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Abstract: Lhasa River Basin being the socio-economic hotspot of Qinghai-Tibetan Plateau is
experiencing an increased hydropower capacity in the form of damming and reservoir construction.
The Pangduo hydropower station, commenced in 2013, is one of these developments. Lhasa River
discharge is analyzed for spatial variability under the reservoir operation at Pondo and Lhasa gauging
station. The Mann–Kendall Trend analysis reveals an increased precipitation and a decreased Lhasa
River discharge trend upstream and downstream the reservoir. However, the discharge received at
Lhasa gauging station is experiencing a greater decline revealed by Sen’s slope estimator. Soil and
Water Assessment Tool (SWAT) modelling of the Lhasa River discharge for both the hydrometric
stations from 2008–2016 reveals better simulation results for Pondo hydrometric station in terms of R2,
NSE and PBIAS values. The modelling results for Pondo station correspond comparatively well to the
reservoir operation procedures including water level and inflow despite of data availability constraint.
However, the importance of non-simulated processes (e.g., groundwater abstractions) to the accurate
prediction of the Lhasa flow regime particularly at the downstream flow gauge is recommended.
The study can prove beneficial for local water distribution measures in Lhasa River Basin.

Keywords: SWAT; reservoir operation; simulation; Mann–Kendall trend test; Sen’s slope estimator;
Lhasa River Basin; inflow; parameter uncertainty

1. Introduction

Damming and reservoir operation has extensively changed the flow regimes of the rivers far
and wide all over the world [1]. A rising number of dams have been put into operation over the
world to encounter public water stresses [2,3]. According to statistical data, there are over 45,000 dams
higher than 15 m globally [4]. Being the second leading renewable energy resource and chief source
of renewable energy in the electricity division, hydropower has a momentous capability to lessen
anthropogenic greenhouse gas emissions. In 2012, hydropower was assessed to count for approximately
3.8% of the world’s major energy consumption and endow approximately 16.5% to the global electricity
supply [5,6]. By the end of 2013, the total global installed hydropower capacity augmented to 1000 GW,
producing an annual power generation of 3750 TWh [5]. Therefore, understanding of dam conception
and its regulating outcomes on river discharge is fundamental for river and watershed management
and re-establishment.

China is presently the fastest emerging economy and leading developing country with substantial
energy utilization. To meet its goal of reducing carbon dioxide emissions per unit of gross domestic
product (GDP) by 40%–45% before 2020, China will have to increase its efforts to develop hydropower.
Therefore, China decided to create eight of the 13 planned hydropower bases, i.e., Jinsha River, Lancang
River, Dadu River, Upper Huanghe River, Yalong River, Nu River, mainstream Changjiang River,
and Middle Yarlung Tzangbo River (Lhasa River investigated in this study is one of its tributaries),
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during 2011–2015 and further develop its installed conventional hydropower capacity to 420 GW by
2020, which includes the current conventional hydropower of 350 GW [7].

Watersheds function as a system comprising of components including stream flow received at
the watershed outlet, evapotranspiration and anthropogenic water usage for urban and agricultural
purposes [8–10]. For this reason, hydrological models have been established for mathematical
illustration of hydrological processes, because they can improve the understanding of the impact
of natural and anthropogenic interventions on hydrological features and forecast water resource
changes, thus supporting decisions in water resource management [11–13]. In the recent advancements
regarding water resource analysis, the evolution of remote sensing (RS) services and Geographic
Information System (GIS) abilities has stimulated the expanded use of watershed models worldwide.
It has supplemented in the precision of modeling by providing more concrete methods to define
watershed conditions, delineating watershed characteristics, thus refining the modeling manner
and eventually enhancing the assessment abilities of hydrological modeling [14]. Hydrological
researchers are applying these models to understand the factors governing the runoff processes in
diverse catchments around the world, e.g., snowmelt runoff process in northern Pakistan has been
investigated by [15] using satellite data in Snowmelt Runoff Model (SRM). Similarly, many studies
have utilized the Soil and Water Assessment Tool (SWAT) to simulate water cycle dynamics in response
to management practices across the watershed and regional scales [16] such as the United States,
the European Union [17], India [18], Australia [19], Africa [20] and China [21].

Construction of dams and reservoirs has generous impacts on the magnitude and variability
of downstream runoff [22,23]. There are numerous techniques that have been applied to detect
potential changes in streamflow, such as the Mann–Kendall test, Bayesian inference, and Pettitt test [24].
These changes can be associated to anthropogenic activities, such as the construction of reservoirs and
dams, streamflow regulation, the rapid increase of water consumption [25–27]. However, the periodic
variations of streamflow due to human activities received less attention, even though they play
a vital role in regional water supply and hydropower generation [28,29]. Therefore, trustworthy
demonstration of reservoir operations in hydrological models is critical for credible simulation of water
cycling [19]. In this regard, [30] investigated the impact of reservoir on the Guadiana streamflow regime
upstream and downstream the reservoir. SWAT model was applied in the Southern China province of
Guangdong over the Dongjiang River watershed for simulating monthly river discharge at different
hydrological stations upstream, down the nearest reservoir, in order to investigate hydrological drought
propagation using Streamflow Simulation Index (SSI) [31], given that water shortages are experienced,
and the mainstream hydrological behavior in this basin is affected by reservoir operation [32,33].
Therefore, the current study aims at (a) quantifying how reservoir operation influences watershed
streamflow spatially, i.e., upstream and downstream the reservoir in Lhasa River Basin (henceforth
LRB) and (b) conducting SWAT modelling of the regulated Lhasa River streamflow. The study aids
in decision-making pertaining to influences of reservoir functioning and water distribution across
different parts of the watershed.

2. Materials and Methods

2.1. Study Area

The Lhasa River, originating in the central western Qinghai-Tibetan Plateau in the Tibet
Autonomous Region, is one of the major tributaries of the Yarlung Tsangbo River [34] with a total basin
area of≈32,321 km2 (as calculated by ArcSWAT in the current study), lying in a geographical range from
WGS84-Lat 90◦05′–93◦20′ E; Lon 29◦20′–31◦15′ N (Figure 1) in south China, and functions as a center
of political affairs, economy, culture, traffic and religion in Tibet Autonomous Region. The elevation
in the basin ranges from 3560 m a.s.l. to 7097 m a.s.l. (from Study area Digital Elevation Model,
Figure 1) with temperate semi-arid monsoon climate receiving abundant sunlight where the average
minimum and maximum temperatures are about −1.7 to 9.7 ◦C. The Lhasa River Basin has three
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meteorological stations situated within the boundary of the basin naming Damxung, Maizhokunggar
and Lhasa (Figure 1) providing long-term recorded data on the climate variables. The study area has
three hydrological stations located at Pondo, Tanggya, and Lhasa. The gauging stations have a long
time series data available on river flow.

Figure 1. Digital Elevation Model (DEM) of Lhasa River Basin showing river network, hydropower
station, meteorological stations and flow gauging stations.

The hydrological regime of Lhasa River is a decent illustration of rain dominated regime as
approximately 90% of runoff is generated by the summer monsoon rains, specifically in the months of
June–September resulting in the major high peak flows in Lhasa River during the same time period.
The mean annual discharge and average annual precipitation in the area are about 237 m3/s and
460 mm, respectively.

In recent times, Lhasa River Basin has seen some major advancements regarding water resource
management in the form of reservoir development and hydrological structures to utilize the water
resource for progress of the area. The Zhikong and Pangduo hydropower stations and reservoirs have
been built on Lhasa River in 2006 and 2013, respectively. The 100 MW capacity Zhikong Hydropower
Station lies between the middle and lower reaches of the Lhasa River, downstream from the 160 MW
Pangduo Hydropower Station (Figure 1). In the current study, the influence of Pangduo reservoir is
investigated on streamflow recorded at the two chosen hydrometric stations, Pondo station located
near the reservoir in the upper reach and Lhasa station located downstream in the middle reach of
Lhasa River (Figure 1).

The Pangduo Reservoir

The Pangduo Water Conservancy Project is located in the upper Lhasa River. The area controlled
by the dam site is 16,370 cubic meters, with an annual runoff of 6.248 billion cubic meters, accounting
for 49.8% and 58.52% of the Lhasa River Basin, respectively. The Pangduo water conservancy project is
a key water conservancy construction project in the “Eleventh Five-Year Plan” of the Tibet Autonomous
Region. It is also the largest water conservancy project that has been recently constructed and planned.
The development task of the Pangduo water conservancy project is mainly irrigation and power
generation, taking into account both flood control and water supply. It is the backbone control project
of the Lhasa River Basin and a leading reservoir for the elevator-level development of the Lhasa River
Basin. The details of Pangduo reservoir are presents as Table 1.
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Table 1. Pangduo reservoir specifications.

Reservoir Specification Detail

total storage capacity of the reservoir (volume of water when the emergency
spillway is filled) 1.23 billion cubic meters

adjusted storage capacity (volume of water when the principal spillway
is filled) 811 million cubic meters

dead storage capacity 271 million cubic meters
normal water level 4095 m
dead water level 4066 m

restricted water level during the flood 4093.5 m
maximum dam height 72.30 m

elevation of the dam at top 4100.00 m
dam length 1052 m

total installed capacity 160 MW

2.2. Research Methodology

2.2.1. Mann–Kendall Trend Analysis on Hydrological Data

The study used trend analysis approach to define the hydrological behavior for the study area.
The change quantification has been carried out focusing particularly on reservoir operation influence
on the spatial variability of Lhasa River streamflow. The well-known Mann–Kendall (henceforth MK)
Trend test [35] has been employed on the seasonal discharge of Lhasa River recorded at Pondo and
Lhasa hydrometric stations. Seasonal discharge was put to trend analyses as the major proportion of
river discharge is contributed in the summer months from June–September under the Indian Monsoon
influence. The rank-based, non-parametric MK statistical test, which has presented strength in trend
detection for non-normally distributed and censored data, such as the hydro-climatic data, was used
for the flow trend analysis. The results of this test indicate the statistical significance of the observed
variable trends where the sign corresponds to the sign of a trend. In this study, the significance level of
p p < 0.05 (95% confidence level) was used to evaluate the change trends. In the MK test, the slope
calculated using the Theil–Sen’s estimator is usually considered to represent the monotonic trend and
indicates the amplitude of change per unit time. It is a robust estimate of the magnitude of a trend and
has been widely used to identify the slope of the trend lines in hydrological and climatic time series.

2.2.2. SWAT Model Application

SWAT Model Description

SWAT is a physically based hydrological model developed by the US Department of Agriculture
(USDA). SWAT is a distributed deterministic model that is extensively used to investigate the watershed
hydrology [36,37]. Referring to [37] and [38], it is the optimum choice among the different hydrological
models owing to its proficiency for application to large-scale watersheds (>100 km2), interface with
a Geographic Information System (GIS), continuous-time simulations performance, and generation
of the maximum number of sub-basins and ability to characterize the watershed in enough spatial
detail. It is capable of simulating long term impacts of any management, climate or vegetation
scenarios on the hydrological processes including pollution transport and sediment loading in river
basins/watersheds [16]. SWAT model has emerged as one of the most widely used eco-hydrological
models worldwide [39–44] (see Figure 2).
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Figure 2. Schematic representation of Soil and Water Assessment Tool (SWAT) model setup for the
current study.

In SWAT model, a river basin or watershed is firstly partitioned into larger sub-units called
sub-basins draining into the stream network and the river-system which are further distributed into a
series of smaller units: the hydrological response units (HRUs), which are non-spatial uniform units,
each signifying distinctive combinations of soil, land-use and slope. The calculations and simulations
of hydrological components, sediment yield, and nutrient cycles are first carried for each HRU and
then aggregated for the sub basins and watershed.

The hydrological cycle simulated in SWAT is based on the water balance equation:

SWt = SW0 +
t∑

i=1

(
Rday −Qsur f − Ea −wseep −Qgw

)
(1)

where, SW0 and SWt are the initial and final soil water content (mm H2O) on day i, t is time (days),
Rday is the precipitation amount reaching the soil surface on day i (mm H2O), Qsur f is the surface
runoff amount on day i (mm H2O), Ea is the evapo-transpiration on day i (mm H2O), wseep represents
the interflow on day i (mm H2O), and Qgw is the return flow or base flow to the channel on day i
(mm H2O).

The simulated hydrological components include infiltration; redistribution; evapotranspiration
(ET); lateral subsurface flow; groundwater or return flow; surface runoff; ponds inflow and outflow;
transmission losses and water yield. Further detailed background and theories of hydrological process
in SWAT can be found in [45].

SWAT Model Input Datasets

In the current study, “ArcSWAT-2012, Rev. 634”, which is an ArcGIS-ArcView extension and
graphical user input interface for SWAT model was prepared with the data, which requires three GIS
data layers (digital elevation model (DEM), soils and land use) and the hydro-meteorological data of
the study area. The topographic data of the study area was delivered in the form of a Digital Elevation
Model (DEM) (Figure 1), acquired from Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER)-Global Digital Elevation Model (GDEM) with a 3 arc-second (90 m) resolution
provided with the watershed outlet point for stream network and watershed delineation by ArcSWAT.
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Soil and Land Use Raster

The soil data was conveyed into ArcSWAT attained from FAO-UNESCO Harmonized World Soil
Database version 1.2 (HWSD v1.2), a 30 arc-second raster database, with over 15,000 different soil
mapping units, within the 1:5,000,000 scale FAO-UNESCO Soil Map of the World (www.fao.org/soils-
portal) (Figure 3a).

Figure 3. (a) Soil and (b) land use data raster for Lhasa River Basin.

The Land use raster was produced using Landsat-8 OLI satellite imagery with a 30 m resolution.
Among images, the best cloud free image was selected to develop land use classification raster using
Supervised Maximum Likelihood Classification method. (Figure 3b).

Hydro-Meteorological Data

For the current study, ArcSWAT model was fed with meteorological data on daily time step for
climate variables including precipitation, maximum and minimum air temperature, relative humidity,
wind speed and solar radiation obtained for a long-term period from Damxung, Maizhokunggar and
Lhasa meteorological stations (Figure 1). The weather data were prepared in text file format as required
by the SWAT model. The river discharge data used in the study was obtained from Pondo and Lhasa
gauging stations (Figure 1).

Watershed Demarcation

In watershed delineation, we designated the outlet of the big watershed and let the software
automatically generate the outlets of the sub-basins and delineate, therefore, each one of them. We
set a threshold for the sub-basin area equal to 650 km2 to launch the sub-basin delineation. As a
result, the study area was aligned with 21 sub-basins and 149 discrete HRUs (10%–15%–10% land
use-soil-slope threshold), based on the different soils, land-use and slope classes.

2.2.3. Reservoir Addition to the Model

After the watershed delineation was achieved, Pangduo Reservoir was added to the SWAT model.
Using the built-in reservoir module of SWAT model, Lhasa River streamflow was simulated against
observed streamflow at the Pondo and Lhasa hydrological stations (Figure 1). SWAT model required
data for the following parameters of reservoir:

(a) Reservoir commencement year;
(b) Volume of water required to fill the reservoir principal spillway (Table 1);
(c) Volume of water required to fill the reservoir emergency spillway (Table 1);
(d) Reservoir surface area.

www.fao.org/soils-portal
www.fao.org/soils-portal
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2.2.4. Model Calibration, Validation and Sensitivity Analysis

To appraise the effect of reservoir operation on the flow regime, the observed monthly river flow
from two gauging stations, i.e., Pondo and Lhasa was fed into the model to simulate the river flow for
both the selected hydrometric sites individually. The SWAT model was applied for the simulation
period of 1 January 2008, through 31 December 2016, with 2008–2009 as a warm-up period. A warm-up
period is required for all SWAT simulations, because initial values for surface residue, plant biomass,
groundwater height, soil moisture and many other parameters are generally set to zero or default
values. The stream flow data of 3 years from 2010 to 2012 were used for calibration, and the succeeding
4 years from 2013–2016 were then used as validation period, which includes the reservoir functioning
years for the study area.

Sensitivity analysis designates how model output fluctuates over a range of given input variables.
This process confines the number of model parameters to the most sensitive ones that have a major
influence on calibration of hydrological models for a given catchment. During this process, first
perceptible ranges are assigned to a set of calibration parameters, where both the ranges and the
selection of calibration parameter are guided by literature, specific knowledge of the study area and the
parameters sensitivity analysis. After it is completed, sets of samples (as many as intended simulations)
are built from the parameter ranges through Latin hypercube sampling, followed by SWAT model
simulation using each of the set, and processed for selected objective function. The different techniques
to perform sensitivity analysis can be generally grouped into local and global methodologies. Sampling
one input at a time by setting all other inputs at constant values does not justify for the interaction
between inputs. The global sensitivity, on the contrary, explores the whole range of input factors,
and all input factors can be at once varied, permitting for an examination of output variation as
a result of all inputs and possible interaction, where output uncertainty is averaged over all input
factors. Commonly, hydrological model uncertainty can arise from input data, model parameterization
and model structure. Khoi et al. 2015 [46] evaluated four SWAT model parameter uncertainty
analysis approaches in simulating stream flow in the Srepok River watershed, Vietnam and resolved
that the Sequential Uncertainty Fitting (SUFI-2) [47] method had the best performance. Therefore,
for the current study, the SWAT-CUP (calibration and uncertainty program) embedded program
SUFI-2 (Sequential Uncertainty Fitting version 2) was used for sensitivity analysis, calibration and
validation of the model. This algorithm is adept at mapping all uncertainties (parameter, inputs,
conceptual model, etc.) in terms of parameter ranges by attempting to enclose most of the measured
data within the 95% prediction uncertainty (95PPU) band, which is calculated at the 2.5% and 97.5%
levels of the cumulative distribution of all simulated output values. Nine hydrological parameters
(Table 2) were recognized sensitive through global sensitivity analysis [48] where stream flow data of 9
hydrological years (2008–2016) were used to simulate Lhasa river discharge. The model was run for
500 simulations individually during the calibration and validation for both the hydrometric stations
data. The settlement between observed and simulated catchment stream flow data was determined
using subjective and quantitative measures for recommended parameter thresholds. The final value of
each model parameter that showed optimal model efficiency during calibration was used for model
validation without further adjustment Upon the achievement of sensitivity analysis for calibration and
validation process of Lhasa River discharge; the most sensitive parameters were ranked in accordance
with the t-stat and p-value assigned by SUFI-2 algorithm for the automatic calibration and validation
of ArcSWAT model in the study area.
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Table 2. Sensitive Parameters for stream flow simulation in Lhasa River Basin at the selected
hydrometric stations.

No. Parameter Parameter Description Method Chosen

1. CN2 Initial SCS curve number for soil condition II Relative
2. GW_DELAY Ground water delay (days) Replace
3. GW_REVAP Ground water “revap” coefficient Replace
4. ESCO Soil evaporation compensation factor Replace
5. EPCO Plant uptake compensation factor Replace
6. SOL_BD Soil bulk density (mg/m3) Relative
7. SOL_K Saturated hydraulic conductivity (mm/h) Relative
8. SOL_AWC Available water capacity of soil layer (mm H2O/mm soil) Relative
9. OV_N Manning’s “n” value for overland flow Relative

2.2.5. Model Evaluation Measures

To reckon the goodness of model performance for the carefully chosen ranges and parameter,
in terms of calibration/uncertainty levels, two indices p-factor and the r-factor were used. P-factor
is the percentage of data that is bracketed by the 95PPU band (range from 0 to 1, where 1 shows
that all the prediction are within the 95PPU Band), while R-factor is the average width of the 95PPU
band divided by the standard deviation of the measured variable (0 to ∞, with 0 showing perfect
match) [43]. For evaluation of calibration/validation results, the SUFI-2 algorithm allows users to
select from a range of different objective functions such as R2, percent bias (PBIAS), Nash–Sutcliffe
Efficiency (NSE) or Kling–Gupta efficiency (KGE). In general, the coefficient of determination (R2) and
Nash–Sutcliffe Efficiency (NSE) are the most popular statistics used to evaluate the performance of
the SWAT model [30–32,38]. The current study used R2 [49,50] as the main objective function, but the
results were also evaluated based on, PBIAS and NSE [51] of the calibration/validation results as well
as the P-factor and the R-factor.

The R2 is the magnitude of the linear relationship between the observed and the simulated values
and was calculated as [52]:

R2 =


∑n

i=1

(
Oi −O

)(
Si − S

)
[∑n

i=1

(
Oi −O

)2
]0.5[∑n

i=1

(
Si − S

)2
]0.5


2

(2)

where Oi is the observed flow for the ith day of the simulation, Si is the modeled flow for the ith day
of the simulation, O is the long term mean of the observed flow, and S is the long term mean of the
simulated flows.

NSE is used to specify how accurate the plot of observed versus simulated value fits the 1:1 line,
and was calculated as [51];

NSE = 1−


n∑

i=1

(
Qi

obs
−Qi

sim
)2

n∑
i=1

(Qiobs −Qmeanobs)
2

 (3)

where Qi
obs is the observed flow, Qi

sim is the simulated flow, and Qi
obs mean is the average observed flow.

Percent bias (PBIAS) estimates the average tendency of the simulated values to be larger or smaller
than their observed equivalents [53]. The best value of PBIAS is zero, signifying exact simulation
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of observed values. In general, a lower value of PBIAS implies accurate model simulation. PBIAS,
which is the percent deviation of simulated data, is calculated as:

PBIAS =

n∑
i=1

(
Qi

obs
−Qi

sim
)
× 100

n∑
i=1

Qiobs
(4)

3. Results

3.1. Hydrological Regime of Lhasa River

The magnitude of annual Lhasa River flow on a respective year and its exceeding probability for
the time span of 2008–2016 recorded at Pondo flow gauge (near the chosen reservoir in the upper Lhasa
River) and Lhasa flow gauge (downstream in the middle reach of Lhasa River) have been represented
as flow-duration curves in Figure 4. The flow-duration curve is a cumulative frequency curve that
shows the percent of time during which specified discharges are equaled or exceeded in a given
period [54]. We see that the annual river discharge accumulated at Lhasa gauging station is higher as
the magnitude of peak flow depends on the total basin area; the larger the basin area, the greater the
resulting peak flow [55]. After the reservoir impoundment year (highlighted in Figure 4), the annual
discharge for preceding years has increased. We see that the year 2015 has experienced the lowest
annual discharge with maximum exceedance after the reservoir impoundment. This decreased annual
flow can be attributed to a distinctively lower rainfall received during this year. Figure 4 indicates an
identical behavioral pattern of annual Lhasa River discharge at both flow gauging stations.

Figure 4. Flow-duration curves for the annual Lhasa River discharge for 2008–2016 observed at Pondo
and Lhasa flow gauging stations. The reservoir impoundment year is marked.

The hydrological regime of Lhasa River is a distinctive illustration of rainfall driven process.
Figure 5 shows the rainfall dependency of Lhasa River discharge at two flow gauging stations,
Pondo flow gauge near and Lhasa flow gauge downstream the reservoir chosen for the study. Lhasa
streamflow gauge being located in the middle reach of the LRB receives the discharge generated from
the whole catchment and is consequently peaking higher than the discharge accumulated at Pondo
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streamflow gauging station. Monthly streamflow obtained from average daily time series recorded at
the hydrological stations increases with basin area [55]. However, for both the flow gauging stations,
recorded river flow peaks during the time of summer months when high rainfall has occurred.

Figure 5. Monthly Lhasa River observed discharge at Pondo and Lhasa flow gauging stations, 2008–2016.

Mean monthly streamflow pattern in general is following the precipitation pattern, high in
June–October with peaks in August and low in November–May [56] for both the flow gauging stations.
With this background, the MK trend test and Sen’s slope has been used to identify the trend on
seasonal (June–September) rainfall and streamflow for both the selected stations individually from
years 2008–2016. Rainfall record for both the analyses is the same and is recorded at the Lhasa
meteorological station.

Figure 6a,b shows the MK trend on rainfall and streamflow for the Pondo and Lhasa flow gauging
stations, respectively. The current study has revealed a non-significant (p > 0.05) increasing trend
(positive MK Tau value) in the seasonal rainfall by 1.78 mm yr−1 (values for MK Tau and Sen’s slope
are shown in Figure 6a,b). This is supported by [55] who have shown an increase in LRB rainfall using
MK trend and Sen’s slope. However, their study has revealed a significant increase in rainfall. Here it
is important to note that they have taken a long time span of monthly rainfall data for trend analysis,
which affects the significance of the trend.

For the streamflow, the MK trend on the study time span has shown a non-significant decrease
(negative values) for both the selected flow gauging stations (MK Tau and Sen’s slope values are shown
in the Figure 6a,b). This again conforms to the findings of [55] where a non-significant decrease in
the long-term streamflow recorded at two flow gauging stations, one of which is Lhasa flow gauge,
has been reported for LRB. We see that the recorded seasonal discharge has decreased by greater
magnitude (5.84 m3 s−1 yr−1) at Lhasa flow gauge. This again corresponds to the results of [55].
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Figure 6. Mann–Kendall trend test on (a) seasonal rainfall and streamflow recorded at Pondo flow
gauge and (b) seasonal rainfall and streamflow recorded at Lhasa flow gauge.

3.2. Lhasa River Flow Calibration, Validation and Parameter Sensitivity Analysis by SWAT

3.2.1. Streamflow Calibration, Validation and Parameter Sensitivity at Pondo Flow Gauge near the
Selected Reservoir

The performance of SWAT model is displayed as Figure 7 where the model has performed very
well in calibrating the streamflow for the years pre-reservoir, functioning with high values of R2 and
NSE and a small bias of 5.3% from the observed discharge at the flow gauging stations. The 95PPU plot
envelopes the 97% of the simulated and observed values with a very close correspondence between
the values. The values of P-factor and R-factor are definitely in agreement with what other researchers,
e.g., Abbaspour (2015), recommended, i.e., p > 0.7 and r < 1.5. The calibrated parameters with their
adjusted ranges, optimized values and rankings are presented as Table 3.
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Figure 7. Hydrograph of monthly discharge calibration (2010–2012) and validation of Lhasa River
(2013–2016), showing the simulated and observed monthly streamflow at Pondo flow gauging station.

Table 3. Calibration flow parameter range with lower and upper boundaries, fitted value, rank, t-stat
and p-value for monthly river discharge simulation of Lhasa River at Pondo flow gauging station.

Parameter
Range

Fitted Value Rank t-stat p-Value
Min Max

r__SOL_K −0.8 0.5 −0.30 1 2.601 0.017
r__SOL_BD 0 1.5 0.62 2 1.606 0.123

v__GW_DELAY 150 500 167 3 −1.488 0.152
r__CN2 −0.5 −0.1 −0.24 4 −1.392 0.179

r__SOL_AWC −0.9 0.1 −0.11 5 1.246 0.226
v__GW_REVAP 0.5 0.9 0.77 6 0.898 0.379

v__ESCO −0.8 0.2 −0.41 7 −0.753 0.459
v__EPCO −0.1 0.8 −0.05 8 −0.287 0.776
r__OV_N −0.3 0.5 0.03 9 0.167 0.868

However, during the validation, which includes the reservoir functioning years, the performance
of the model has decreased but still is within an acceptable range with R2 and NSE values greater than
0.5 and PBIAS less than 25%. The 95PPU envelope encloses 60% of the observed and simulated values,
which is appreciably well extended. For flow, a practical value of 0.6–0.8 for the p-factor and a value
around 1 for the r-factor are suggested [56]. We see that in trying to capture the peak events of river
discharge, the model has fallen short for majority of the times, and on the contrary, low flows for dry
season are frequently overestimated.

3.2.2. Streamflow Calibration, Validation and Parameter Sensitivity at Downstream Lhasa Flow Gauge

The model has been run to simulate monthly river discharge at the selected downstream Lhasa
flow gauging station located near the LRB outlet. The model has produced a very closely conforming
curve for monthly river flow (Figure 8) with R2 and NSE values of 0.96 and 0.93, respectively. The model
has shown a very good performance while calibrating the monthly discharge for Lhasa River where it
has slightly underestimated the high peak events with a PBIAS of 9.6%. The 95PPU band is enclosing
86% of the simulated and observed values with a p-factor of 0.86 and r-factor of 0.74 (Figure 8).
The calibrated parameters with their fitted values and ranks are presented as Table 4.
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Figure 8. Hydrograph of monthly discharge calibration (2010–2012) and validation of Lhasa River
(2013–2016), showing the simulated and observed monthly streamflow at Lhasa flow gauging station.

Table 4. Calibration flow parameter range with lower and upper boundaries, fitted value, rank, t-stat
and p-value for monthly river discharge simulation of Lhasa River at Lhasa flow gauge station.

Parameter
Range

Fitted Value Rank t-stat p-Value
Min Max

r__SOL_BD −1 1 0.84 1 24.398 0.000
r__SOL_K −1 1 −0.39 2 18.243 0.000

r__CN2 −0.25 −0.01 −0.20 3 10.761 0.000
v__ESCO 0.01 1 0.90 4 3.420 0.000

r__SOL_AWC −1 1 −0.56 5 −2.300 0.021
v__GW_REVAP 0.02 0.1 0.06 6 −1.582 0.114
v__GW_DELAY 150 500 478 7 −1.554 0.120

v__EPCO 0 1 0.79 8 0.324 0.745
r__OV_N −1 1 −0.04 9 −0.277 0.781

For the validation years, the model has performed satisfactorily with R2 and NSE values of 0.56
for the correspondence of simulated discharge with the observed discharge (Figure 8). Many SWAT
studies considered the model is reliable if the reported validation statistics are 0.5 or above (such as
R2 > 0.5, NSE > 0.5) at the basin’s outlet [57]. However, the simulated values are biased with 14%
underestimation from the observed values; so far, the model has performed well while simulating the
river discharge. The 95PPU plot has been produced with 72% of values being enveloped in it.

3.3. ArcSWAT Depiction of Change in River Flow Pre and Post Reservoir Operation

3.3.1. Change in Streamflow Upstream the Selected Reservoir

The observed and simulated river discharge for Pondo flow gauge has been analyzed for the
percentage change as a consequence of reservoir operation in LRB. Figure 9 represents the behavior of
change in river flow pre and post reservoir as revealed by the observed and model simulated discharge
from 2010–2012 and 2013–2016, respectively. A substatntial increase in the dry season (November–May)
observed river discharge at Pondo flow gauge has resulted, whereas, the wet season (June–October)
undergoes either a decrease or a slight percent increase in the regulated observed discharge as a
probable consequence of reservoir operation.
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Figure 9. Percent change in monthly observed and simulated streamflow at Pondo flow gauge as a
consequence of Pangduo reservoir functioning.

Regulated streamflow from reservoirs to downstream areas aids in moderating flood peaks and
volumes and increasing base flow in dry season [58]. For model simulated streamflow, the model has
shown a far more increase in the streamflow with progressively increasing rainfall events during the
wet season under reservoir functioning. For the dry season, with decreasing rainfall the model has
shown a better representation of increased streamflow obtained during the low rainfall months as the
water stored during rainfall receiving summer months is available for use in winter dry months.

3.3.2. Change in Streamflow Downstream Selected Reservoir

The regulated observed river flow at downstream Lhasa station shows a similar behavior of
increased dry season (November–May) discharge and a decreased wet season (June–October) discharge,
the evident outcome of reservoir functioning on the streamflow of Lhasa River. However, the percent
change, whether increase or decrease, is comparatively smaller than the change observed at the
upstream flow gauge. The simulated river discharge for the Lhasa flow gauge has shown a deviation
from the observed river discharge for both the wet and dry seasons (Figure 10). According to [30],
the further downstream the station is located, the greater the departure between the two simulations.

Figure 10. Percent change in monthly observed and simulated streamflow at Lhasa flow gauge as a
consequence of Pangduo reservoir functioning.
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3.4. Inter-Relationship between Water Level and Inflow of Pangduo Reservoir and ArcSWAT Streamflow
Simulation (Up and Downstream)

To further understand the hydrological phenomena of Lhasa River under the influence of reservoir
operation, the available data for reservoir water level for the year 2015 has been used to evaluate the
performance of ArcSWAT simulation under reservoir operation (Figure 11). We see that the reservoir
water level agrees with the rainfall events; however, the river discharge decreases as the water is stored,
filling up the reservoir.

Figure 11. Reservoir water level and observed and simulated Lhasa River discharge at Pondo (left)
and Lhasa (right) flow gauge stations for the year 2015.

At the selected flow gauges, the simulated river flow exhibits a similar characteristic as the
observed discharge. i.e., lowering of peaks during the high rainfall month of August, revealing that the
summer flow is being donated for use in the low rainfall winter months. We see that the simulated flow
is overestimated; however, the model has performed comparatively well for Pondo station, which is
located near the reservoir, as it is prone to a relatively lesser impact from the reservoir compared to the
farther downstream Lhasa gauging station for which the simulated discharge fluctuates wider from
the observed discharge. Here, it is important to mention that 2015 was a year with a very low recorded
rainfall compared to other years from 2008–2016. This lower rainfall has resulted in an exceptionally
lower river discharge for the same year. The reservoir water level during the high rainfall months of
July and August is found to be lower than the dead water level of 4066 m (Table 1). The water level
in the reservoir is again replenished to normal water level by the months of September and October.
This reveals an unusual hydrological situation in the LRB during the reference year, which can be
possibly a data record error. This provides a basis for the significance of the model simulated results
presented above, since with such lower recorded rainfall, the model still managed to produce some
appreciable results.

The SWAT simulation displayed a better representation for the upstream Pondo flow gauge; thus,
it was used to develop a relationship with the inflow of reservoir, which was available for the years
2015–2016 (Figure 12). The inflow data being available only for two years, there were some missing
data for 15 July–15 August (highlighted in Figure 12), which is the time for high rainfall and river flow
peak. We see a relatively lower observed river discharge also for the same time.
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Figure 12. Pangduo Reservoir inflow and observed and simulated river discharge at Pondo flow
gauging station for the years 2015–2016.

River discharge can be used as reservoir outflow in case of unavailability of reservoir outflow
record. The model-simulated river discharge shows a fairly close correspondence with the inflow to
reservoir and observed river discharge as it is used in place of reservoir outflow.

4. Discussion

4.1. Hydrological Institution of Lhasa River Basin and the Resevoir Operation

Cuo et al. 2019 [55] has shown that LRB streamflow modifies in correspondence with the monthly
precipitation, peaking high in wet months and vice versa. Figure 6a,b represent that precipitation
being the controlling factor in Lhasa River discharge, the increased rainfall during the study time
is resulting in a monthly discharge which is decreasing over time. On the other hand, in Figure 4,
the annual river discharge recorded at both the stations is increasing by the end years except for 2015,
with the lowest recorded discharge. In the past decades, the quantity of streamflow has improved
on a global scale [59] which might have stemmed from the increased precipitation, for the increased
precipitation has become more apparent in Southern China, US, and countries in Europe and South
America [59–63]. However, several studies show increased precipitation merely is not enough to
explain streamflow variability in the watersheds and even some inverse trends have been observed
in some watersheds [64,65]. The influence of climate change on streamflow regimes varies with
geographical location and watershed characteristics [66,67].

This brings us to the deduction that besides climatic factors, other factors are also operating in
determining the hydrological phenomena of LRB. As per our study, the major proportion of river
discharge produced during wet warm season is shifted to the cold dry season of lower rainfall,
thus causing a decrease in monthly river discharge. The reservoir operations and water abstraction
unsurprisingly headed to changes in the natural flow regime and decrease of flow in the downstream
river [68]. Human activities exclusively damming have been frequently documented as the element
causing streamflow regime variation. Since the preceding four decades, the influence of dams and its
flow regulations have produced much debate; it has instigated ecological harms but also enhanced
water security, flood control, and power generation [69,70].
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4.2. About SWAT Simulation of Streamflow at Selected Flow Gauge Sites under Reservoir Influence

Using the SWAT model, we evaluated streamflow simulations in the LRB based on reservoir
operation scheme. Reservoir operations have both direct and indirect effects on streamflow.
Water release from reservoirs directly affects the magnitude and variability of streamflow in downstream
reaches. Dam and water diversion operations determine the amount and timing of water discharge to
downstream river channels. As a result, reservoir operations may either lessen flood peaks in wet
seasons or increase streamflow in dry years, in agreement with minimum instream flow policies [71].
Similar impact of reservoir has been observed for LRB where the discharge has been experiencing a
reduction particularly during the high rainfall months generating the high peaks during the summer
months. We have assessed the river discharge pattern of LRB at two flow gauge sites in order to
develop a better understanding of the hydrological behavior of Lhasa River under reservoir influence.
For this purpose, SWAT modelling achieved better performance criteria for the upstream flow gauging
station. However for Pondo flow gauging station, SWAT model has produced an over-estimation for
the dry season and an under-estimation for the wet season (Figure 9). Tian et al. 2020 [72] has also
reported an under-estimation of Lhasa River discharge simulation by SWAT model. This phenomenon
has been further reported by SWAT model reliability assessments conducted for the PoKo [73],
Cong [74] and Nam Kim [75] watersheds in Vietnam where the model performed well for overall
streamflow simulation but did not match some peaks accurately. For Lhasa station, the deviation
has increased being lying downstream the reservoir. Other possible reason may be operation of
Zhikong reservoir downstream (Figure 1) the Pangduo reservoir causing a further decrease in the
Lhasa River discharge at the basin outlet. In addition to reservoir operations, cropland irrigation also
affects watershed hydrology. Water withdrawal for irrigation has been widely adopted to increase
crop production in arid and semi-arid regions. Water redistribution through irrigation enhances water
and energy fluxes between soils and the atmosphere [76] and results in elevated water loss through
evapotranspiration [77–79] and depletion of water resources [80] in different regions of the world.
April–May is a sowing, seedling, and tillering season in the Yarlung Tsangbo valley [81–83]. In LRB,
with runoff in April and May accounting for 1.7% and 3.5% of the annual total in LRB, respectively
where only 0.6–13.7% of the annual precipitation occurs in April and May, irrigation plays a critical
role in April–May due to a lack of precipitation which is also supported by [81–83]. Further, in the
Yarlung Tsangbo valley catchments, water used for irrigation comes solely from surface water stored by
reservoirs [84]. Sridhar et al. [85] has reported that the dams result in a decreased streamflow feasibly
for irrigation water conveyance. Scenarios with irrigation practices demonstrat higher water losses
through evapotranspiration (ET) and match benchmark data better than the scenario that only consider
reservoir operations [86]. In addition, multiple hydrological processes, such as vertical flow in surface
or subsurface waters, water routing, evaporation, precipitation, and microclimate, are also responsive
to reservoir operations [87]. Thus, for a better model representation of hydrological phenomena of
LRB, it is recommended to carry out scenario based investigations. Also, reservoir operation data
unavailability and discrepancy is a hurdle in the present reservoir operation based study. Regarding
the performance criteria of SWAT modelling (R2, NSE, PBIAS), it is worth noting that these statistical
metrics are calculated based on a limited set of hydrological variables (e.g., streamflow) and cannot
guarantee that other hydrological processes are well represented [88]. Thus, the current study can be
beneficial for decisions regarding the reservoir operation influences on streamflow spatially along the
watershed in other similar settings around the globe.

4.3. Limitations of the Study

For the present study, the major limitation has been data availability and its quality. LRB is
considered a data sensitive area of Qinghai-Tibetan region. The data sharing and recording on
hydrological resources is a major concern in the study area. The study utilized the very short term
available data on reservoir water level and inflow. To assess the real situation of reservoir functioning,
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its influence on the downstream areas and water allocation for multiple uses, long term data availability
needs to be ensured.

The current study has applied built-in SWAT model reservoir module as a first step to assess the
water resource and management phenomena in LRB. Further analyses involving the associated vital
influencing factors on the hydrological process are critically important for a better understanding of
water resource condition in future.

5. Conclusions

The current study has emphasized the influence of establishment of Pangduo reservoir on the
hydrological situation of Lhasa River. The study reveals that the streamflow of LRB, being strongly
dependent on the rainfall, is prone to the Pangduo reservoir functioning and is experiencing a decrease
across the study time span during the high discharge wet warm months both at Pondo and Lhasa
hydrometric stations. However, the magnitude of decrease is found to be more on the discharge
accumulated downstream at Lhasa flow gauge station being more exposed to the effect of reservoir
storage of streamflow. The total discharge recorded at Lhasa station is higher as it is received from the
entire basin. Apart from reservoir functioning, other processes like irrigation practices and ground
water withdrawal may be some very vital factors for water volume reduction in the Lhasa River and
needs to be addressed for further understanding of the hydrological scenario of LRB.

The current modelling presentation shows the expediency of SWAT in determining the hydrological
phenomena of LRB under the reservoir influence at Pondo and Lhasa hydrometric stations and reveals
a better simulation of streamflow at upstream Pondo flow gauge, considering only the reservoir
functioning and not the integral processes of multi-purpose water abstractions for other management
and human activities. The performance of the model is expected to improve by considering the closely
associated hydrological processes affecting the streamflow in LRB. The simulated discharge for Pondo
flow gauge is in fairly close correspondence with the reservoir operation procedures such as water
level and inflow. This concludes that the present study can benefit local authorities for decision making
regarding the water distribution under reservoir influence along various parts of the LRB.
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