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Abstract: The scarcity of high-resolution urban digital elevation model (DEM) datasets, particularly
in certain developing countries, has posed a challenge for many water-related applications such as
flood risk management. A solution to address this is to develop effective approaches to reconstruct
high-resolution DEMs from their low-resolution equivalents that are more widely available. However,
the current high-resolution DEM reconstruction approaches mainly focus on natural topography.
Few attempts have been made for urban topography, which is typically an integration of complex
artificial and natural features. This study proposed a novel multi-scale mapping approach based
on convolutional neural network (CNN) to deal with the complex features of urban topography
and to reconstruct high-resolution urban DEMs. The proposed multi-scale CNN model was firstly
trained using urban DEMs that contained topographic features at different resolutions, and then
used to reconstruct the urban DEM at a specified (high) resolution from a low-resolution equivalent.
A two-level accuracy assessment approach was also designed to evaluate the performance of the
proposed urban DEM reconstruction method, in terms of numerical accuracy and morphological
accuracy. The proposed DEM reconstruction approach was applied to a 121 km2 urbanized
area in London, United Kingdom. Compared with other commonly used methods, the current
CNN-based approach produced superior results, providing a cost-effective innovative method to
acquire high-resolution DEMs in other data-scarce regions.

Keywords: urban DEM; high resolution; deep learning; convolutional neural network; multiple
scales; flood modeling

1. Introduction

Digital elevation models (DEMs) have been widely used in many fields such as landform evolution,
soil erosion modeling, and other geo-simulations [1–4]. In particular, DEMs provide indispensable data
to support water resource management and flood risk assessment [5,6]. In urban flood risk assessment,
the availability of high-resolution urban DEMs is crucial for the accurate representation of complex
urban topographic features and is required for a reliable prediction of flood inundation to inform risk
calculation [7,8].
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The common ways of acquiring high-resolution urban DEMs include ground surveying and remote
sensing through light detection and ranging (LiDAR) [9,10]. For LiDAR data in particular, many data
filtering and fusion methods for improving data quality have been developed to support urban flood
modelling to achieve better performance [11–15]. However, these LiDAR data processing methods are
usually applied on high-resolution topographic datasets, and cannot create high-resolution DEMs from
low-resolution data. Meanwhile, these data acquisition approaches are usually labor-intensive
and financially expensive, hindering their wider application across a large domain. As such,
high-resolution urban DEMs are not always available, especially for cities in developing countries.
This essentially imposes a barrier for many applications including the development of effective urban
flood risk management strategies that are necessary to be informed by high-resolution flood modelling
results. Hence, it is necessary to develop alternative and more cost-effective approaches to construct
high-resolution urban DEMs to support a wide range of applications.

Although high-resolution urban DEMs are not always available, low-resolution DEMs, on the
other hand, are relatively easy to access. For example, there are a range of open-access global
or regional DEMs, including Shuttle Radar Topography Mission (SRTM), ALOS World 3D, and
pan-Arctic DEM [16]. Many relevant studies, such as CoastalDEM, show that these datasets provide
important resources for water engineering applications including region-scale flood modelling and
risk analysis [17,18]. However, the resolution of these open datasets is not sufficient to depict urban
topographic features, including buildings and street networks, to support high-resolution flood
modelling. Thus, it is desirable to develop effective techniques to enhance the quality of low-resolution
DEMs to subsequently obtain high-resolution urban DEMs. Most of the existing high-resolution DEM
reconstruction methods are developed for natural terrains, which may be generally classified into three
categories: DEM interpolation, DEM enhancement, and learning-based DEM reconstruction.

The DEM interpolation methods, commonly including inverse distance weighting (IDW), bilinear
interpolation (BI), cubic convolution (CC), and kriging interpolation (KI), are generally implemented
according to spatial autocorrelation, that is, the correlation of the ground elevations between two
points is inverse to the distance between them (also known as Tobler’s first law of geography) [19–23].
These methods have been widely applied to generate high-resolution DEMs, but they commonly
smoothen the fine topographic details (i.e., high frequency details) and lead to blurry information in
the output products. To relax the limitation of these DEM interpolation methods, DEM enhancement
methods are developed to restore the lost topographic features via introducing extra information to
enhance the quality of low-resolution DEMs. The extra information may be derived from additional
elevation points, contours, land-use maps, and flood extents [24–28], among others. DEM enhancement
methods may improve the resolution and accuracy of DEMs by fusing multiple DEMs and datasets
of different resolutions and from various sources. Nevertheless, the required extra-high-accuracy
topographic information for the implementation of this type of method is still hard to acquire, especially
for a large extent. The learning-based approaches generate high-resolution DEMs by establishing the
correlation between low- and high-resolution DEMs through a training process [29–33]. Learning-based
models can be trained to learn from multi-dimensional information, which may potentially produce
high-resolution DEMs of better quality. However, less research has been done in this direction, and
the existing learning-based models are relatively simple and not suitable for application in complex
urban environments.
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Most of the existing DEM reconstruction methods are developed and applied in natural terrains.
Reconstruction of urban high-resolution DEMs faces extra challenges, and direct application of
the existing methods in the complex urban environments is questionable and may not be feasible.
Due to human interventions, urban topography is typically an intricate synthesis of natural and
artificial features (e.g., roads, buildings, and different types of vegetation covers). For flood modelling,
these key urban structures/features commonly define flood pathways and predominantly control the
underlying hydrological and inundation processes, and must be accurately represented in urban DEMs
to produce reliable simulation results [34–36]. Basically, the resolution of the topographic data must
be consistent with the scale of the involved processes to ensure they can be reliably modelled and
correctly interpreted [37]. Therefore, there is a strong research and practical need to develop new
approaches to support multi-scale DEM reconstruction and efficiently reconstruct urban DEMs at a
specified higher resolution from a low-resolution equivalent to support more accurate urban flood
modeling and other applications.

Although cities are widely covered by artificial topographic features of different types and
scales, they are planned and built according to specific regulations and codes. In other words, urban
topography commonly presents a high level of self-similar structures or features, especially for cities
in the same region. This is particularly suitable for the application of learning-based approaches.
For example, convolutional neural network (CNN) [38,39] is a deep learning technique designed to
automatically and adaptively learn the spatial hierarchies of image features and has been successfully
applied in image recognition and many other fields, such as machine translation and autonomous
driving [40–42]. An urban gridded DEM can be effectively regarded as an image. Using localized urban
DEMs of different resolutions, a CNN model may be trained to recognize the patterns of topographic
features varying from high to low resolutions or vice versa, and subsequently used to reconstruct
high-resolution DEMs from the low-resolution data across a large area. Although it is challenging
and expensive to create high-resolution DEMs across a large area covering an entire city, it is more
feasible to acquire high-resolution DEMs in localized (small) areas using a range of survey techniques,
such as an unmanned aerial vehicle (UAV). This paper presents an innovative multi-scale approach
using a deep-learning CNN model to reconstruct high-resolution urban DEMs from a low-resolution
dataset. To our best knowledge, this is the first attempt to construct a CNN-based multi-scale mapping
framework for efficiently enhancing the resolution of urban DEMs, which may contribute to resolving
the issue of data-scarcity for urban flood modelling and water engineering applications.

The rest of this paper is arranged as follows: Section 2 introduces the proposed multi-scale
mapping approach for urban DEM reconstruction, followed by the introduction of a two-level accuracy
assessment framework in Section 3; Section 4 describes the experiments undertaken to validate the
proposed high-resolution urban DEM reconstruction approach; further discussion is given in Section 5;
and finally several remarks are summarized in Section 6.

2. A CNN-Based Multi-Scale Mapping Approach

A multi-scale mapping approach based on CNN (MSM-CNN) was developed in this work
to reconstruct high-resolution urban DEMs from a low-resolution dataset, which is illustrated in
Figures 1 and 2. Herein, the low-resolution DEM is denoted as X, and the corresponding datasets at
higher resolutions are denoted as Y2, Y4, . . . , Y2n

, where the superscript 2n indicates that these DEMs
are at 2n times higher resolution than the low-resolution DEM X, and n is a positive integer. The goal
here was to reconstruct an urban DEM F2n

(X) at a higher resolution from the low-resolution DEM X to
ensure that F2n

(X) was as close to the ground truth dataset Y2n
as possible, which was achieved by

training a CNN to learn mapping F.
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respectively; Conv and TransConv denote the convolutional and transposed convolution layers; the 
expression 2x Conv or 2x IDB represents two convolutional layers or two IDBs; and the size of 
convolutional or transposed convolution layers is in the format of width by height by number of filters 
(also referred as neurons or kernels), e.g., 3 × 3 × 64. 
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number of parts into which the feature maps are split, and ⊗ is the concatenation operator. 

2.1. Network Architecture 

The detailed network architecture is shown in Figure 1, which consists of several subnetworks. 
Each of these subnetworks performs a 2-time reconstruction to its input urban DEM. According to 
the existing state-of-the-art results, a network with skip connections bypassing certain intermediate 
layers may lead to better performance [43–45]. Therefore, we introduced skip connections between 
the input and output of each of the subnetworks. Specifically, the input urban DEM of each 
subnetwork is interpolated to become two times its original resolution using a nearest neighbor (NN) 
method, and the interpolated data are then directly summed to the output of the feature-learning 
network. NN here was chosen due to its computational efficiency compared to other interpolation 
methods. The skip connections encourage the feature-learning networks to effectively learn and 
predict the missing topographic details from the low-resolution datasets to generate high-resolution 
datasets. Because each subnetwork only performs a 2-time reconstruction, the proposed architecture 
can effectively train a single network to construct urban DEMs at different higher resolutions. 

In the proposed architecture, the feature-learning network is a key component in each of the 
subnetworks. Each feature-learning network starts with two convolutional layers with the kernel size 
specified as in Figure 1. The effect of the two convolutional layers is to extract initial features for 
further feature learning. The first two convolutional layers in the feature-learning network are 
followed by two information distillation blocks (IDBs) [46] to learn more powerful deep features for 
urban DEM reconstruction. The architecture of IDB is presented in Figure 2. The IDB starts with a 
stack of six convolutional layers, with the filter size specified as in Figure 2. After the first three layers 
in each IDB, the output feature maps are split into two parts. The 1−1/s percent of the feature channels 
are used as the input to the next three layers, whereas the other 1/s percent feature channels is directly 
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Figure 1. A multi-scale gradual network of multi-scale mapping approach based on convolutional
neural network (MSM-CNN), in which IDB denotes the information distillation block as detailed
in Figure 2; the symbols ⊕ and 	 represent the element-wise sum and loss-calculation operators,
respectively; Conv and TransConv denote the convolutional and transposed convolution layers; the
expression 2x Conv or 2x IDB represents two convolutional layers or two IDBs; and the size of
convolutional or transposed convolution layers is in the format of width by height by number of filters
(also referred as neurons or kernels), e.g., 3 × 3 × 64.
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Figure 2. Architecture of information distillation block (IDB) in MSM-CNN, where s stands for the
number of parts into which the feature maps are split, and ⊗ is the concatenation operator.

2.1. Network Architecture

The detailed network architecture is shown in Figure 1, which consists of several subnetworks.
Each of these subnetworks performs a 2-time reconstruction to its input urban DEM. According to
the existing state-of-the-art results, a network with skip connections bypassing certain intermediate
layers may lead to better performance [43–45]. Therefore, we introduced skip connections between the
input and output of each of the subnetworks. Specifically, the input urban DEM of each subnetwork is
interpolated to become two times its original resolution using a nearest neighbor (NN) method, and
the interpolated data are then directly summed to the output of the feature-learning network. NN
here was chosen due to its computational efficiency compared to other interpolation methods. The
skip connections encourage the feature-learning networks to effectively learn and predict the missing
topographic details from the low-resolution datasets to generate high-resolution datasets. Because
each subnetwork only performs a 2-time reconstruction, the proposed architecture can effectively train
a single network to construct urban DEMs at different higher resolutions.

In the proposed architecture, the feature-learning network is a key component in each of the
subnetworks. Each feature-learning network starts with two convolutional layers with the kernel size
specified as in Figure 1. The effect of the two convolutional layers is to extract initial features for further
feature learning. The first two convolutional layers in the feature-learning network are followed by
two information distillation blocks (IDBs) [46] to learn more powerful deep features for urban DEM
reconstruction. The architecture of IDB is presented in Figure 2. The IDB starts with a stack of six
convolutional layers, with the filter size specified as in Figure 2. After the first three layers in each IDB,
the output feature maps are split into two parts. The 1−1/s percent of the feature channels are used as
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the input to the next three layers, whereas the other 1/s percent feature channels is directly concatenated
with the output of the next three layers. Such a structure creates skip connections and combines
features in both shallower and deeper layers. The output of the first six blocks in IDB is passed to a
seventh convolutional layer. This convolutional layer with 1 × 1 filters acts similarly to a bottleneck
layer [47]; its effect is to combine and compress the shallow and deep features’ output by the previous
layers. Herein, although we used IDB as the backbone of the proposed network, other architectures
could potentially also be used to replace IDB for feature learning. This paper focused on developing
an innovative multi-scale network for urban DEM reconstruction rather than seeking the backbone
architecture with the best performance; we selected IDB due to its reported excellent performance in
accuracy and efficiency in computational cost. After the two IDBs, a transposed convolutional layer
was applied to project the output feature maps of a subnetwork to a reconstruction at 2-time resolution
with respect to the input of this subnetwork.

The proposed network uses rectified linear unit (ReLU) activation function, formulated as y = max
(0, x), where x represents the input feature maps and y the output; y is equal to x if x is positive, otherwise
y is 0. ReLU was adopted due to its widely reported effectiveness in the literature [43–45]. Herein, all
of the convolutional layers are followed by a ReLU unless it is specifically mentioned otherwise.

A key advantage of the proposed multiple-scale architecture with respect to a single-scale
architecture is that the multi-scale supervision was introduced to regularize the intermediate features
of an urban DEM, which can faithfully enhance the output of each subnetwork to become as close to
the high-resolution “true” DEM as possible. The adopted multi-scale supervision enables effortless
and effective reconstruction of urban DEMs with enhanced accuracy at any specified higher resolution.
Note that multi-scale design and computing losses at the intermediate network layers to guide the
learning process have been widely used in deep neural network architectures [47–50]. In this paper,
for the first time, we introduced this principle to the topic of urban DEM reconstruction.

2.2. Loss Function

The loss function used to train the network is based on mean absolute error (MAE). Let Yi be the
2i-time reconstruction result and Ri be the corresponding ground truth. The overall loss of network
training denoted by MAEloss is calculated as follows:

MAEloss =
n∑

i=1

 1
C

C∑
j=1

∣∣∣Ri, j −Yi, j
∣∣∣ (1)

where Ri,j and Yi,j are the element in Ri and Yi, respectively; C is the cell number; and n is the number
of higher resolution datasets in the multi-scale gradual network.

Theoretically, a weighted sum could achieve better balance among the losses at different
reconstructed resolutions. However, preliminary experiments reveal that the sum loss with equal
weights is sufficient to achieve a good performance. We also compared the other metrics (e.g., mean
squared error, structure similarity index, and peak signal-to-noise ratio) with MAE. MAE is not
sensitive towards outliers and encourages less blurry surfaces, which is beneficial to reconstruct the
spatial relationship between different artificial objects (e.g., roads and buildings) in urban terrains from
the low-resolution data.

2.3. Network Training and Validation

We trained all the layers in the proposed network from scratch on the basis of the standard
backpropagation with Adam optimizer [51] over a Caffe deep learning framework. The weights for
convolutional layers were initialized using the method reported in [52]. The weight decay was set
to 0.0001, and the learning rate was set to 0.0001 initially and reduced by a factor of 10 after 250
thousand iterations.
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Prior to training the model, we prepared the training data by sampling it from the three selected
training areas (see Section 4.1). Each of these sampled scenes had a spatial dimension of 500 by
500 cells and overlapped with neighboring scenes in both horizontal and vertical directions by 250 cells.
The total number of sampled scenes available to train the model was 4107. A batch of 64 scenes was
randomly selected from the sampled scenes that were from same training area, and then a patch from
each scene was randomly cropped. These patches were then concatenated to form the batch of training
data (i.e., we trained the model with a batch size of 64) during each forward–backward pass of the
network. The size of a patch was chosen to meet the computational capacity, which depended on the
number of scales in the network.

Upon successful completion of the training process, the first step was to examine whether the
proposed method worked satisfactorily for scenes that had morphological characteristics similar to the
training datasets. Therefore, a set of 456 scenes (not used during the training process) from the same
three training areas was used to validate the model. However, investigating the generalization ability
and transferability of the trained model in reconstructing high-resolution urban DEMs using spatially
separated low-resolution data was more challenging. The effectiveness of the presented method over
the test area is further analyzed in Section 4.

3. Two-Level Accuracy Assessment

To evaluate the performance of the proposed urban DEM reconstruction method, a two-level
assessment approach was designed to quantify the numerical accuracy and morphological accuracy of
the resulting products. Herein, the numerical accuracy is a quantification of elevation error at the cell
locations, whereas the morphological accuracy is a region-scale quantification of morphology variance
between the reconstructed urban DEM and ground truth.

3.1. Numerical Accuracy

Numerical accuracy was assessed by quantifying the difference of pointwise elevation between
the reconstructed and “true” urban DEMs. Three metrics—MAE, root mean square error (RMSE), and
standard deviation (STD)—were employed to quantify the numerical accuracy, which have been used
as the standard statistical metrics for DEM vertical accuracy assessment [17,53]. The related equations
to define RMSE and STD are given as follows:

RMSE =

√√
1
c

c∑
i=1

(xi − yi)
2 (2)

STD =

√√
1
c

c∑
i=1

[(xi − yi) − (x− y)] (3)

where c is the total count of valid grid cells, x denotes the ground elevations given by the reconstructed
urban DEM, and y refers to the reference values.

3.2. Morphological Accuracy

A DEM not only represents the ground elevation at each of its cells, but also reveals the structure
of the topography. As the skeleton of topography, topographic structure decides the spatial pattern of
geomorphology [54]. Hence, the accuracy in representing the topographic structure is an essential
indicator for DEM quality assessment. In the case of urban topography for application in flood or
hydrological modelling, the topographic structure may be mainly reflected by the road networks and
building clusters that have a significant impact on surface runoff and flow processes. Accordingly, the
morphological accuracy, that is, the assessment of topographic feature difference, can be quantified by
measuring the variances of the road profiles and building boundaries derived from the reconstructed
urban DEM and the reference data.
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The road-profile variance is measured through the following steps: (1) add vertices along each
road centerline stepped by the cell size of the reconstructed urban DEM; (2) generate the road
profiles respectively from the reconstructed and reference data; and (3) apply the Pearson’s correlation
coefficient (PCC) to quantify the variance between two profiles for each of the roads in the study
area, and use the average and STD of PCCs to define the difference. Herein, the first two steps are
implemented on the ArcGIS platform, and the last step is done using the Excel. The PCC is calculated
as follows:

PCC =

m∑
i=1

(xi − x)(yi − y)√
m∑

i=1
(xi − x)2

√
m∑

i=1
(yi − y)2

(4)

where m represents the number of the profile vertices, and x and y are the values corresponding to the
reconstructed and reference profiles being compared.

On the ArcGIS platform, the variance of the building boundaries can be measured through
three steps:

Step 1 is to consider the reference data by (1) preprocessing building polygons via merging the
adjacent polygons and deleting those small and discrete patches according to an area threshold of
20 m2, (2) obtaining the reference boundary line of each building patch and converting all lines to a
raster aligned with the reference data, and (3) counting the boundary cells as the reference truth.

Step 2 is to extract building boundaries from the reconstructed urban DEM by (1) enhancing edge
features (e.g., the boundary where a building meets a road) by a high-pass filter, (2) screening the
candidates of boundary cells via an edge threshold of 1, and (3) obtaining the boundary cells using a
thinning tool.

Step 3 is to quantify the variance by (1) selecting the boundary cells from step 2 according to the
location of the reference boundary lines with no buffer, and buffers of 1, 2, and 3 times of the cell size of
the reference data, respectively, and (2) calculating the ratio between the number of selected cells and
that of the reference truth from step 1 successively. Finally, these four ratios are used to quantify the
building-boundary variance.

4. Experiments and Results

In order to validate the performance of the proposed MSM-CNN method, a series of simulation
experiments were undertaken. In the experiments, the MSM-CNN model was trained and applied to
reconstruct high-resolution urban DEMs in the case study area. The experiments were performed on a
single GPU (i.e., graphics processing unit) server with Nvidia K80 GPUs.

The produced outputs were compared with the results from several other popular interpolation
or resample methods, including IDW, BI, CC, and KI. Herein, the ordinary KI was chosen due to its
better accuracy among other types of KI for the study area. The experimental setup is illustrated in
the flowchart shown in Figure 3. In the experiments, the urban DEMs at low resolutions of 2, 4, and
8 m were used to reconstruct high-resolution urban DEMs of 0.5 m to evaluate the performance of
the multi-scale gradual network. It should be pointed out that, due to the lack of real datasets of 2, 4,
and 8 m in the same period, we generated the three datasets by resampling 0.5 m data to ensure the
consistency of evaluation benchmark. Herein, in the reconstructing phase, the test dataset was divided
into scenes with a size of 250 by 250 cells (including an overlap of 125 cells with their neighbors), and
finally, each scene was constructed individually and combined together to obtain the reconstructed
urban DEM.
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4.1. Study Area and Data

As one of the largest cities in the world, London, United Kingdom, is highly urbanized, with
a population of 8 million, and was selected as the study area in this work. We firstly trained the
MSM-CNN model using three small areas in the city. The three chosen training areas with significant
different topographical features are located in the suburban, urban and rural regions, respectively.
Each training site covered a 5 by 5 km area. After being trained, the MSM-CNN model was applied
to reconstruct high-resolution DEMs in another larger area of 121 km2, which is an urbanized area
with mixed topographic features. The rationale to perform training and testing in different areas was
that, although the overall urban designs could vary in different areas, the local features such as lines,
edges, and blocks are similar across different natural and manmade structures; because a CNN focuses
on local features, it could be used to reconstruct the urban structures in an area that is unseen in the
training data. In this reconstructed area, eight samples of 1 by 1 km blocks were selected to facilitate
morphological accuracy assessment. Figure 4 shows the locations of the training, reconstruction, and
sample areas in the City of London.

In this work, a 0.5 m LiDAR DSM was used as the baseline high-resolution urban DEM, which
is published by the Environment Agency, United Kingdom (https://environment.data.gov.uk/ds/
survey/index.jsp#/survey). This dataset was employed for training the MSM-CNN model, and was
used as the reference truth for assessing the reconstruction accuracy. The low-resolution DEMs for
training and testing the MSM-CNN model were obtained from this 0.5 m DEM by resampling it to 2, 4,
and 8 m resolutions using NN down-sampling (Figure 5). We selected NN instead of other alternative
approaches such as BI or CC because this paper focused on urban DEM, which includes a large amount
of abrupt elevation changes (e.g., a road with high buildings at both sides). For these specific types
of data, methods such as BI and CC could be less suitable compared to NN, as they introduce “fake”
elevation for the areas with abrupt features. Other relevant datasets of land cover, road centerline, and
building were downloaded from Digimap (https://digimap.edina.ac.uk) for use in the current study.
All of the above geospatial data were in the same coordinate reference system. It should be noted that
if the coordinate reference systems of the essential data for MSM-CNN are different, geo-referencing
(also known as image alignment) must be performed first.

https://environment.data.gov.uk/ds/
https://digimap.edina.ac.uk
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4.2. Visual Assessment

The 0.5 m urban DEMs reconstructed using different methods were plotted together with the
low-resolution counterparts of 8, 4, and 2 m in Figure 6. Naturally, the detailed features of urban
topography were gradually lost as the resolution of the DEMs reduced from 0.5 to 2, 4, and 8 m
(Figure 6a,e,i). The topographic structures related to road networks and building groups became blurry
when the DEM resolution decreased. On the 8 m DEM, the roads and buildings became hard to identify.
As depicted in Figure 6c,d,g,h,k,l, the BI, KI, CC, and IDW interpolation methods provided a certain
level of enhancement in the topographic details. However, the level of enhancement was generally
very limited, and in particular, it was not possible to restore most of the topographic structures from
the lowest resolution (8 m) urban DEM. Moreover, hillock-like features were created in the three sets
of the IDW reconstruction results, which did not conform to the morphological cognition of urban
topography. It may be concluded that IDW is not applicable to urban topography, and IDW was
therefore not chosen to support further accuracy assessment.

Water 2020, 12, x FOR PEER REVIEW 10 of 22 

 

(Figure 6a,e,i). The topographic structures related to road networks and building groups became 
blurry when the DEM resolution decreased. On the 8 m DEM, the roads and buildings became hard 
to identify. As depicted in Figure 6c,d,g,h,k,l, the BI, KI, CC, and IDW interpolation methods 
provided a certain level of enhancement in the topographic details. However, the level of 
enhancement was generally very limited, and in particular, it was not possible to restore most of the 
topographic structures from the lowest resolution (8 m) urban DEM. Moreover, hillock-like features 
were created in the three sets of the IDW reconstruction results, which did not conform to the 
morphological cognition of urban topography. It may be concluded that IDW is not applicable to 
urban topography, and IDW was therefore not chosen to support further accuracy assessment. 

 
Figure 6. Reconstructed results in the study area (zoom-in): (a,e,i) the low-resolution urban DEMs of 
8, 4, and 2 m; (b,f,j) the results reconstructed by MSM-CNN using the respective low-resolution DEMs 
at the same row; (c,g,k) from bilinear interpolation (BI; the left part) and kriging interpolation (KI; the 
right part); (d,h,l) results from inverse distance weighting (IDW; the upper-left part) and cubic 
convolution (CC; the upper-right part), and the reference urban DEM at 0.5 m (the bottom part). The 
highlight line in (j) is the road centerline for comparing reconstructed road profiles later. 

The MSM-CNN evidently achieved better results for the reconstructions from all of the three 
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Figure 6. Reconstructed results in the study area (zoom-in): (a,e,i) the low-resolution urban DEMs of 8,
4, and 2 m; (b,f,j) the results reconstructed by MSM-CNN using the respective low-resolution DEMs at
the same row; (c,g,k) from bilinear interpolation (BI; the left part) and kriging interpolation (KI; the right
part); (d,h,l) results from inverse distance weighting (IDW; the upper-left part) and cubic convolution
(CC; the upper-right part), and the reference urban DEM at 0.5 m (the bottom part). The highlight line
in (j) is the road centerline for comparing reconstructed road profiles later.

The MSM-CNN evidently achieved better results for the reconstructions from all of the three
low-resolution urban DEMs (Figure 6b,f,j). In the whole area, the topographic structure was restored
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remarkably well, especially for the result reconstructed from the low-resolution DEM of 8 m, which
showed good fidelity to the actual terrain. The MSM-CNN reconstructed DEM well represented both the
continuous and abrupt features. Locally, the buildings and roads were clearly reconstructed, with their
boundaries consistent with the reference terrain. As expected, the restored level of topographic details
greatly depended on the input low-resolution urban DEMs, and more details were shown in the DEMs
reconstructed from input datasets of higher resolutions. The results indicated that MSM-CNN can
effectively achieve the multi-scale reconstruction to enhance the quality of low-resolution urban DEMs.

4.3. Numerical Accuracy

4.3.1. Overall Accuracy Analysis

Taking the original 0.5 m urban DEM as a reference, the results of numerical accuracy assessment
of different reconstruction methods are listed in Table 1. From the 2 m low-resolution urban DEM,
the 0.5 m product reconstructed by MSM-CNN was the most accurate, confirmed by the lowest MAE
(0.194 m) and RMSE (0.918 m); meanwhile, the least accurate reconstruction result was obtained by CC,
which had the highest MAE (0.234 m) and RMSE (1.028 m). The products reconstructed by BI and KI
had the same MAE (0.234 m) but slightly different RMSEs of 1.012 and 1.019 m, respectively. From the
lower-resolution DEM of 4 m, the best reconstruction result was still obtained by MSM-CNN, having
MAE of 0.316 m and RMSE of 1.295 m. For the results reconstructed from the lowest-resolution dataset
of 8 m, the MAE of the MSM-CNN reconstruction was slightly inferior to that of BI, but better than
that of CC and KI; MSM-CNN also returned similar, but with slightly higher RMSE than BI and CC,
and slightly lower value than KI.

Table 1. Accuracy statistics in the whole reconstructing area.

Low-Resolution Urban DEM Method MAE (m) RMSE (m) STD (m)

2 m

MSM-CNN 0.194 0.918 0.917
BI 0.234 1.012 1.012
CC 0.234 1.028 1.028
KI 0.234 1.019 1.019

4 m

MSM-CNN 0.316 1.295 1.290
BI 0.328 1.325 1.325
CC 0.332 1.357 1.357
KI 0.329 1.334 1.334

8 m

MSM-CNN 0.442 1.862 1.849
BI 0.434 1.779 1.779
CC 0.452 1.840 1.840
KI 0.467 1.870 1.870

Overall, the numerical accuracy of the MSM-CNN reconstructions was mostly higher than
that achieved by other interpolation methods. Meanwhile, it was noted that the variances of the
numerical accuracy between MSM-CNN and other interpolation methods were not significant, which
appeared to contrast with the visual comparison of the reconstruction results presented in Figure 5.
The reason may be that the local elevation variation of urban topography in the reconstructing area was
relatively small, and the overall statistics may not have efficiently reflected the small differences. It was
therefore necessary to further investigate the performance of the MSM-CNN model by considering the
morphological accuracy as well as conducting numerical accuracy assessment in groups, such as slope
ranges and land covers.

4.3.2. Vertical Accuracy based on Slope Classification

We further investigated the vertical accuracy of the reconstruction methods by considering slope
classification. The topographic features were divided into 10 ranges according to the ground surface
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slopes, and then MAE and RMSE were respectively calculated for each of these ranges (Figure 7).
Table 2 lists the average MAEs and RMSEs for all of the 10 slope ranges. Herein, the slope data were
derived from the original 0.5 m urban DEM. From Figure 7a–c, a general increasing trend can be
observed for both MAEs and RMSEs calculated for the different reconstruction results as the slope
gradually increased. This indicated that the urban terrain relief as indicated by the slope factor had an
obvious influence on the vertical accuracy of DEM reconstruction. As shown in Table 2, among all
four approaches, MSM-CNN returned the highest accuracy confirmed by low RMSE and MAE for the
reconstructions from all of the adopted low-resolution DEMs. The superior accuracy was maintained
across all slope ranges until the slope was ≥ 100%, which covered 76% of the whole reconstruction area.
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Table 2. Average MAEs and RMSEs calculated for different slope ranges.

Low-Resolution Urban DEM Method Mean of MAE (m) Mean of RMSE (m)

2 m

MSM-CNN 0.179 0.441
BI 0.279 0.620
CC 0.278 0.619
KI 0.288 0.732

4 m

MSM-CNN 0.336 0.813
BI 0.532 1.113
CC 0.524 1.094
KI 0.535 1.099

8 m

MSM-CNN 0.622 1.576
BI 0.964 1.895
CC 0.926 1.879
KI 0.990 1.938
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As the slope of the topography increased to ≥ 100%, both MAE and RMSE of the MSM-CNN
reconstruction results were slightly higher than those of the other three methods when the reconstruction
was conducted for the low-resolution DEM of 8 m. The MAEs of the BI, CC, and KI reconstruction
results from the 8 m dataset started to decrease as the slope went beyond 100%, whereas the their
RMSEs continued to increase. In cities, the areas with the slope ≥ 100% are mostly featured with abrupt
change of terrain. Therefore, the reasons for the two aforementioned abnormalities may have been
because the 8 m low-resolution urban DEM had smoothened out those sharp-fronted topographic
features in this area, leading to the disappearance of the abrupt urban topography. As such, the
MSM-CNN model may have exaggerated the reconstruction error by maximizing the restoration of the
abrupt characteristic. For BI, CC, and KI, they essentially smoothened the abrupt terrain during the
reconstruction without recreating abrupt change of the topography. Because the area featured with
this highest slope range of ≥ 100% took up 24% of the total area, the influence on the reconstruction
results was evident. The findings may also explain the overall accuracy assessment result in Table 1,
where the MSM-CNN reconstruction result from the 8 m DEM was slightly less accurate than those
obtained using other interpolation methods.

4.3.3. Vertical Accuracy based on Land Cover Classification

For urban topography, terrain change is closely related to land cover types. Therefore, the vertical
accuracy of the reconstructed DEMs from different approaches was also analyzed for various types of
land covers. Herein, the urban land covers were divided into five types for analysis, including roads
(RD), buildings (BG), natural environments (NT), multi-surfaces (ME), and others (OR). NT included
those areas representing geographic extents of natural environments and terrains. ME comprised all of
the artificial surfaces that are mainly around buildings, such as yards and plazas. Except for the first
four types, the rest were classified as OR. Figure 8 illustrates the distribution of different land covers in
a sample area within the case study site.
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Figure 9 shows the statistics of MAE and RMSE across different land covers for each of the
reconstructed DEMs. For all of the land cover types, MSM-CNN returns smaller MAEs than all other
alternative approaches for all of the reconstruction experiments. However, for NT, the MSM-CNN
products reconstructed from the 4 and 8 DEMs only gave slightly higher RMSE than the results produced
by BI. This again demonstrated that MSM-CNN is well applicable to both natural and artificial terrain
in urbanized cities, whereas the interpolation methods were more suitable for application to natural
terrain, and did not produce favorable results for urban topography. It is interesting to note that
for land cover types of RD and BG, the MAEs of the MSM-CNN DEMs reconstructed from all three
low-resolution DEMs were much smaller than other reconstruction results. Obviously, these were the
two major land cover types in the urbanized areas and covered approximately 40% of the total area
in the current study site. The performance analysis results effectively demonstrated that the current
MSM-CNN approach offered better capability in restoring urban topographic structures with a high
fidelity. In addition, the errors calculated for ME were relatively high for all reconstruction results,
although the corresponding topography inherently had a low relief. A possible reason may have
been that vegetation was not removed from the original 0.5 m urban DEM created from LiDAR data.
Vegetation cover may have significantly affected the reconstruction accuracy because its elevation
changed disorderly and behaved like random noise, which is difficult to be reliably reconstructed from
low-resolution DEMs.
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4.4. Morphological Accuracy

4.4.1. Accuracy Assessment Based on Road Profiles

Figure 10 illustrates the centerline profiles of a road extracted from different reconstructed DEMs.
The location of the selected road section is shown in Figure 6j. Obviously, the detailed features
of urban topography were gradually lost as the resolution of DEMs reduced from 0.5 to 2, 4, and
8 m (Figure 6a,e,i), leading to blurry topographic structures related to road networks and buildings.
Comparing the results obtained using different reconstruction methods, the MSM-CNN road profiles
reconstructed from all three lower-resolution urban DEMs showed great agreement with the reference
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profiles extracted from the original 0.5 m dataset. On the contrary, the road profiles generated by
BI, CC, and KI showed spurious oscillations that were inconsistent with the morphology of urban
roads. In particular, for the reconstructed results from the lower-resolution 4 or 8 m urban DEMs, the
oscillations in the BI, CC, and KI products were so strong that the centerline profiles were no longer
recognizeable as a road. The potential reason for these results may have been that the BI, CC, and
KI interpolation methods were implemented according to the spatial correlations between neighbors,
whereas MSM-CNN was performed by the learned multi-dimensional patterns of topographic features
varying from the high to low resolutions. When the DEM resolution decreased, the cell location
where the prediction was being made had weaker or no clear spatial correlation with its neighbors.
As such, the three CC or KI road profiles unexpectedly showed many deep ditches, which were again
inconsistent with normal urban road morphology. The results confirmed the superior capability of the
proposed MSM-CNN model in reliably reproducing urban morphology.
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On the basis of the previous accuracy assessment results, BI produced better reconstruction results
than the other two interpolation methods. Therefore, the following analysis was focused on comparing
the morphological accuracy between the MSM-CNN and BI reconstruction results. Table 3 summarizes
the statistics of the road-profile variance to quantify the morphological accuracy of the results. For the
4-time reconstructions (i.e., the 0.5 urban DEMs reconstructed from the 2 m equivalent), MSM-CNN
clearly gave a better result than BI. According to the PCCs calculated for the reconstructed road profiles,
51% of the MSM-CNN reconstructed profiles had a PCC greater than 0.95, whereas only 38% of the BI
reconstructed profiles reached the same level. For the MSM-CNN and BI reconstructions from the 4 m
urban DEM, the difference in the morphological accuracy was significantly increased, as indicated
by the average PCC of 0.79 for the MSM-CNN profiles and 0.66 for the BI profiles. Although 51% of
the MSM-CNN reconstructed road profiles had the PCC greater than 0.9, only 29% of the BI profiles
were able to reach this level. For 16-time reconstruction, that is, reconstructing the urban DEMs from
8 m coarse resolution to 0.5 m fine resolution, the improved morphological accuracy achieved by
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MSM-CNN became even more prominent, and an improvement of 42% was achieved when compared
with BI. The results demonstrated that the advantage of MSM-CNN in improving the morphological
accuracy as represented by road-profile variance became more distinct as the resolution of the input
urban DEM became coarser. In summary, the MSM-CNN reconstruction could substantially enhance
the quality of low-resolution urban DEMs through improving morphological accuracy.

Table 3. Morphological accuracy statistics of road-profile variance.

Low-Resolution Urban DEM Method Mean of PCC STD of PCC

2 m
MSM-CNN 0.89 0.15

BI 0.83 0.20

4 m
MSM-CNN 0.79 0.24

BI 0.66 0.30

8 m
MSM-CNN 0.68 0.33

BI 0.48 0.36

4.4.2. Accuracy Evaluation Based on Building Boundary Reconstruction

Using the extraction method described in Section 3.2, building boundaries were delineated from
the MSM-CNN and BI reconstructed DEMs for comparison, as shown in Figure 11, in which the
reference boundary data are also presented in the vector format. As shown in Figure 11a for the
16-time reconstructions, the overall shapes of the boundaries were reasonably well reproduced by
MSM-CNN, although certain fine-level details were smoothened out, which was as expected. However,
almost no building boundary could be detected from the BI reconstructions. Figure 11b illustrates the
reconstructions from the 4 m DEM. MSM-CNN representation of building boundaries was further
improved and building corners could be clearly recognized. However, BI still failed to reconstruct
the overall shape of the building boundaries. As exhibited in Figure 11c, the building boundaries in
the MSM-CNN product reconstructed from the 2 m urban DEM were continuous and close to the
reference, whereas the building boundaries produced by BI were typically segmented and did not
align well with the reference. Evidently, MSM-CNN outperformed BI in restoring detailed features of
urban topography and was more suitable for urban applications.
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zones with widths of 1, 2, and 3 times the reconstructed cell size around the reference boundary lines.

To quantify the morphological accuracy of building boundary reconstruction, the percentage of
correctly restored boundary cells was calculated and plotted in Figure 12. Overall, compared with
BI, MSM-CNN presented clear superiority, especially for the reconstructions from lower-resolution
DEMs. As expected, regardless the method being used, the morphological accuracy was calculated
to be the highest for the 4-time reconstructions for each of the buffer ranges, followed by 8-time and
16-time reconstructions. The accuracy evaluated for the 4-time and 16-time MSM-CNN reconstructions
only differed by an average of 2.5 times for the four buffer ranges. However, the accuracy difference
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unexpectedly reached 16.2 times for the corresponding BI reconstructions. When the buffer distance
was chosen as three cells (approximately 2 m where the cell size was 0.5 m), the percentage of correctly
restored boundary cells returned by MSM-CNN was 70.23% for the 4-time reconstruction, and 34.52%
for 16-time reconstruction where the resolution of the input DEM (8 m) was nearly four times larger
than the buffer distance. For BI, only 42.73% of the boundary cells were correctly restored by the
4-time reconstruction; for 16-time, the figure substantially dropped to only 2.91%. This effectively
demonstrates that MSM-CNN consistently outperformed BI in restoring building details.
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5. Discussion

5.1. Factors Influencing the Performance of DEM Reconstruction

5.1.1. Training Data

In the current selected case study area, the spatial topographic patterns of the reconstructed area
resembled those of the test blocks. However, this might not be the case if the spatial heterogeneity
of the test area is increased, and thus the training areas and data should be chosen with care. It has
been widely recognized that the quality of training data has a major influence on the performance of a
deep learning model [38,55]. For MSM-CNN, the reconstruction accuracy is potentially influenced by
three factors: (1) typicality, (2) coverage, and (3) scale of the training data. Typicality requires that the
training data should represent the typical features of urban topography to be reconstructed. Ideally,
the training data should cover typical sample areas of the reconstructing site. In other words, it might
be possible to increase the generalization capacity of the model by enriching the training database
through diversifying the samples (e.g., adding more scenes from different cities). To rapidly acquire
high-accuracy topographic data in these small and typical areas, the UAV photogrammetry is now
entirely competent [56–58]. In theory, the larger area the training dataset covers, the more features
of the urban topography can be learned. Nevertheless, the use of larger coverage of training data
inevitably increases the cost in obtaining the sample datasets to train the learning model. Therefore,
it is necessary to find a balance between the reconstruction accuracy and the coverage of training
datasets. Alternatively, the model can be improved by leveraging a transfer learning method. In this
approach, one can retrain a pre-trained model and only use new samples for which the model has not
been trained before. This eliminates the need for developing and training a new model from scratch
for regions with different topographical features.

For the implementation of the proposed multi-scale reconstruction approach, this work applied NN
down-sampling to produce the low-resolution urban DEMs. Although the NN-based down-sampled
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data can validate the current MSM-CNN, the effect of different down-sampling methods should be
further investigated, and it would be better to collect and use real low-resolution datasets if available.
Meanwhile, the range between the lower and upper resolutions for training was also better to cover
the target range for high-resolution reconstruction.

5.1.2. Enhancement with Additional Terrain Information

On the basis of the quantitative assessment approaches designed and used in this work, it was
indicated that the reconstruction accuracy varied with the land covers, slope ranges, and details of
artificial buildings. This implies that the features of urban DEMs may be better learned by including
additional terrain information to improve reconstruction quality. For example, land covers provide
dominant features of urban topography. Land cover types may be considered in the learning process
by distinguishing different types of topographic features, such as buildings, roads, water surfaces,
and natural environments (i.e., natural terrains with relatively high relief). With the advanced image
classification techniques, the high-resolution remote-sensing imagery is fully capable of mapping the
above-mentioned land covers. Terrain attributes, such as slope, curvature, or roughness, define the
multi-dimensional features of urban topography and may be also considered to improve the proposed
deep learning process. These attributes can be straightforwardly derived from the corresponding
urban DEMs; once the multi-layer attributes are classified, the weight of each layer may also be
considered to facilitate a better learning process. Semantic knowledge is another source of information
that may be considered. Herein, topographic semanteme refers to the rules of urban constructions, for
example, the transversal and longitudinal gradients of roads. The semantic knowledge may be utilized
to refine the urban topography. Overall, the present MSM-CNN model can be further improved to
accommodate more topographic information to further enhance its performance, which deserves
attention in future research.

5.2. Accuracy Assessment of Urban DEMs

In regard to urban DEMs, vertical accuracy assessment is a critical step to ensure their quality
and support their further applications. The experimental results effectively demonstrate that accuracy
assessment of urban DEMs must consider both the numerical and morphological accuracy. Herein,
we propose the concept of morphological accuracy and present two basic indicators. It is worthy to
strengthen the morphological indicators according to the morphological characteristics of different
terrain objects and their spatial relationships. Moreover, approaches to combine the indicators of the
numerical and morphological accuracy for integrated assessment should be further explored, such as
using weighted sum. When developing integrated assessment methods, it is worth considering that
these indicators probably have different dimensions and orders of magnitude.

5.3. Application of MSM-CNN in Water Science and Engineering Fields

The aim of developing the proposed MSM-CNN is to provide a feasible approach to reconstruct
high-resolution urban DEMs. The experimental results demonstrate that MSM-CNN provides a
powerful tool to reconstruct the topographic structures formed by road networks and building clusters
from the low-resolution DEMs. Sufficient representation of these urban topographic structures are
crucial for depicting urban hydrological processes, such as predicting surface runoffs and flooding
with acceptable accuracy. Therefore, the MSM-CNN model and the reconstructed high-resolution DEM
products can be used to support a range of applications in the water science and engineering fields,
including urban flood risk management, and drainage systems planning and design. This is crucial for
many cities in developing countries where high-resolution data are often scarce or even unavailable.
It should be noted that the MSM-CNN model is not restricted by application to urban topography but
is also applicable to the more natural topography in rural catchments to create high-resolution DEM
data to support water resource management, natural hazard risk reduction, and many other forms of
water engineering research and applications.
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6. Conclusions

In this paper, we proposed an innovative deep machine learning approach to reconstruct
high-resolution urban DEMs from low-resolution equivalents. In order to effectively account for the
complexity of urban topography, a multi-scale CNN model was utilized to enhance the reconstruction
quality. After the correlations between the low- and high-resolution urban DEMs are learned by the
developed MSM-CNN model, an urban DEM at a specified high resolution can be accurately restored
from a low-resolution dataset.

To evaluate the performance of MSM-CNN, a two-level accuracy assessment procedure involving
both numerical accuracy and morphological accuracy was also designed and was used to compare
the MSM-CNN with other DEM reconstruction methods including IDW, BI, CC, and KI. The results
confirmed that MSM-CNN can effectively restore the high-resolution urban DEMs of 0.5 m from the
low-resolution DEMs of 2, 4, and 8 m. The MSM-CNN products were also consistently better than
those produced using alternative methods, in terms of visual assessment, and also numerical and
morphological accuracy.

The promising results demonstrated that MSM-CNN provides a promising tool in generating
high-resolution DEMs in cities from low-resolution DEMs, instead of surveying the whole region.
In recent years, a number of global DEM products have been released to provide better resolution
to represent urban topography, such as ALOS AW3D, NEXTMAP World 10, and WorldDEM. These
open datasets can be explored and used to support the application of MSM-CNN to reconstruct
high-resolution DEMs in cities across the world, which may potentially help address the challenging
data scarcity issue and will have profound implications in many water-related applications, particularly
in many of the developing countries.
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