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Abstract: The hydrological regimes of surface water bodies, as a rule, are unsteady. However,
accounting for the non-stationarity substantially complicates the hydrodynamic calculations. Becauseof
this, the scenario approach is traditionally used in the calculations. Characteristic scenarios are set with
constant hydrological characteristics throughout the time covered in the calculations. This approach
is fully justified if the characteristic time of the change in water flow rate is much longer than the
calculation time. However, nowadays, tasks are becoming more and more urgent when accounting
for flow variability during calculation period becomes crucial. First of all, such a problem arises when
assessing the effect of non-stationary water discharge through hydroelectric power plant dams on
the hydrodynamic regime of both the upper and lower pools of the reservoir. In the present paper,
the effect of the intraday variability of the Kamskaya Hydroelectric Power Plant (Kamskaya HEPP)
operation on the peculiarities of the hydrodynamic regimes of the near-dam part of the upper pool of
the Kama reservoir is described. The importance of the problem is determined by the location of
the main drinking water intake of Perm city and one of the largest thermal power plants (TPP) in
Europe, Permskaya TPP, in this part of the reservoir. This TPP uses a direct-flow cooling system from
the Kama reservoir, which is very sensitive to the peculiarities of the hydrodynamic regime of the
reservoir. The computational experiments based on the combined hydrodynamic models in 2D/3D
formulations have shown that the intraday oscillations of the discharge flow rate through the dam of
the HEPP have a very significant effect on the hydrodynamic regime of the reservoir in the vicinity of
the Permskaya TPP; therefore, these effects must be taken into account when minimizing the risks of
thermal effluents entering the intake channel of the Permskaya TPP.

Keywords: reservoirs; models; back flows; non-stationary discharge; hydroelectric power plant

1. Introduction

When operating the power units of power plants, a large amount of water is used to cool their
components. Cooling is carried out by means of reverse water supply, by using cooling towers,
columns for cooling water, a pond-cooler, or by the direct-flow method using water from natural
reservoirs. When implementing the second cooling method, the discharge of heated water is carried
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out into the environment at a lower temperature. The negative environmental impact of heated water
has been described in numerous publications (see, for example [1–5]). An analysis of the impact of
climate change and socio-economic factors on global water scarcity is presented in [6]. This work
extends previous global water use research by analyzing not only the effects on livelihoods and climate
change, but also electricity production, water use efficiency and other external factors for water scarcity.
The temperature standards contained in the European directive [7] on freshwater fish are presented
in [6]. The water temperature downstream of the discharge point should not exceed 21.5 ◦C and 28 ◦C
(or 1.5 ◦C and 3 ◦C higher than the background temperature of the reservoir) for salmon and cyprinid
fish species, respectively. The works [8–11] deal with the investigation of variations in the river water
temperature due to the climate change.

When solving the problems of thermal pollution, it is necessary to take into account the location
of the source of discharges [12–19]. Based on the location and size of the water intake facilities, it is
necessary to ensure the optimum temperature difference between the water of the reservoir and the
heated wastewater with minimal damage to the environment [19]. It is also necessary to prevent the
entry of heated water into the intake zone, which can significantly reduce the efficiency of the power
plant cooling system [20]. These problems must be solved within the framework of the development
of mathematical and numerical models.

Initially, numerical modeling was carried out in the framework of two-dimensional models by
averaging velocity over depth and considering temperature propagation in open channels [21,22].
At present, the apparatus of the three-dimensional numerical simulation of the distribution of thermal
pollution is developed [5,13,14,23–25]. This simulation is necessary for an adequate description of
processes, since thermal processes in water bodies are essentially three-dimensional.

The account of the hydrological regime of reservoirs in the described works is carried out either
for the average values of the flow velocity or for the time interval at which the reservoir velocity
regime is unchanged. However, the hydrological regime of surface water bodies is usually unsteady.
Accounting for non-stationarity fundamentally complicates the hydrodynamic calculations. That is
why the scenario approach is conventionally used in the calculations. Typical scenarios are set with
constant hydrological characteristics throughout the calculation time [25,26]. This approach is fully
justified if the characteristic time of the change in water flow is much longer than the calculation time.
However, nowadays, tasks are becoming more and more urgent when accounting for flow variability
during calculations becomes crucial [27,28].

The aim of this work is to solve the problem of assessing the impact of unsteady water discharge
through a Hydroelectric Power Plant (HEPP) on the hydrodynamic regimes of near-dam sections of
the upper pulls of large reservoirs. The importance of this study is determined, on the one hand,
by the significant intra-daily variability of electricity consumption and, accordingly, by the significant
variations in water discharge through HEPP dams, and, on the other hand, by the location of large
water consumers that are sensitive to changes in the hydrodynamic regime in the upper pools of
reservoirs. This task is considered through the example of the Kamskaya HEPP and the Permskaya
Thermal Power Plant (Permskaya TPP) located in the zone of its influence, which is the fourth in Russia
in terms of electricity generation. The use of a direct-flow cooling system at this TPP determines its
sensitivity to the peculiarities of the hydrodynamic regime of the reservoir.

2. Materials and Methods

To simulate heat-affected zones in the influence area of Perm State District Power Station,
a combined scheme was used, built on the basis of model conjugation in 2D and 3D settings. The need
to use such a calculation scheme is due to the significant heterogeneity of the considered temperature
fields both in the water area and the depth. At the same time, the capabilities of even the most powerful
of the available clusters do not allow for accurate 3D calculations for large sections of reservoirs
because. when performing calculations in 3D setting for the entire reservoir, a very large amount
of information is obtained, which is then not used in full in the future. A two-dimensional model
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of thermal pollution was constructed for an 82-km stretch of reservoir. For the considered problem,
the results of 2D modeling play an auxiliary role, they are used to set the boundary conditions when
building 3D models. The performed calculations in [25] showed that this model allows for a qualitative
assessment of the distribution of current velocity fields for different directions and wind speeds in the
Kama reservoir near Perm State District Power Station. A 3D hydrodynamic model was constructed
for the Kama Reservoir section with linear dimensions of 11 km adjacent to the Perm State District
Power Plant and includes a source of water intake and a source of wastewater discharge.

This calculation scheme was previously used in another paper of ours [25]. In this paper, the issues
of modeling temperature fields created in the Kama reservoir as a result of the discharge of thermal
effluents from the Permskaya TPP were considered. The morphometry of the considered section of
the reservoir was set on the basis of materials from a detailed bathymetric survey performed by us.
Additionally, the model used was calibrated by selecting the most effective heat transfer coefficients of
the water surface with the atmosphere and setting the optimal bottom roughness coefficients. Based on
a comparison of the measured and calculated characteristics of the water temperature field, it was
shown that the difference in the calculated and observed values did not exceed 15–20%. Since the
models used in the present paper do not include parameters requiring additional calibration for a
substantially unsteady hydrological regime, we believe that a model that works correctly and efficiently
for stationary hydrological conditions should reflect the main features of the flow in unsteady regime.

2.1. Development of a Hydrodynamic Model in a Two-Dimensional Formulation

A two-dimensional (in the horizontal plane) model of the Kama river, the upper pool of the Kama
reservoir was built on the basis of the licensed, specialized, hydrological software package Surface
Water Modeling System v.11.1 (SMS) from Aquaveo LLC (Provo, UT, USA), designed for modeling
in two-dimensional approximation of hydrodynamics, the distribution of pollution and transport of
suspended and entrained sediments in a water body. The model is based on several models (ADH,
RMA2, RMA4 (developed by U.S. Army Corp of Engineers), FESWMS (developed by U.S. Federal
Highways Administration), TUFLOW (developed by BMT WBM, Teddington, UK), RiverFlow2D
(developed by Hydronia LLC, Pembroke Pines, FL, USA), and others) that allow for the solving of
various problems.

The choice of the licensed model in two-dimensional approximations is due to the significant
successful experience of its use for solving a wide range of applied problems, including for calculating
the thermal pollution zones created by the Perm TPP in the Kama reservoir [25]. This software product
allows for fast and accurate hydrodynamic non-stationary calculations using GPU (graphics processing
unit) parallelization.

2.2. Model of Unsteady Flow in a Two-Dimensional Formulation of RiverFlow2D, Basic Equations

Shallow water flows can be mathematically described by depth-averaged equations of conservation
of mass and momentum with all relevant assumptions [29]. The set of “shallow water” equations has
the form:
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where ρ is the water density; g is the gravity acceleration; ZD is the bottom level coordinate; h is the
depth; u and v are x and y velocity components in Cartesian coordinate system; σ is the Reynolds stress
tensor caused by turbulent and molecular stresses:

σxx = 2ρv
∂u
∂x

, σxy = σyx = ρv
(
∂u
∂y

+
∂v
∂x

)
, σyy = 2ρv

∂v
∂y

(4)

S is the slope friction which can be calculated in two forms:
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√
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 (5)

where C f is the friction coefficient; n is the Manning roughness coefficient and CD is the dimension
conversion coefficient (1 for SI units and 1.486 for US units). The numerical solution is carried out by
the finite-volume method [30].

2.3. Construction of a Two-Dimensional Hydrodynamic Model of a Section of the Kama Reservoir and Initial
Data Assignment

A hydrodynamic model of the upper pool of the Kama reservoir was built in the SMS v.11.1 software
package using the RiverFlow2D GPU model of Hydronia LLC [30], which allows for hydrodynamic
calculations of various hydrological conditions. A model is needed to determine changes in the
velocity and level regimes of the Kama river, the upper pool of the Kama reservoir, due to the changing
discharge flow from the Kamskaya Hydroelectric Power Plant and the assessment of the impact of its
work in the area of the water intake channel of the Permskaya TPP.

The hydrodynamic model built for the upper pool of the Kama reservoir is shown in Figure 1.
Characteristic dimensions of the model are the following: the length along the Kama river from the
Kamskaya Hydroelectric Power Plant is 82 km, the width varies from 500 to 7000 m. The distance from
the dam of the Kamskaya Hydroelectric Power Plant to the thermal pollution study area is ~55 km.

To correctly set the morphometry of the water body (building a digital model of the relief of the
reservoir), we used official maps of the Kama reservoir and materials of detailed bathymetric surveys of
individual sections of the reservoir, performed by us. The regime of water discharge through the dam
of the Kamskaya HEPP was used as a model and made up of the characteristic discharge flow rates.
The discharge flow rate of 3750 m3/s is the maximum allowed through hydraulic units during routine
operation of the HEPP and 300 m3/s is the minimum sanitary pass established for the Kamskaya HEPP.
Material processing was carried out in the ArcGIS v.10.4 software package. The data obtained in the
form of Esri shapefiles (coasts, contours, depth points) were finally processed and converted into a
digital elevation model in the form of TIN (Triangulated Irregular Network). Then, in the SMS v.11.1
software package in a special module “Map”, the obtained data were converted into the internal format
of the program for further use in creating the model. Hydrological and meteorological data were
obtained from official sources of the Federal State Budgetary Institution Perm TsGMS of Roshydromet
and the Kama Hydroelectric Power Plant, a branch of PJSC RusHydro. Their processing was carried
out using Microsoft Excel.

For the most complete and effective specification of the morphometry of the Kama river area,
the upper pool of the Kama reservoir, an unstructured triangular grid was constructed in the
computational region using the triangulation method, consisting of 975,157 elements with an average
rib length of 30 m. In addition, the initial and boundary conditions were set on the computational region.

An initial water level of 108.5 m BS (Baltic Sea) was used as the initial condition for the entire
Kama reservoir.
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according to the following scheme: the initial discharge flow rate of 350 m3/s for 10 hours, then after 
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discharge from the Kamskaya HEPP is shown in Figure 2, the beginning of the day (0 a.m.) is taken 
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- The flow rates of water intake and discharge at the Permskaya TPP (the Kama River, city of 
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from the average long-term data of the Permskaya TPP in the summer period with the continuous 
operation of two power units. 

Figure 1. Morphometry of the considered section of the Kama reservoir. The brown rectangle shows
the area of interest in the vicinity of Dobryanka town.

2.4. Initial Data for 2D Modeling

The following conditions were accepted as the hydrological regime of the Kama river and the
operation of the Kamskaya Hydroelectric Power Plant:

- The flow rate of water entering the Kama reservoir (Kama River—1675 m3/s, Chusovaya—226 m3/s
and Sylva—159 m3/s) was considered constant at 2060 m3/s for 5 days. This is taken on the
basis of the average annual summer inflow of water entering the Kama reservoir along its main
tributaries, the Kama, Chusovaya and Sylva rivers;

- The discharge flow rate of water at the Kamskaya HEPP (Kama river) for 5 days was varied
according to the following scheme: the initial discharge flow rate of 350 m3/s for 10 h, then after
2 h the discharge flow rate rose to 3770 m3/s, then within 10 h constant flow rate of 3770 m3/s,
then decrease in 2 h of discharge flow rate to 350 m3/s, then again after 10 h rise to 3770 m3/s and
so on within 5 days. A two-hour drop in water discharge flow rate occurred in the time interval
from 7 to 9 p.m., and a rise in water discharge flow rate occurred in the time interval from 7 to
9 a.m. These flow rates were taken from the conditions of maximum and minimum load on the
Kama hydroelectric station in summer conditions. The maximum and minimum peaks were
taken as constants. In real conditions, the discharge flow rate of water during the day can vary
quite strongly. The schedule of water discharge flow rates by tributaries of the Kama reservoir
and water discharge from the Kamskaya HEPP is shown in Figure 2, the beginning of the day
(0 a.m.) is taken as “0”;

- The flow rates of water intake and discharge at the Permskaya TPP (the Kama River, city of
Dobryanka) were considered constant and equal to 42.5 m3/s for 5 days. This value was obtained
from the average long-term data of the Permskaya TPP in the summer period with the continuous
operation of two power units.
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Figure 2. Change in the discharge flow rate of water from the Kamskaya Hydroelectric Power Plant
(HEPP) and the flow rate of water inflow into the Kama reservoir.

2.5. Three-Dimensional Hydrodynamical Model

A three-dimensional numerical simulation of the dynamics of thermal pollution in the process of
discharge of waste water from the Permskaya TPP, taking into account the variable backwater from
the Kamskaya Hydroelectric Power Plant, was carried out for a section 11-km long. The calculation
area included the inlet and outlet channels, which are the main components of the Permskaya TPP
cooling system. The boundaries of the domain for which three-dimensional modeling was carried out
are shown in Figure 3 by red lines.

The problem was solved in the framework of a non-stationary non-isothermal approach using the
k-epsilon model to describe turbulent pulsations. As a comparative analysis showed, this turbulence
model is optimal. To evaluate the efficiency of its application, test calculations were performed using a
higher order model—the Reynolds stress model. It was found that the difference in the results is no
more than 5%, and therefore the k-epsilon model was used for further calculations.
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Figure 3. A map of the morphometric peculiarities of the bottom of the Kama reservoir in the region
of the Permskaya Thermal Power Plant (TPP). Red lines show the boundaries of the computational
domain for three-dimensional modeling.

2.6. Model of Unsteady Flow in a Three-Dimensional Formulation, Basic Equations

The equations for the Reynolds averaged velocity
→
u in tensor form were written as [31]:
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where ρ is the density, ui are the components of the velocity vector (i = 1, 2, 3), µ is the kinematic
viscosity. Turbulent viscosity µt is a function of kinetic turbulent energy k and its dissipation rate ε:
µt = ρCµk2/ε, Cµ is a constant.
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The equations for turbulent kinetic energy and its dissipation rate were written as follows:

∂
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∂x j
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where Gk—the generation of turbulent kinetic energy due to the average velocity gradient, Gb—the
generation of turbulent kinetic energy due to buoyancy, C1ε, C2ε are constants, σk and σε are the
turbulent Prandtl numbers k and ε, respectively.

Stratification density effects in the field of gravity due to changes in water temperature were taken
into account in the term Gb, having the form:

Gb = gi

(
β
µt

Prt

∂T
∂xi

)
(9)

where µt is the turbulent viscosity, which is determined as follows: µt = ρCµk2/ε where Cµ is
the constant.

Turbulent heat transfer was modeled using the Reynolds model, in a similar way to turbulent
momentum transfer. The equation for energy was as follows:

∂
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∂xi

[ui(ρE + p)] =
∂
∂x j

(
ke f f

∂T
∂x j

+ ui(τi j)e f f
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(10)

where E = ch+ p
ρ is the total energy, h = CpT system enthalpy, ke f f is the effective thermal conductivity,

and (τi j)e f f is the stress tensor deviator, defined as

(τi j)e f f = µe f f

(
∂u j

∂xi
+
∂ui
∂x j

)
−

2
3
µe f f

∂uk
∂xk

δi j (11)

where µe f f = ke f f Pr/Cp is the effective viscosity, effective thermal conductivity is defined as
κe f f = κ+ Cpµt/Prt, κ is the thermal conductivity coefficient.

The applicability of the k − ε turbulence model was evaluated in [25,26]. It was found that the
difference in the obtained data is no more than 5%, and therefore, the k − ε model was used for
further research.

The dependence of density on temperature was described in the framework of the Boussinesq
approximation. As initial conditions, uniform distributions of temperature and velocity in the entire
liquid volume were set.

The values of the parameters of the problem Prt, Sct, G1ε, C2ε, Cµ, σk, σε were taken as follows [31]:
Prt = 0.85, Sct = 0.7, C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3. The kinematic viscosity
was taken as equal to µ = 9.34× 10−7m2/s, the coefficient of molecular diffusion D = 1.0× 10−9m2/s.

To discretize the equations in space, a second-order accuracy scheme was used. The description
of the dynamics of processes in time was carried out according to an explicit second-order scheme.

2.7. Boundary Conditions for 3D Modeling

At the boundaries of the computational domain, the following boundary conditions were imposed:

- at the bottom of the river and on its banks, the no-slip conditions and constant temperature were
set u1 = u2 = u3 = 0, T = T0;

- at the input of the computational domain, the time-variable velocity of the main flow, determined
in two-dimensional modeling was set the temperature was set as equal to the background
temperature of the river ui = Vi(t), T = T0;



Water 2020, 12, 1336 9 of 22

- in places of water intake and discharge, a constant water velocity and a constant temperature
were set: at the inlet of the working channel ui = V1, T = T0 and at the outlet of the working
channel ui = V2, T = T2;

- the upper boundary of the fluid was considered free, the wind effect was taken into account—shear
stresses were set in accordance with the formula τ = ρairCW2 presented in [32], where ρair is
the air density, C is the dimensionless coefficient of wind stress and W is the wind velocity at a
distance of 10 m from the water surface. According to [32], for wind velocities from the range 1 m/s
< W < 15 m/s, the dimensionless parameter has the form C = 0.0005 W0.5. The calculations were
made for wind velocity W = 8 m/s, so the value C = 1.11× 10−3 was used. For the temperature
on the surface of the water, a linear law of heat transfer was set; taking into account the heating of
the surface from the surrounding air, the heat transfer coefficient was selected on the basis of
field measurements.

2.8. Construction of a Three-Dimensional Hydrodynamic Model of a Section of the Kama Reservoir

The calculations were performed using the ANSYS Fluent computational fluid dynamics package.
The computational grid was built, taking into account the morphology of the bottom of the considered
area. The number of grid nodes in the vertical direction was 21, located non-uniformly and taking
into account the non-uniformity of the river bottom. In horizontal directions, the grid consisted of
quadrangular cells uniformly distributed over the entire domain, with a characteristic linear size of
20 m. The total dimension of the grid was about four hundred thousand nodes. A volumetric image
of the constructed mesh is shown in Figure 4, where the vertical size for sufficient visualization is
increased forty times.
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To solve the problem of the adaptation of existing morphological data in the “coordinate- depth”
format to the capabilities of the grid builder, the procedure was used to “divide” the bottom morphology
into simple geometric objects with some specified resolution. A code was written that allows us,
using an array of data describing the morphology of the bottom of a water body, to output a command
file for a task for a mesh generator, which is part of the ANSYS Fluent computational package.
The created code has a general character and is applicable to the construction of similar geometries in
other problems.

The methodology for obtaining an acceptable numerical solution with a change in the time step
was preliminarily worked out, a solution was obtained starting from a step of 0.001 s and, upon reaching
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the convergence of the solution with an error of 0.001, the time step increased gradually, reaching a
value of 10 s. The total calculation time for each variant was five days.

3. Results

3.1. The Results of Two-Dimensional Numerical Simulation

The results of two-dimensional calculations are presented in Figures 5–8. Figures 5 and 6 show
velocity vector fields in the area of Dobryanka town at time 4 days and 1 h from the start of calculations,
which corresponds to 1 h at night, and at 4 days and 13 h from the beginning of calculations,
which corresponds to 1 o’clock in the afternoon. As one can see, in the upper pool of the Kamskaya
HEPP, changes in the magnitude and direction of the flow velocity are observed, a backward wave is
formed, which affects the Kama river even near Dobryanka town (Permskaya TPP).

Water 2020, 12, x FOR PEER REVIEW 10 of 22 

 

allows us, using an array of data describing the morphology of the bottom of a water body, to output 
a command file for a task for a mesh generator, which is part of the ANSYS Fluent computational 
package. The created code has a general character and is applicable to the construction of similar 
geometries in other problems. 

The methodology for obtaining an acceptable numerical solution with a change in the time step 
was preliminarily worked out, a solution was obtained starting from a step of 0.001 sec and, upon 
reaching the convergence of the solution with an error of 0.001, the time step increased gradually, 
reaching a value of 10 sec. The total calculation time for each variant was five days. 

3. Results 

3.1. The Results of Two-Dimensional Numerical Simulation 

The results of two-dimensional calculations are presented in Figures 5–8. Figures 5 and 6 show 
velocity vector fields in the area of Dobryanka town at time 4 days and 1 hour from the start of 
calculations, which corresponds to 1 hour at night, and at 4 days and 13 hours from the beginning of 
calculations, which corresponds to 1 o'clock in the afternoon. As one can see, in the upper pool of the 
Kamskaya HEPP, changes in the magnitude and direction of the flow velocity are observed, a 
backward wave is formed, which affects the Kama river even near Dobryanka town (Permskaya 
TPP). 

 

Figure 5. The velocity vector field in the vicinity of Dobryanka town at 4 days, 13 hours from the start 
of calculations, which corresponds to 1 hour of the day (stock flow, calm conditions). 

Figure 5. The velocity vector field in the vicinity of Dobryanka town at 4 days, 13 h from the start of
calculations, which corresponds to 1 h of the day (stock flow, calm conditions).Water 2020, 12, x FOR PEER REVIEW 11 of 22 

 

 

Figure 6. The velocity vector field in the vicinity of Dobryanka town at 4 days, 1 hour from the start 
of calculations, which corresponds to 1 hour at night (back flows, calm conditions). 

From a comparison of Figures 5 and 6, due to the nonuniform discharge of water through the 
dam of the Kamskaya hydroelectric power plant, a drastic change in the velocity field is observed in 
the region of the Permskaya Thermal Power Plant. The flow fields shown in Figure 5 are typical for 
continuous discharge through dam, the presence of a steady flow from the upper part of the 
reservoir to the lower near-dam part. With sharp changes in water discharge at the Kamskaya 
hydroelectric power plant, back flows are observed (Figure 6), which reach up to Dobryanka town, 
to the water intake channel of the Permskaya TPP. 

It is interesting to analyze the change in the velocity module in the area of the water intake 
channel of the Permskaya TPP (Figure 7 (blue line)), in comparison with the change in the discharge 
flow rate of water through the Kamskaya Hydroelectric Power Plant (green line), and especially in 
comparison with the velocity module at a constant discharge of water through the Kamskaya HEPP 
(red line). As follows from Figure 7, three maximums and three minimums are observed during the 
day. This is due to the fact that the velocity modulus shows both the forward and backward flow of 
water at the measurement site; therefore, over a wave period of 24 hours, we see three periods of 
oscillations of the velocity modulus and observe the forward (Figure 5) and backward (Figure 6) 
flows. 

Sharp changes in discharge flow rate through the dam of the Kamskaya HEPP, as follows from 
Figures 5–7, can generate significant back flows in the area of the Permskaya TPP. It is evident that 
these back flows can have a significant impact on the distribution of temperature fields associated 
with the discharge of thermal waters from the Permskaya TPP. 

Figure 6. The velocity vector field in the vicinity of Dobryanka town at 4 days, 1 h from the start of
calculations, which corresponds to 1 h at night (back flows, calm conditions).



Water 2020, 12, 1336 11 of 22

From a comparison of Figures 5 and 6, due to the nonuniform discharge of water through the
dam of the Kamskaya hydroelectric power plant, a drastic change in the velocity field is observed in
the region of the Permskaya Thermal Power Plant. The flow fields shown in Figure 5 are typical for
continuous discharge through dam, the presence of a steady flow from the upper part of the reservoir
to the lower near-dam part. With sharp changes in water discharge at the Kamskaya hydroelectric
power plant, back flows are observed (Figure 6), which reach up to Dobryanka town, to the water
intake channel of the Permskaya TPP.

It is interesting to analyze the change in the velocity module in the area of the water intake channel
of the Permskaya TPP (Figure 7 (blue line)), in comparison with the change in the discharge flow rate
of water through the Kamskaya Hydroelectric Power Plant (green line), and especially in comparison
with the velocity module at a constant discharge of water through the Kamskaya HEPP (red line).
As follows from Figure 7, three maximums and three minimums are observed during the day. This is
due to the fact that the velocity modulus shows both the forward and backward flow of water at the
measurement site; therefore, over a wave period of 24 h, we see three periods of oscillations of the
velocity modulus and observe the forward (Figure 5) and backward (Figure 6) flows.

Sharp changes in discharge flow rate through the dam of the Kamskaya HEPP, as follows from
Figures 5–7, can generate significant back flows in the area of the Permskaya TPP. It is evident that
these back flows can have a significant impact on the distribution of temperature fields associated with
the discharge of thermal waters from the Permskaya TPP.Water 2020, 12, x FOR PEER REVIEW 12 of 22 
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(blue line), in comparison with the change in discharge flow rate of water from the Kamskaya HEPP
(green line) and in comparison with the velocity module at a constant discharge of water through the
Kamskaya HEPP (red line).

3.2. Results of 3D Numerical Modeling

In our work [25], a three-dimensional numerical simulation of the propagation of the heat spot from
the Permskaya TPP was performed for various meteorological conditions and various technological
parameters of the TPP at a constant flow rate of water discharge at the Kamskaya Hydroelectric
Power Plant over the entire computation time. In the present work, we performed three-dimensional
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numerical simulation of the propagation of heat spot from the Permskaya TPP at time-periodical
discharge flow rate at the Kamskaya HEPP in conditions of summer low water.

Two variants of wind direction similar to those considered in [25] and additional third variant
of calm conditions were studied. For the first variant, the wind is directed opposite to the river flow,
the second variant corresponds to the wind in the direction of the river flow and the calm conditions
correspond to the absence of wind. The value of the wind velocity modulus at a distance of 10 m from
the water surface in the first two variants was 8 m/s. The discharge flow rate of heated wastewater was
considered equal to 63.0 m3/s, the temperature of the discharge water was 32.4 ◦C, and the temperature
of the water of the reservoir receiver was 21.8 ◦C. The calculation time was five days. Based on the
simulation results, an assessment was made of the zone of influence of heated water masses on the
reservoir at a change in the hydrological regime of the river.

The average monthly values of air temperature according to observations at a meteorological
station in Dobryanka are presented in Table 1.

Table 1. The average monthly values of air temperature according to observations at a meteorological
station in Dobryanka.

Value
Month

I II III IV V VI VII VIII IX X XI XII

Cp. T, ◦C −13,0 −9,6 −3,0 2,6 10,4 14,8 16,7 15,6 9,5 1,7 −6,0 −9,7

The calculation results for the first variant (southeasterly wind directed against the river flow; the
wind velocity is 8 m/s) are presented in Figure 8, which shows the temperature field and the velocity
vector field in the surface layer at different time moments. Calculations showed that under the indicated
conditions, throughout the entire calculation time (5 days), the warm plume of wastewater moves
near the riverbank from the discharge channel to the intake channel and does not change its direction.
The wind duration of one direction (over 3 days) was chosen based on the inertia of the hydrodynamic
processes under consideration. When the wind lasts for a shorter period, the hydrodynamics of the
considered section of the reservoir do not have time to completely rebuild or adapt to a given direction
of the wind.

After 10 h from the start of the discharge, the warm wastewater enters the intake channel
of the TPP cooling system. The movement of the water against the direction of the river flow is
observed approximately in a six-meter layer from the surface; in the deeper layers, the water moves
downstream (see, Figure 9). Thus, the movement of water has a three-dimensional vortex structure,
which justifies the need for a three-dimensional approach and limits the solution of the problem within
the two-dimensional approach.
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Figure 9. The velocity vector field in the horizontal plane near the surface (a) and at a depth of 6 m
(b) for the southeasterly wind. The time after the start of calculations is 20 h.

Figure 10 shows the temperature fields for the case of wind at a speed of 8 m/s, directed from
the northwest. In this case, with stationary backwater from the Kamskaya HEPP (see, [25]), the heat
spot propagates downstream of the river. With unsteady backwater from the Kamskaya HEPP,
vortex structures arise, which lead to the movement of warm water masses against the river flow,
the area of the heat spot propagation increases, occupying the entire river bed. At some time intervals,
as with the southeasterly wind, the movement of warm wastewater against the river flow is observed.
The direction of the flow changes in an oscillatory manner.



Water 2020, 12, 1336 15 of 22
Water 2020, 12, x FOR PEER REVIEW 15 of 22 

 

   

Temperature, 

° C 
t = 2 hours 

(at Kamskaya HEPP minimum discharge). 

t = 20 hours 

(increase in discharge at Kamskaya HEPP 

within 1 hour). 

   

Temperature, 

° C 
t = 48 hours 

(2 days from the start of calculations). 

t = 95 hours 

(3 days and 23 hours from the start of 

calculations). 

The place of water 
intake 

The place of water 
discharge 

The place of water 
intake 

The place of water 
discharge 

Figure 10. Cont.



Water 2020, 12, 1336 16 of 22
Water 2020, 12, x FOR PEER REVIEW 16 of 22 

 

   

Temperature, 

° C 

t = 97 hours 

(4 days and 1 hour from the start of 

calculations).  

t = 112 hours 

(4 days and 16 hours from the start of 

calculations). 

Figure 10. Temperature fields in the surface layer for northwesterly wind; the time from the start of 
calculations (t). The calculations were carried out for the period starting from midnight. 

Figure 11 shows the results of three-dimensional calculations for calm conditions. As can be 
seen, the vortex flows obtained in two-dimensional calculations are also observed in 
three-dimensional calculations for the same time moments. Moreover, the zone of warm water 
covers the entire water area corresponding to the computational domain. As for the southeasterly 
wind, there is an intense movement of warm wastewater in the direction of the Permskaya TPP 
intake channel. 

   

Temperature, 

° C 

t = 2 hours 

(at Kamskaya HEPP minimum 

discharge). 

t = 48 hours 

(2 days from the start of calculations). 

The place of water 
intake 

The place of water 
discharge 

Figure 10. Temperature fields in the surface layer for northwesterly wind; the time from the start of
calculations (t). The calculations were carried out for the period starting from midnight.

Figure 11 shows the results of three-dimensional calculations for calm conditions. As can be seen,
the vortex flows obtained in two-dimensional calculations are also observed in three-dimensional
calculations for the same time moments. Moreover, the zone of warm water covers the entire water
area corresponding to the computational domain. As for the southeasterly wind, there is an intense
movement of warm wastewater in the direction of the Permskaya TPP intake channel.
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Figure 11. Temperature fields in the near-surface layer for calm conditions; the time from the start of
calculations (t). The calculations were carried out for the period starting from midnight.

Figure 12 shows the distribution of water temperature over depth at different verticals for calm
conditions at time (t) = 97 h. As can be seen, at all verticals, the temperature distributions over the
depth are substantially inhomogeneous.
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Figure 12. The temperature distributions in depth at different verticals for calm conditions at t = 97 h.

To illustrate the effect of the discharge flow rate variation at the Kama HEPP, we present,
in Figure 13, the temperature fields at 95 h from the start of the discharge for the case of a variable
discharge change in accordance with Figure 7, and for a constant discharge flow rate equal to the
average flow rate in Figure 7, 2000 m3/s. As can be seen from the figures, under all wind conditions,
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at a variable discharge flow rate, the thermal pollution spot covers a larger area than at a constant
discharge flow rate equal to 2000 m3/s.

Figure 13a,b corresponds to calm conditions. It can be seen that in these conditions, under a non-
stationary discharge flow rate, a thermal spot propagating against the flow in the reservoir covers the
entire computational domain and warm water enters the water intake channel intended for cooling
Permskaya TPP blocks. With a constant discharge flow rate of 2000 m3/s, the thermal spot propagates
to a smaller distance upstream, but it does not reach the water intake channel.Water 2020, 12, x FOR PEER REVIEW 19 of 23 
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Figure 13. Temperature fields for Wind SE 8 m/s for 95 H. (a,c,e)—under the influence of a discharge
from HEPP, regular mode in a changing discharge of water; (b,d,f)—under minimum influence of a
discharge from HEPP, continuous discharge mode.

At a constant wind exposure in the opposite direction to the flow in the reservoir (Figure 13c,d
for the southeasterly wind 8 m/s), both at a non-stationary discharge flow rate and a constant discharge
flow rate of 2000 m3/s, the thermal spot propagates against the river flow and warm water enters the
intake canal. At a non-stationary discharge flow, the area of the thermal spot is larger; it reaches the
intake channel earlier.

At a constant wind exposure in the direction of the flow in reservoir (Figure 13e,f for the northwesterly
wind 8 m/s), both with an unsteady discharge rate and a constant discharge rate of 2000 m3/s, a thermal
spot propagates downstream to the Kamskaya HEPP dam and warm water does not enter the water
intake canal.

4. Conclusions

Sharp changes in discharge flow rate through hydroelectric station dams significantly affect
the hydrodynamic regime of not only the lower, but also the upper pools of the reservoirs. Using,
as an example, the Permskaya Thermal Power Plant located in the backwater zone of the Kamskaya
Hydroelectric Power Plant and using a direct-flow cooling system, the effect of unsteady water
discharge flow rate through the hydroelectric station dam on the hydrodynamic regime of the upper
pool of the reservoir was studied.

To conduct computational experiments, a combined model was used and built on the basis of
combination of 2D and 3D models. In the framework of two-dimensional modeling, data were obtained
on the evolution of the direction and velocity of flow averaged over the depth at the changing flow-rate
of the discharged water at the Kamskaya Hydroelectric Power Plant. Vortex structures of the velocity
field near the Permskaya TPP were found. Three-dimensional numerical experiments carried out via a
non-isothermal approach, taking into account density stratification effects, showed that a significant
amount of warm water can be created in the upper part of the cooling pond, the temperature of which
is several degrees higher than the background temperature.

The aim of the present work was not a detailed assessment of the velocity and temperature fields,
but the study of the influence of such a factor, which was not previously considered as related to the
significant intraday variability of the hydroelectric power plant operation in the hydrodynamic regime
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of the upper pool of a large reservoir. The field expeditionary estimation of the spatial–temporal
structure of the processes under consideration required a correct comparison with the calculated values,
which was very difficult due to inertial effects and was characterized by significant errors. At the same
time, the performed daily observations of flow rates on separate measuring verticals located in the
upper pool of the reservoir under consideration reflect significant oscillations not only in the module,
but also in the direction of the flow, determined by the daily variability of the HEPP operation and
reproduced by these models. In connection with the former, we believe that the proposed scheme is
acceptable for assessing the possibility of the influence of intraday variability of the HEPP operation
on the hydrodynamic regime of the upper pool of a large reservoir, and the peculiarities of the water
use by large energy complexes located there.

We assessed the role of intraday variability of discharge through the Kamskaya Hydroelectric
Power Plant dam on the hydrodynamic regime of the dam section, including the location of the
Permskaya Thermal Power Plant, located 55 km from the dam. It was shown that the role of this
discharge variability is significant, it even increases the probability of such a limiting phenomenon as
the entry of warm wastewater into the freshwater intake channel of Permskaya TPP. In the formation of
this phenomenon, neither air temperature nor wind speed are decisive factors, since it can be observed
quite clearly even under calm conditions. At the same time, with a constant discharge from Kamskaya
HEPP, as shown by calculations in our previous work, this phenomenon can occur only with a certain
combination of wind direction, speed and duration. This is the principal conclusion of the paper.
Such phenomena can also occur in winter, when neither wind speed nor air temperature play any role.
In the present paper, this situation was not considered since, in the winter period, the arrival of warm
water into the freshwater intake channel of Permskaya TPP does not play a fundamental limiting role.

The direction of the flow near the water surface is determined by wind exposure. If the wind
is directed against the flow of the river and the duration of its impact is more than a day, then three-
dimensional vortices arise, leading to a flow in the direction opposite to the main flow of the river
in a 6-meter-deep layer from the surface. In this case, warm water may enter the intake channel
designed to cool the thermal power plant systems. It was found that, during the unsteady operation
of a hydroelectric station, the arrival of warm water to the intake channel of a power plant can be
observed even under calm conditions.

Thus, the performed computational experiments showed the significant effect of the non-stationary
nature of the hydroelectric power plant operation on the hydrodynamic regime in the upper pool of
the reservoir and the peculiarities of water use by the facilities located near it.
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