississippi River and found that soil moisture is one of the controlling sources of runoff

predictability in all seasons [7]. Wang et al. (2018) explored the effects of land use and topography on
streamflow and soil moisture response to precipitation. They reported quicker streamflow response
to rainfall in the case of watersheds coupled with forests and steep topography compared to pasture
and flat topography [8]. In another study, soil moisture was identified as a critical component in the
development of the flood warning system [9].

The streamflow-hydroclimatic variables relationship discussed above is also associated with
streamflow forecasting, which provides vital information for environmental impact assessments,
agriculture studies, climate change impacts, groundwater assessment, and reservoir operations [10,11].
A wide variety of physically-based and data-driven models exist, including autoregressive moving
average (ARMA), linear regression (LR), wavelet transform (WT), artificial neural networks (ANNs),
support vector machines (SVMs), and also their combinations are commonly used for hydrologic
application [12–18]. The ARIMA model utilizes correlation and trends in the historical time series data
for forecasting and has been widely used for streamflow forecasting due to easy development and
implementation. The ARIMA model has been successfully applied in multiple hydrologic modeling
applications, including predicting the streamflow [19,20], rainfall [21,22], and groundwater [19,23].
The ARIMA model and its derivatives, such as seasonal ARIMA (SARIMA), periodic ARIMA, and
ARMAX, are applied extensively in streamflow forecasting, particularly in the modeling of monthly
streamflow [24–26]. However, the ARIMA model is not efficient in capturing nonlinearity of hydrologic
applications due to its underlying assumption that input data have to be normally distributed and
stationary and may not always perform well [27]. Therefore, machine learning techniques such as
ANN and SVM have gained considerable attention in streamflow forecasting studies due to their
ability to identify complex relationships between input and output data sets while inherently handling
nonlinearity and non-stationarity of the systems [28].

ANN are black box models that use a transfer function to identify the non-linear relationship
between the input and outputs and do not require detailed knowledge of the internal process of a
system. Several studies reported the application of ANN on monthly, weekly, and daily streamflow
forecasting [29,30] and confirmed the better performance of the ANN model over the traditional
statistical techniques in modeling [31,32]. Demirel et al. (2009) compared the performance of the
Soil and Water Assessment Tool (SWAT) and ANN for streamflow forecasting and found that the
ANN model performed better than the SWAT when forecasting peak streamflow [33]. However, ANN
requires a large amount of training data for model development and proper identification of the
network (e.g., number of nodes, hidden layers) to overcome the overfitting problems [34]. SVM’s
relatively new form of machine learning method was developed specifically for the classification
and pattern recognition problem and later adopted for the regression analysis. In contrast to other
machine learning methods, the support vector machine implements the structural risk minimization
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principle (SRM) rather than the empirical risk minimization principle that reduced the overfitting of
the model [35].

A number of studies have demonstrated the potential of support vector machine (SVM) in the
various hydrological applications and streamflow forecasting. Kalra et al. (2009) applied SVM for
streamflow prediction in the Upper Colorado River Basin in the western United States and found the
better performance of the SVM when compared with the prediction using artificial neural network
and linear regression [34]. Kisi et al. (2015) compared ARMA, least-square support vector regression,
and adaptive neuro-fuzzy model to forecast monthly streamflow in the Dicle Basin of Turkey. They
reported better performance of the SVM compared to ARMA [36]. Milad et al. (2014) applied the SVM
and a physically-based model to predict monthly streamflow over an arid region in the southern part
of Iran and found that the SVM monthly predictions were closer to the observed streamflow than the
physically-based model [37].

Most of the studies mentioned above were carried out on a particular number of the watershed
located in the similar climate condition, thus provide little insight into the performance of those
forecasting models on different climate regimes. In addition, those analyses require distinct geospatial
and time series data, which can be gathered from different sources such as United State Department of
Agriculture (USDA) for geospatial data and the National Oceanic and Atmospheric Administration
(NOAA) for climate data. For an individual watershed, this may not be too difficult, but for a vast
majority of watersheds, structuring and providing data for each watershed can become a daunting
task. Therefore, the inherent heterogeneity, diversity, and abundance of these data make it challenging
to follow these approaches for a large number of watersheds, as we do in this study. To this end,
a majority of the streamflow forecasting studies used either antecedent streamflow, precipitation,
or both as a suitable predictor, and a limited number of studies [38,39] investigated the potential of soil
moisture for streamflow forecasting on a large number of watersheds.

Here, we explore the utility of strategically applying precipitation and streamflow for forecasting
streamflow over a large number, i.e., 601, watersheds in varying climates, land cover, and terrain.
The objectives of this study are: (1) to evaluate the possible linkage among precipitation, soil moisture,
and streamflow and (2) to analyze the potential of satellite-based soil moisture for streamflow forecasting
over a large set of watersheds across the United States. The manuscript is organized as follows: first,
a description of the data and methodology is provided; the analysis results are then presented, and
finally, key findings are summarized.

2. Materials and Methods

2.1. Study Area and Data Used

This study was conducted over 601 watersheds selected from Geospatial Attributes of Gages
for Evaluating Streamflow (GAGE) database [40]. The 601 watersheds were selected based on their
limited anthropogenic impact, i.e., development and hydropower management. The GAGE database
provides geospatial information for 6785 watersheds across the U.S and identifies 1512 watersheds
with minimal human-influence. We selected 601 watersheds out of 1512 watersheds with no missing
streamflow data for the period of 2010–2017. Falcone et al. (2010) used three criteria to identify
watersheds with minimum human influence, (1) a quantitative index of anthropogenic modification
within the watershed based on GIS-derived variables, (2) visual inspection of every stream gage and
drainage basin from recent high-resolution imagery and topographic maps, and (3) information about
man-made influences from USGS Annual Water Data Reports [41].

Meteorological variables were obtained from the Parameter elevation Regression on Independent
Slopes Model (PRISM), which provides precipitation, temperature, and dew point temperature at
monthly and daily time scales [42]. It uses a statistical model to produce grid estimates of precipitation,
temperature, and dew point using point measure of climate data. Daily streamflow data were obtained
from the United States Geological Survey (USGS) National Water Information System (NWIS) website
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using the ‘readNWISdv’ function from the USGS’ R ‘data Retrieval’ package. Soil moisture data sets
were obtained from the NASA-USDA global soil moisture product, which is available through the
Google Earth Engine (GEE) [43]. The NASA-USDA global soil moisture was developed by merging
satellite-derived Soil Moisture Ocean Salinity (SMOS) Level 3 soil moisture observations into the
modified two-layer Palmer model using the Ensemble Kalman Filter (EnKF) [44–48]. The Palmer model
is a simple water balance model that estimates the amount of gained or lost water in the soil profile by
tracking the amount of water lost by evapotranspiration and restored by precipitation. The U.S. Air
Force 557th Weather Wing (formerly known as U.S. Air Force Weather Agency, AFWA) precipitation,
temperature data are used as inputs in the Palmer model [45,46]. GEE links for the PRISM precipitation
and SMOS soil moisture data are provided in the Supplementary Materials.

2.2. Data Processing

An overview of major methodological approaches applied in this study is presented in Figure 1.
We aggregated soil moisture and precipitation data sets to monthly composites and then spatially
averaged over the watershed boundaries using Google Earth Engine (GEE). The GEE archives a
petabyte of earth observing remote sensing data and includes processing software that enabled us to
do extensive geospatial and temporal analysis using high-performance computing resources. Then,
we used soil moisture and precipitation data to explore their spatial and temporal variability over 601
watersheds across U.S. Next, the association between soil moisture, precipitation, and streamflow were
estimated using Spearman rank correlation for different lag times between the precipitation and soil
moisture and observed streamflow. Lag correlation analysis was performed in order to determine
the number of antecedent observations that have influences on streamflow forecasting. We used
standardized time series of soil moisture, streamflow, and precipitation data while computing statistical
association to minimize the seasonal dependence of those variables. To this end, we isolated the
impact of soil moisture and precipitation on the observed streamflow, and quantified the streamflow
forecasting potential of those variables. We applied the autoregressive integrated moving average
(ARIMA) and support vector machine (SVM) regression models (SVR) for streamflow forecasting
as follows:

Figure 1. Schematic diagram of the methodology used in the study.

Model Qarima:
Qt= f (Qt−1,Qt−2, . . .Qt−n,) (1)
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Model Qsvr1:
Qt= f (Qt−1,Qt−2, . . .Qt−n,) (2)

Model Qsvr2:
Qt= f (Qt−1,Qt−2, . . .Qt−n, Pt−1,Pt−2, . . .Pt−n,) (3)

Model Qsvr3:

Qt= f (Qt−1,Qt−2, . . .Qt−n,Pt−1,Pt−2, . . .Pt−n, SMt−1,SMt−2, . . . SMt−n,) (4)

Here, Qt denotes the streamflow at time t and Pt-1, . . . Pt-n, SMt-1 . . . SMt-n represent precipitation
and soil moisture at time t-1, . . . t-n respectively. Model Qarima and Model Qsvr1 were developed using
ARIMA and SVR model respectively and consider antecedent streamflow as a predictor. Generally,
ARIMA models have been widely used for time series forecasting due to their relative simplicity
and effectiveness, however, they are limited by assumptions of normality, linearity, and variable
independence [49,50]. The SVR method, which considers the nonlinearity and non-stationary signals in
the streamflow, was used in model Qsvr1, Qsvr2, and Qsvr3. Both Qsvr2 and Qsvr3 models used antecedent
precipitation and streamflow as inputs, and Qsvr3 included soil moisture as an additional predictor.

2.3. Development of ARIMA Model

An ARIMA is a univariate model which utilizes historical time series data to predict future
and generally expressed as ARIMA (p, d, and q) where p, d, and q refers to the order of the
autoregressive (AR), integrated, (I) and moving average (MA) respectively. The AR component
indicates a linear regression model where lagged values of time series are used as predictors for
forecasting. The Integrated component refers to the transformation of the non-stationary time series
to stationary by performing a d-order differential to the original time series. The MA represents an
auto-regression of the residual errors. An ARIMA model with seasonal components also denoted as
ARIMA (p, d, and q) (P, D, and Q) m, where m refers to the number of time steps in a season. The
uppercase P, D, Q refer to the autoregressive, integrated, and moving average order for the seasonal
part of the model. The general formula for the ARIMA model with stationary (d = 0) time series data
can be written as follows:

Yt=µ+ ϕ1Yt−1 + . . .+ ϕpYt−p + θ1et−1 + . . .+ θqet−q (5)

where, Yt represents forecasted streamflow at time t; Yt-1, . . . , Yt-p denote the streamflow at time t-1,
. . . t-p respectively. µ, and et are the constant and white noise; ϕ and θ are model parameters. The
development of an ARIMA model includes three steps: identification, estimation, and diagnostic
check. The normality and stationarity of the streamflow data were determined in the identification
step, as the inputs of the ARIMA model have to be stationary. The modified Mann-Kendall and
Mann-Whitney tests were performed to identify any trend and jump in the monthly streamflow data
as those components cause the non-stationary of the time series data [20]. The modified Mann-Kendall
method utilized a variance correction approach as proposed by Yue and Wang et al. (2004) to address
the issue of serial correlation in the streamflow data [51]. The streamflow data also should have
constant variance and normally distributed to meet the stationary criteria. In general, streamflow
data are highly skewed; therefore, the box-cox transformation was applied to obtain a homogeneous
variance of streamflow data [52]. If there is a seasonality of the data, seasonal differencing was also
applied to the monthly data. Next, the autocorrelation and partial autocorrelation analysis were
performed on the non-stationary data sets to determine the order of the order of auto-regression (p)
and moving average (q). The ACF determines the amount of linear dependence between streamflow
data and lags of itself, whereas the PACF identifies the required autoregressive terms to reveal the time
lag characteristics [53]. Once the order of the model was identified, the Akaike information criterion
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(AIC) was used to determine the optimum model parameter. The AIC estimates the goodness of fit
and model parsimony and expressed as:

AIC = 2k + Nln
(SSE

N

)
(6)

SSE =
N∑

i=1

ε2
i (7)

where k is model parameter, N is the observations number and ε represents the residual error.
The minimum values of the AIC indicate better model performance [54]. In the diagnostic step, the
Ljung-Box test was performed to check whether the residuals are independent and normally distributed.
Finally, the monthly streamflow was forecasted using the best-fitted model.

2.4. Development of SVR Model

Support vector regression (SVR) follows the basic SVM concept and maps the data to a
higher-dimensional space, thus, complicated nonlinear relationships between streamflow and other
hydrologic variables are maintained and considered. For a given data set, the SVR regression function
can be expressed as follows:

Y = ω.∅(x) + b (8)

Y and x represent the output and input data, w is a weight vector, b is the bias, and ∅(x)
presents transfer function. The transfer function uses a nonlinear function to transform input data
to a linear model in high dimensional feature space. Thus, it plays a critical role in developing
an appropriate regression model. Several transfer functions such as linear, polynomial, and radial
basis are available in SVR. In this work, we used the radial basis transfer function as a large number
of previous hydrological studies utilized on the forecasting application and reporting satisfactory
performance [55,56]. The weight vector can be estimated by minimizing the following regularized risk
function:

R(c) =
1
2
||ω||2 + C

N∑
i=1

(
εi + ε∗i

)
(9)

Subject to the following condition:

yi − (ω.∅(xi) + b) ≤ ε+ εi
(ω.∅(xi) + b) − yi ≤ ε+ ε∗i
ε, ε∗i ≥ 0, i = 1, 2, 3, . . . . . . .N

(10)

Here, C is a user-defined parameter that controls the trade-off between maximizing the margin
and minimizing the training error. Higher C value results in overfitting of the model, while the
smaller C value may cause the poor approximation of the model. The ξ and ξ∗ are slack variables that
specify the upper and the lower training errors subject to an error tolerance ε, which defines as the
difference between observed, and model values calculated from the regression analysis. The solution
of equation 9 can be found by using a Lagrangian function and Karush-Kuhn-Tucker complementarity
conditions [35,57]. Finally, the SVR-based regression function can be expressed as:

Y =
N∑

i=1

(
αi − α

∗

i

)
.K(x, xi) + b (11)

where, αi and α∗i are the Lagrangian multipliers and K(x, xi) is the radial basis kernel function
expressed as:

K(x, xi) = exp
(
−γ(||xi − x||)2

)
(12)
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where xi denotes the support vector, γ is radial basis kernel parameter which gives the width of
the kernel.

SVR model parameters (C, γ, and ξ) were estimated using grid search methods and the range of
C and γ, ξ values were set to (1–100) and (0.01–1) respectively to calibrate the parameter. The number
of suitable predictors for the SVR models were also selected based on the auto and cross-correlation
analysis [56,58].

Before developing the ARIMA and SVR models, the time series data were separated into two data
sets, 80% for training, and 20% for testing. The accuracy of the three streamflow forecasting models
was evaluated using Kling-Gupta efficiency (KGE) and root mean square error (RMSE) values, which
are defined as follows:

KGE =

√
(r− 1)2 + (

σsim
σobs
− 1)

2
+ (

µsim

µobs
− 1)

2
(13)

where, r is the linear correlation between observed and simulated streamflow, σobs and σsim is the
standard deviation of the observed and simulated streamflow, µobs and µsim are the mean observed
and simulated streamflow.

RMSE =

√∑n
i=1(Qobs −Qsim)

2

n
(14)

where, Qobs and Qsim are the observed and simulated streamflow, n is the number of
streamflow observation.

KGE can range between –∞ and one, where the value of one indicates a perfect match of forecasting
discharge to the observed data. The root mean squared error estimates the mean error between the
observed values and the simulated streamflow data. Lower RMSE indicates less error between the
simulated and observed streamflow than a large RSME.

Physical characteristics and hydrological fluxes such as streamflow and soil moisture vary across
hydrological systems. However, watershed classification allows complexity of the hydrologic system to
be classified and organized for a better understanding and conceptualization of the hydrologic process
across spatial and temporal scales [59–61]. Therefore, we grouped and discussed our analysis in eight
watersheds classes following Dhungel (2016) in lieu of 601 watersheds [40]. The Dhungel et al. (2016)
watershed classes were derived from streamflow regime variables that sufficiently describe the spatial
and temporal variability of long term streamflow over 601 watersheds. They applied the principal
component analysis on sixteen selected streamflow regime variables and identified five major aspects
of regime (low-flow, magnitude, flashiness, timing, and constancy) for classification. Then, Ward’s
hierarchical clustering was applied to the five-streamflow factors to classify the 601 watersheds into
eight watershed classes that includes: (A1) Small Steady Perennial, (A2) Large Steady Perennial, (B1)
Steady Intermittent, (B21) Early Intermittent, (B22) Late Intermittent, (C1) Early Flashy Perennial,
(C21) Small Flashy Perennial, and (C22) Large Flashy Perennial streams. Class A1 and A2 watersheds
were distributed mostly in the north mid-western U.S., with larger A2 streams in the northern part,
and smaller A1 streams are towards the south (Figure 2). Class B1 watersheds dominated the mostly
dry areas of North and South Dakota, and Class B22 watersheds occurred mostly in the central U.S.
and across parts of Texas. B21 watersheds were seen mostly in the central part of the eastern U.S.
Watersheds belonging to class C1 occurred along the north-western coast of and Class C21 watersheds
were found along the Appalachians and in the northeastern U.S. Streams in Class C22 did not have
any specific regional structure and were distributed in different regions within the northern U.S. [40].
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Figure 2. Spatial distribution of eight watershed classes across the US. The pushpin symbol indicates
the study sites selected for observed and simulated streamflow comparison.

3. Results

3.1. Relationship between Soil Moisture, Precipitation and Streamflow

Lag correlation between soil moisture, precipitation, and streamflow was estimated to examine
the spatial variability of the relationship between those variables as well as to investigate the potential
of soil moisture for streamflow forecasting. Prior to the correlation analysis, the normality of the
streamflow data was checked by using the Shapiro-Wilk test, and the p-values for most of the watersheds
streamflow are less than the 5% significance value indicating the non-normality of original streamflow
data (Table 1). In addition, the modified Mann-Kendall p-value is higher than 0.05 in most of the
watersheds, implying no significant trend in the streamflow data.

Table 1. Normality and trend analysis test results for the streamflow data for eight watershed classes.

Watersheds
Shapiro-Wilk Test

Results (Median) for
Original Streamflow

Shapiro-Wilk Test Results
(Median) for Transformed

Streamflow

Modified Man-Kendall
Test Results(Median)

for Original Streamflow

A1 1.07 × 10−14 0.03 0.40
A2 6.96 × 10−12 0.29 0.36
B1 1.35 × 10−16 0.06 0.47
B21 7.53 × 10−11 0.48 0.34
B22 3.95 × 10−15 0.27 0.34
C1 1.07 × 10−7 0.21 0.27

C21 8.42 × 10−9 0.38 0.29
C22 7.52 × 10−11 0.33 0.34

In general, soil moisture and precipitation have a strong association with streamflow in most of the
watersheds (Figures 3–5), indicating that changes in precipitation and soil moisture lead to streamflow
changing. Results suggest that watersheds located in the Pacific Northwest and eastern part of the U.S.
exhibited a higher correlation than those found in the Midwest. Watersheds located in the Midwest
are characterized by intermittent streamflow regimes where the variability of the streamflow is much
more significant compared to watersheds located in the Pacific Northwest, thus has lower correlation
values. Our correlation analysis reveals varying strength of the correlation with watershed class and
lag times (Figures 3–5). In the perennial steady watershed class (A1 and A2), the correlation coefficient
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between precipitation and streamflow are mostly positive and increases with lag time, indicating that
same and previous season precipitation and soil moisture have higher influence on the streamflow
(Figure 6). The previous month’s precipitation and soil moisture have higher influence compared to
the same month’s precipitation. As these watersheds are located in high mountainous regions where
snowfall accounts for a significant amount of precipitation that accumulated during winter and release
during spring. The highest correlation for the A1 and A2 watersheds are found for the lag 2 and
lag 3 months, indicating that A2 watersheds exhibit longer precipitation and soil moisture memory
compared to the A1 watersheds. As the A1 watershed class are located near the lower latitude and
little snow accumulation results in shorter memory.

Figure 3. Spatial variation of correlation coefficients of precipitation-streamflow for different lag months.

Figure 4. Spatial variation of correlation coefficients of surface soil moisture-streamflow for different
lag months.
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Figure 5. Spatial variation of correlation coefficients of root-zone soil moisture for different lag months.

Figure 6. Box plots of lag correlations between precipitation and streamflow (left) and SMOS- based
root zone soil moisture and streamflow (right) for eight watershed classes. The lower and upper ends
of the box represent the first and third quartiles, respectively, and the whiskers extend to the extreme
value within 1.5 IQR (interquartile range) from the box ends.

The watershed class with a drier condition (watershed class B) experiences weak coupling between
soil moisture and streamflow among all watershed classes (Figures 4 and 5). The highest correlating is
found between streamflow and precipitation at lag 0, which implies that the majority of the precipitation
that falls within the watershed transforms into runoff immediately. The correlation coefficient decreases
with higher lag months, indicating that little influence of prior month precipitation and soil moisture
for the streamflow forecasting. These watersheds are mostly located near the low elevation of the
basin, implying that precipitation occurs mostly as rain or as snowfall that melts soon after it occurs.
Among all watershed classes, the watershed class (C1) with the highest precipitation and soil moisture
exhibits the highest coupling of soil moisture and streamflow with the mean correlation values of 0.65
at lag 0 month. The watershed in the C1 watershed class, although located in the western coastal of the
region, and runoff in those watersheds is caused predominantly by rainfall, and the response of the
streamflow to rainfall is short.
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Our results indicate that the surface and sub-surface soil moisture has a higher association with
streamflow compared to the precipitation. For example, in the C1 watersheds, the median correlation
value between precipitation and streamflow is 0.45 and 0.6 for the surface soil moisture-streamflow.
This agrees with a previous study showing relatively higher coherence of soil moisture with
streamflow [62]. Root-zone soil moisture and streamflow also exhibit strong correlations in most of the
watershed and similar spatial patterns as the surface soil moisture-streamflow. However, the average
correlation between root-zone soil moisture and streamflow (0.38) is slightly higher than surface soil
moisture-streamflow (0.36). Previous studies suggested that precipitation can be used as a predictor of
streamflow, with a lag of one to several months [63,64]. Our study also demonstrates the utility of
remotely sensed soil moisture data as a predictor for streamflow.

3.2. Streamflow Forecasting

First, we present the intermediate results for the ARIMA and SVR model for a sample watershed,
and findings pertaining to 601 watersheds were summarized later. The ACF and PACF plot (Figure 7)
show higher auto-correlation values at lag 1, 2, and multiples of 12, implying the non-stationary of
the streamflow data. The modified Man-Kendall (0.85) and Mann-Whitney p-values (0.35) are also
higher than the corresponding significance level, indicating little trend and jumping in the streamflow
data. The time series for the ARIMA should have a constant mean, variance, and autocorrelation
correlation with time. However, both the ACF and PACF plot show significant value at lags 12, which
indicates seasonality influence in the streamflow data. Therefore, the seasonality of the streamflow
was removed by applying 12-month differencing on the original streamflow data, and the ACF and
PACF were estimated to get the value of AR and MA part, as shown in Figure 8.

Figure 7. The ACF and PACF for monthly streamflow data.
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Figure 8. The ACF and PACF for transformed streamflow data showing auto and partial correlation
for different lag months.

The PACF of transformed data shows the spikes at seasonal lags and only one significant peak
at the non-seasonal lags. Based on the ACF and PACF plot, a different combination of the ARIMA
models were developed, and the best ARIMA model was identified by using the minimum AIC values,
as shown in Table 2.

Table 2. Values of the Akaike information criterion (AIC) for suggested ARIMA models.

Model AIC Model AIC

ARIMA(1,0,0)(1,1,0) [12] 124.1372 ARIMA(1,0,1)(1,1,0) [12] 124.9614

ARIMA(0,0,1)(0,1,1) [12] 114.1933 ARIMA(1,0,1)(1,1,2) [12] 116.8087

ARIMA(0,0,1)(0,1,0) [12] 150.2422 ARIMA(1,0,0)(0,1,1) [12] 112.348

ARIMA(0,0,1)(1,1,1) [12] 116.1038 ARIMA(1,0,0)(0,1,0) [12] 146.962

ARIMA(0,0,1)(0,1,2) [12] 116.0554 ARIMA(1,0,0)(1,1,1) [12] 114.3932

ARIMA(0,0,1)(1,1,0) [12] 126.9248 ARIMA(1,0,0)(0,1,2) [12] 114.3695

ARIMA(0,0,0)(0,1,1) [12] 149.5471 ARIMA(1,0,0)(1,1,2) [12] 116.5605

ARIMA(1,0,1)(0,1,1) [12] 112.472 ARIMA(2,0,0)(0,1,1) [12] 112.8223

ARIMA(1,0,1)(0,1,0) [12] 147.5482 ARIMA(2,0,1)(0,1,1) [12] 113.9666

ARIMA(1,0,1)(1,1,1) [12] 114.5846 ARIMA(2,0,0)(0,1,1) [12] 112.8223

ARIMA(1,0,1)(0,1,2) [12] 114.569 ARIMA(2,0,1)(0,1,1) [12] 113.9666

The residuals for the fitted model (Figure 9) are normally distributed, and autocorrelation values
are not significant, indicating that the residuals from the best model are white noise. The ACF and
PACF plot for the sample watershed show that streamflow at lag one month has a significant correlation
with monthly streamflow; therefore, previous month streamflow was considered as input for the Qsvr1

model. The cross-correlation between precipitation, root-zone soil moisture, and streamflow was found
significant at lag one month; therefore, previous month precipitation and soil moisture were used as
additional inputs in the Qsvr3 model. The grid search method evaluated the performance of the model
with different combinations of the parameters, and the model with the lowest error was selected as the
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best model. Similar to the sample watershed, the ARIMA and SVR models were developed for 601
watersheds, and the model evaluation results are summarized in Figure 10.

Figure 9. Residuals analysis for the ARIMA model.

Figure 10. Kling-Gupta efficiency (KGE) (top) and root mean square error (RMSE) (bottom) boxplots
of the Qarima, Qsvr1, Qsvr2 and Qsvr3 models during calibration (left) and validation (right) period for
the eight watershed classes.
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The performance of the Qarima and Qsvr1 models indicate that watersheds located in the Pacific
Northwest, such as C watershed class, exhibit better predictability than those found in the Midwest,
such as watershed class B1 (Figure 10). Most of the watersheds class B are located in the dryer areas
where occasional rainfalls create high flows that deviate significantly from the watershed’s nominal
flows, resulting in a more erratic flow regime and, thus, is less predictable. This pattern is generally in
line with previous studies. Patil and Stieglitz et al. (2012) found that high predictability watersheds
are bounded to the Cascade Mountains in the Pacific and Northwest Appalachian Mountains in the
eastern US. In contrast, low predictability catchments are found mostly in the drier regions west of the
Mississippi River [63,65]. A higher KGE and lower RMSE values are observed in the A watershed
class compared to the C watershed class, which suggests that perennial steady watersheds tend to
exhibit better predictably compared to perennial flashy watersheds due to lower variability in the
streamflow. The Qsvr1 model outperforms the Qarima model in four watershed classes; the improved
performance of the SVR model likely reflects its ability to capture the nonlinear and complex features
of the streamflow process.

However, the ARIMA modeling approach reveals slightly better performance for the perennial
steady watershed class. For example, the median KGE values for the perennial steady large watershed
class during the training period is 0.9, which is around 25% higher compared to the Qsvr1 model.
The Qarima model has the lowest KGE and highest RMSE values in the B watershed class. The
streamflow in the B watershed class is intermittent, which has constant or zero flow during the dry
period and only flows during the rainy season. Hence, streamflow in those watersheds are highly
skewed, non-stationary, non-linear, and difficult to forecast using the ARIMA model. The model
performance was also evaluated for the training and testing period to avoid the risk of overfitting. In
general, the training and testing results were satisfactory and varied with the watershed class. For
example, the performance of the Qarima model is slightly better in the A1 watershed, and it is slightly
worse in the C1 watershed class during the training period as compared to the testing phase.

The Qsvr2 model that considered antecedent streamflow and precipitation as predictors shows an
increase in model performance compared to the Qsvr1 model, and the magnitude of the improvement
varies with different watershed classes. The median improvement in KGE values for including
antecedent precipitation ranges from 0.06 to 0.24, and the greatest increase occurs in the B watershed
class. The median improvements in RMSE value for including antecedent precipitation are about
0.1, 0.12, and 0.13 for the A, B, and C watershed classes, respectively, during the calibration period.
The improvement in the model performance using antecedent precipitation and streamflow generally
agrees with the results of other studies [66–68]. For example, Sivapragasam et al. (2007) applied
genetic, and ANN to forecast streamflow using antecedent rainfall and streamflow and concluded that
models with rainfall and streamflow made a more accurate forecast than those with only streamflow
input [69]. However, the magnitude of improvement in the streamflow forecast models are not directly
comparable, due to differences in lead times, the number of watersheds, and forecasting methods.

In addition to antecedent streamflow and precipitation observations, we investigated to what
degree the inclusion of soil moisture data improves the streamflow forecasting capability. Inclusion of
antecedent root-zone soil moisture in the model Qsvr3 increases KGE and decreases RMSE in most
of the watershed class, as shown in Figure 10. For example, streamflow forecast using soil moisture
data increases median KGE value by 22% and 14% compared to the Qsvr2 models, in the B21 and C22
watershed class, respectively, during the calibration period. The Qsvr3 model has the highest KGE
(0.83 and 0.89), as compared to other SVR models, in calibration and validation period, respectively
in the A2 watershed. The improvement of the KGE values was found to be slightly higher for the
drier watershed compared to the wetter watershed class and consistent with the findings of Berg and
Mulroy et al. (2006) who suggested that initial soil moisture conditions were less important in wetter,
more snow-dominated watersheds [70]. The improvements in forecasted accuracy using soil moisture
observations is consistent with other studies. For example, Harpold et al. (2017) showed that including
soil moisture observations improved statistical streamflow forecast accuracy at 12 watersheds over in
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Utah and California [71]. Maurer and Lettenmier et al. (2003) develop a multiple regression model
to represent the joint contributions from soil moisture initialization and seasonal climate forecasts in
the Mississippi River basin and found that soil moisture controls streamflow predictability for lead
times of 1–2 months [7]. Similarly, Abdullah et al. (2019) incorporated antecedent soil moisture into
forecasting streamflow volumes within the North Platte River Basin, Colorado/Wyoming (USA), and
there result indicated better streamflow prediction when antecedent soil moisture used as an additional
predictor in the forecasting model [39].

Figure 11 shows the predicted and observed streamflow for three selected watersheds from each
watershed class. The A2 watershed has a well-defined streamflow regime, simulated streamflow
shows better agreement with observed streamflow in Qsvr3, capturing the potential of soil moisture for
improved streamflow prediction. On the contrary, inconsistencies between modeled and observed
streamflow are observed for the B21 watershed. The observed streamflow is consistently higher than
the simulated streamflow, indicating little influence of antecedent streamflow, precipitation and soil
moisture in future streamflow conditions. The Qsvr3 simulated streamflow of the C1 watershed also
shows better agreement with the observed streamflow.

Figure 11. Comparison of observed and modeled streamflow for the large steady perennial (A2), early
intermittent (B21), and early flashy perennial (C1) watersheds.

4. Discussion

Understanding the relationship between soil moisture, precipitation, and streamflow is important
from both theoretical and practical perspectives. In this study, we evaluated streamflow response to
changes in the precipitation and soil moisture among 601 different watersheds. Different watersheds
have a wide range of climate and physiographic properties which influence the hydrologic regime;
therefore we summarize the response of the 601 watersheds using eight classes, which enables us to
assess and categorize the precipitation, soil moisture, and streamflow relationship [59]. The spatial
pattern of the streamflow response appears to be consistent with the influence of topography and
climate and not geographically distinct as some regions contain multiple numbers of watershed
classes. We found some classes (e.g., class C21, B22) have more variability, possibly due to the larger
number of watersheds within the class but can also be due to the broader diversity of physiographic,
anthropogenic, or climatic factors in those watershed classes.

Our study suggests a variability of correlation among watershed classes determined by watershed
heterogeneity along with the hydroclimatic process. For example, the watershed class with higher
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precipitation (e.g., C1) showed a higher coherence between soil moisture and streamflow. Similarly, the
watershed class with higher snow amounts showed an increase of correlation between soil moisture
and streamflow with higher lag among all of the watershed classes. A comparison of streamflow
and soil moisture coupling among different watershed classes provides a general indicator of the
sensitivity of the streamflow of the watershed to precipitation and soil moisture changes. This approach
emphasizes the role of antecedent soil moisture in the hydrologic system. To this end, understanding
of the streamflow-climate interaction and isolating the soil moisture influence on streamflow could be
used for improving the estimation of streamflow when modeling options are limited.

In general, in situ soil moisture provided a relatively accurate representation of soil moisture
conditions. However, such observations are sparse, and providing limited information about the spatial
coverage and variability [72,73]. In this study, we demonstrated the utility of remotely sensed soil
moisture as an alternative to in situ measurements for streamflow forecasting. Our results indicate that
remotely-sensed soil moisture leads to better streamflow forecasting in most of the studies watersheds
and contributed to better decision-making in various areas of water policy and management.

Using the Google Earth engine as data processing platform reduces the technical challenges
to process the data. The GEE platform provides high-performance computing infrastructure, thus
speeding up the process of large volume geo-spatial and time series data considerably as compared
to desktop computing. This has the potential to save time and improve scientists’ ability to perform
reproducible analysis as all input data and codes are available through GEE. In addition, the user
does not need to install any additional software, which reduces the compatibility limitations, thus
increases the data and tool accessibility and usability. It is relevant to note that there are limitations
associated with assessing the streamflow responses to precipitation and soil moisture changes. This
study used SMOS based soil moisture and PRISM precipitation data to quantify the relationship with
streamflow. However, multiple sources of soil moisture and precipitation data are available, and the
choice of data source can have an impact on the streamflow-climate relationship. Monthly precipitation
data were used for evaluating the changes in streamflow; however, it is important to consider that
streamflow can also be influenced by the intensity and concentration of the precipitation. In this
study, antecedent streamflow, precipitation, and soil moisture were used as potential predictors for
streamflow forecasting. However, other meteorological variables such as temperature, humidity, and
wind speed also affect the streamflow. In future research, these factors will be taken into consideration
as potential inputs for streamflow forecasting. This study used two data-driven models for streamflow
forecasting; however, there are multiple statistical and physically models available, and the choice of
the model might have an impact on the streamflow forecasting.

5. Conclusions

The overall goal of this manuscript was to explore the association among the precipitation, soil
moisture, and streamflow and to evaluate the potential of satellite-based soil moisture products in
streamflow forecasting models over a wide range of watersheds in the United States using GEE. A
significant correlation between precipitation, soil moisture, and streamflow was found in most of the
watersheds; however, the association varies with different watershed classes and lag times. Watersheds
characterized as perennial steady showed higher streamflow forecasting capability compared to
intermittent watersheds. The spatial pattern of the correlation values reflects that basins located in the
Pacific Northwest and the eastern U.S. generally have a higher correlation between soil moisture and
streamflow than those located in the Midwest. Strong positive soil moisture-streamflow relationship
was found, in particular where the soil moisture precedes or is concurrent with the streamflow. The
highest correlations were observed in the snow-dominated watersheds, where soil moisture precedes
streamflow by 2–3 months. Our streamflow forecasting results indicated that SVR outperformed
or performed as well as the ARIMA model in most of the watersheds. The SVR and ARMA model
performance varied considerably among the different watershed classes, where perennial watersheds
exhibited better predictability compare to the intermittent watersheds. The SVR models with antecedent
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precipitation and streamflow as predictors performed better forecasting, regardless of the watershed
class than that with only streamflow input. We also incorporated root-zone soil moisture in the
streamflow forecasting model because of its higher correlation with streamflow. The forecasted model
showed that the inclusion of satellite base root-zone soil moisture products improved the streamflow
in most of the watersheds. These findings compliment previous studies mentioned in Section 1,
and contribute to a growing understanding of the complicated relationship between soil moisture,
precipitation, and streamflow. We quantify these relationships over several types of watersheds,
isolating the impact of climate conditions, precipitation, and soil moisture on streamflow response. In
addition, it is envisaged that this study will further the application of satellite-based soil moisture and
precipitation for improving streamflow modeling and forecasting.

Supplementary Materials: The supplementary (SMOS soil moisture data sets) materials are available online at
http://www.mdpi.com/2073-4441/12/5/1371/s1, and available at https://explorer.earthengine.google.com/#detail/
NASA_USDA%2FHSL%2Fsoil_moisture. PRISM climate data sets link: https://developers.google.com/earth-
engine/datasets/catalog/OREGONSTATE_PRISM_AN81m.
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