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Abstract: Greenhouse cultivation is highly efficient in the use of water and fertilizers. However, due
to intensive production, the greenhouse industry applies ample amounts of water and fertilizers.
An alternative to minimize water and nutrient loss is zero-leaching systems, such as closed-loop
subirrigation. The objective of the present study was to compare the water and fertilizer use
efficiency in containerized tomato plants grown in a subirrigation system and a drip irrigation system.
Subirrigated plants exhibited lower biomass than drip-irrigated plants. However, the amount of
nutrient solution required to restore evapotranspirated water was lower in subirrigation. The yield
was marginally decreased in subirrigated plants compared to drip-irrigated plants. The amount
of nutrient solution required to produce 1 kg of fresh tomatoes was 22 L in subirrigation, whereas
in drip irrigation, plants demanded 41 L. The total nitrogen applied through the nutrient solution
was 75% lower in subirrigation than in drip irrigation, while the phosphorus, potassium, calcium
and magnesium applied was 66%, 59%, 70% and 74% lower, respectively. We concluded that the
subirrigation system proved to be more water- and nutrient-efficient than the drip irrigation system
due to the zero leaching of the nutrient solution, the lower number of irrigation events required and
the lower nutrient demand of plants.
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1. Introduction

Water is one of the most important resources. It is used for household and industrial consumption,
as well as for agricultural production [1]. Agricultural production systems are the largest consumers of
water [2–4]; the irrigation of agricultural crops has allowed for the raising of yields and the stabilizing
of food production and prices, which in turn has permitted the achievement of food security in many
countries [5]. Groundwater is by far the main source of potable water (at least 50%) and water for
agricultural irrigation (43%) [6]. Nonetheless, excessive use of water because of inadequate irrigation
practices has caused overexploitation of aquifers, reduced water quality due to pollution and decreased
groundwater tables [7,8].

Greenhouse cultivation provides food products of high quality all year round and, in terms of
yield and gross income, it is highly efficient in the use of water and fertilizers due to the decrease in
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potential evaporation and the application of advanced irrigation technologies, such as drip irrigation
and hydroponics [9]. However, in spite of its high efficiency, due to its intensive use and high yields,
the greenhouse industry applies more water and fertilizers on a surface area basis compared to any
other agricultural system, greatly contributing to the depletion and pollution of water reservoirs.
Reducing the water and fertilizer amounts used for greenhouse production is thus important due
to availability and pollution concerns. In fact, greenhouse growers fear the scarcity of water of good
quality much more than its cost [9]. A strategy to further increase water and fertilizer use efficiency
in greenhouse production is to adopt cultivation systems that collect and reuse irrigation water
by using closed-loop irrigation systems [10–12]. Soil pollution in greenhouses is also an issue of
utmost importance. In Europe, for example, concentrations of NO3

−-nitrogen (N) up to 2000 kg
ha−1 were recorded in a 100 cm soil depth underlying commercial greenhouses [13], while in the
United States, reports indicated concentrations higher than 2300 kg ha−1 in the soil under decades-old
greenhouses [14].

Vegetable production under controlled environment systems has allowed yield and quality
increases due to the higher fertilizer rates and water inputs [15]; for example, N rates for some
containerized nursery plants range from 1067 to 2354 kg ha−1 per year, which is 10–15 times higher
than that recommended for field crops [16].

Common practices for greenhouse production include surface irrigation systems with no
recirculation of the nutrient/fertigation solution, which is not environmentally friendly [17,18]. The loss
of water and nutrients in such irrigation systems is caused by high leaching rates as the water supplied
surpasses the water retention capacity of the growing medium [18,19]. Unfortunately, high leaching
rates are required to avoid salt buildup in the growing media. Combining high fertilizer rates with
an inadequate irrigation system results in increased leaching, and thus, in increased groundwater
pollution [20]. Thus, the efficient use of water is one of the fundamental factors to guarantee food
production [21].

Establishing innovative irrigation water management may contribute to the mitigation of
negative issues related to climate change [22]. An alternative to minimize water and nutrient loss
to the environment for soilless cultivation of vegetable species is zero-leaching systems, such as
subirrigation [23–25]. Closed irrigation systems are an interesting and promising method to maximize
water and fertilizer use efficiency compared to conventional open irrigation systems [2,10,23], as the
nutrient solution that is not retained by the growing medium is recirculated for reuse in the next
irrigation event [15,17,26–28].

Subirrigation systems have been assessed for containerized greenhouse ornamental plants, which
have demonstrated increased water and nutrient efficiency [15,29,30] and increased growth [12].
Nevertheless, little attention has been paid to the use of subirrigation for containerized vegetable
species [31–33] such as greenhouse tomato. The objective of the present study was to define water and
fertilizer use efficiency in containerized tomato grown in a subirrigation system.

2. Materials and Methods

2.1. Cultural Conditions and Plant Material
The experiment was conducted in a greenhouse at Universidad Autónoma Agraria Antonio Narro,

in Northeast Mexico (25◦23′42′′ N Lat., 100◦59′57′′ W Long., 1743 m above sea level). Weather data
were collected from a weather station located in the greenhouse. Mean maximum, mean minimum
and mean temperature for the study duration were 25.7 ◦C, 14.4 ◦C and 20.1 ◦C, respectively, while
maximum, minimum and mean relative humidity were 92%, 43% and 68%, respectively. Mean seasonal
photosynthetically active radiation was 389 µmol m−2 s−1.

Solanum lycopersicum L. cv. Climstar 20 cm tall transplants with two fully expanded leaves were
planted on 26 August 2017, into 13 L black polyethylene containers (one plant per container) filled
with a mixture of sphagnum moss, coconut fiber and perlite (40%, 40%, 20% v/v) to a height of 27 cm.
Initial medium pH and electrical conductivity (EC) were 5.7 and 0.8 dS m−1, respectively.
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2.2. Irrigation Systems
In this experiment, a subirrigation system was designed in order to compare the water and

fertilizer use efficiency against drip irrigation. The subirrigation system consisted of rigid plastic
trays/troughs (69 × 39 × 16 cm; length, width and height) with two 1-plant containers each. Containers
were placed 30 cm apart within the row, and rows were kept 120 cm apart. Each tray/trough had a
system of polyvinyl chloride pipes and valves for irrigation and drainage of the corresponding nutrient
solution, which was pumped with a 1

4 HP pump.
Subirrigation started when the growing medium registered a moisture tension of 10 KPa measured

with a tensiometer (Irrometer Model MLT, Riverside, CA, USA), with a flooding depth and duration of
15 cm and 30 min, on which the containers remained standing in the nutrient solution. The unabsorbed
solution was drained back into a 200 L storage tank for reuse in the following irrigation event and
renewed every 15 days. The pH of the nutrient solution was adjusted to 6.0 ± 0.1 prior to irrigation with
H2SO4 (0.1 N). The evapotranspirated nutrient solution was replenished with fresh nutrient solution
to complete the initial volume of the storage tank. The drip surface irrigation system consisted of two
emitters dispensing a total of 2 L·h−1 of nutrient solution per container, and irrigation was conducted
when the substrate moisture tension reached 10 KPa, with enough solution to achieve a 30% leaching
fraction. The experimental unit for the subirrigation treatment consisted of two containers (i.e., two
plants) placed on a single tray/trough. The drip irrigation treatment also had two one-plant containers
per replication.

2.3. Nutrient Solutions
Basic nutrient solution contained (meq L−1): 14 NO3

−, 2 H2PO4
−, 8 SO4

2−, 11 Ca2+, 9 K+ and 4
Mg2+ (EC = 2.4 dS m−1). During the vegetative phase, the basic nutrient solution was applied at 120%
concentration. However, from the blooming of the first to the third truss, the concentration of the basic
nutrient solution was decreased to 70% (EC = 1.7 dS m−1), and from the third to the fifth truss it was at
50% (EC = 1.2 dS m−1). The fertilizer-grade salts used for preparation of the nutrient solutions included:
5[Ca(NO3)2·2H2O] 1NH4NO3, MgSO4·7H2O, KNO3, K2SO4, KCl, HNO3 and H3PO4. Micronutrients
were provided as Fe-EDTA, Zn-EDTA. Cu-EDTA, Mn-EDTA, B and Mo at (in mg L−1): 3.0, 0.2, 0.1, 1.4,
0.3 and 0.1, respectively.

2.4. Plant Growth, Yield and Mineral Composition

The harvest of fruits started 120 days after transplanting and was completed when the study was
concluded (160 days after transplanting). The fruit was considered ready for harvest when 80% of the
pericarp was red; the fresh fruit yield was calculated on a total yield basis. At experiment termination,
whole plants were harvested and the roots were washed with tap water to remove excess substrate; the
substrate was divided in three layers: bottom, medium and top layers (0 to 8, 8 to 16 and 16 to 25 cm of
the root ball, respectively). The shoot was separated into stems, leaves and all the fruits harvested,
which were then, along with the roots, dried in an oven at 70 ◦C for 72 h prior to measuring dry weight.

2.5. Tissue Mineral Analysis and Substrate pH and EC

Dry plant tissues (root, shoot and fruit) were ground to pass a 20-mesh sieve (Thomas-Wiley Mill
Co., Philadelphia, PA). Dry ground tissues were analyzed for total N concentration utilizing Kjeldhal’s
procedure [34], while phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) concentrations
were determined in previously digested ground tissues (2:1 mixture of H2SO4:HClO4 and 2 mL of 30%
H2O2) with an Inductively Coupled Plasma Emission Spectrometer (ICP-AES, model Liberty, VARIAN,
Santa Clara, CA) [35]. Macronutrients accumulated in the entire plant were calculated considering
their concentration in the roots, shoot and fruits and the dry weight of each plant part.

Substrate pH and EC were measured in an air-dried sample from the three medium layers using
the 1:2 dilution method [36]. The 1:2 mixture was allowed to sit for 60 minutes and then it was filtered.
The pH and EC were measured using a portable ionometer (Horiba LAQUA Twin).
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2.6. Water and Nutrient Use Efficiency
Water consumed by plants was measured indirectly in both irrigation systems. In subirrigation,

the volume of water retained by the growing medium was calculated by measuring the nutrient
solution depleted from the tray/trough at flooding termination, while in drip-irrigated plants, it was
calculated by measuring the solution dispensed through the emitters when the leaching fraction was
achieved. Water consumed throughout the study was used to calculate the water use efficiency in
terms of total fresh fruit production (liters of water per kilogram of fresh fruit produced) and total
evapotranspirated water (liters of water evapotranspirated per plant throughout study duration).

2.7. Statistical Design and Analysis of Irrigation Method Effect
The experiment was set in a randomized complete blocks design with two treatments: subirrigation

and drip irrigation systems, with six two-plant replications per treatment. Data were analyzed with
ANOVA, and Tukey´s multiple mean comparison test (p ≤ 0.05) when appropriate, using R Studio
(v. 3.4.2.) [37,38].

3. Results

Subirrigation caused lower plant biomass production than in drip-irrigated plants, which was
due to a decrease in root and leaf growth as suggested by their lower dry weight (Table 1). Stem and
fruits dry weights were similar for plants in both irrigation systems (Table 1). Fruit yield was slightly
but significantly decreased (9.5%) in subirrigated plants (Figure 1).

Table 1. Dry weight of plant parts of tomato (Solanum lycopersicum L.) grown in two irrigation systems.

Dry Weight
g Per Plant

Irrigation System Root Stem Leaves Fruits Total

Subirrigation 32.6 65.6 252.7 69.3 420.2
Drip irrigation 42.4 71.4 313.2 76.1 503.0

ANOVA p ≤ 0.001 p = 0.189 p ≤ 0.041 p ≤ 0.640 p ≤ 0.027
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Means were significantly different according to ANOVA (p ≤ 0.018).

Substrate pH was lower while the EC was higher when subirrigation was applied (Table 2).
Nonetheless, when averaged across both irrigation systems, the pH was higher in the middle and
bottom layers of the growing medium, while the EC was higher in the top layer (Table 2).

The amount of nutrient solution required to restore evapotranspirated water was predominantly
lower in subirrigation in most of the irrigations conducted throughout the experiment, while in
drip irrigation, plants demanded twice as much solution (Figure 2). Throughout the study, plants in
subirrigation required 38 irrigations whereas in drip irrigation there were 40 irrigation events (Figure 2).
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Table 2. Growing medium pH and electrical conductivity (EC) at experiment termination as affected
by two irrigation systems and the root ball substrate layer of tomato (Solanum lycopersicum L.) plants.

Irrigation Systems pH EC (dS m−1)

Subirrigation 6.65b 2.33a
Drip irrigation 6.77a 0.64b

Growth medium layer
Top 6.18b 2.53a

Middle 6.98a 0.84c
Bottom 6.95a 1.07b

ANOVA Irrigation systems p = 0.014 p ≤ 0.001
Medium layer p = 0.031 p ≤ 0.001

Means followed by different letters indicate significant effects according to Tukey´s multiple comparison test
(p ≤ 0.05).
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Figure 2. Volume of nutrient solution required at every irrigation event to bring the growing medium
to container capacity in containerized tomato (Solanum lycopersicon L.) plants.

Water use efficiency was higher with subirrigation as plants demanded 22 L of water to produce
1 kg of fresh tomato fruit (Figure 3). In contrast, with drip irrigation, plants required 41 L per kg
(Figure 3). In terms of total water consumed, water use efficiency was also higher with subirrigation as
plants demanded 76 L per plant, while with drip irrigation, plants demanded 154 L per plant (Figure 3).
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The amounts of N, P, K, Ca and Mg applied through the nutrient solution during the whole
experiment were markedly decreased in the subirrigation system (Figure 4). Total N applied was 75%
lower in subirrigation than in drip irrigation (Figure 4a), while the P, K, Ca and Mg applied decreased
by 66%, 59%, 70% and 74%, respectively (Figure 4b–e). Nonetheless, N accumulated in plant tissues
at experiment termination was 60% lower in subirrigated plants (Figure 4a), while P, K, Ca and Mg
accumulation was 61%, 47%, 66% and 56% lower, respectively (Figure 4b–e).Water 2020, 12, x FOR PEER REVIEW 7 of 11 
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Figure 4. Nitrogen (A), phoshorus (B), potassium (C), calcium (D) and magnesium (E) use efficiency in
terms of total nutrients applied though irrigation and nutrients consumed by containerized tomato
(Solanum lycopersicon L.) plants grown in two irrigation systems. Means were significantly different
according to ANOVA.

4. Discussion

In the present study, subirrigation resulted in a 9.5% reduction in fresh fruit yield compared to
drip irrigation. In addition, there was also a 16% reduction in total dry weight, with roots (−23.1%) and
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leaves (−19.3%) being more sensitive to dry weight reduction than stems (−8.1%) and fruits (−8.9%).
Substrate pH and EC were affected by the irrigation system; in general, pH was lower while EC
was higher in subirrigated substrates. Nonetheless, our measurements were much lower than those
reported in other studies. For example, in subirrigated containerized tomato, the substrate pH and EC
reported by García-Santiago et al. [39] were, on average, 4.37 and 15.5 dS m−1, respectively, while we
are reporting an average pH of 6.65 and EC of 2.33 dS m−1. The lower measurements we obtained
must be because we used a progressive reduction in the concentration of the nutrient solution, as we
started with solutions whose EC was 2.4 dS m−1 at the beginning of the study, whereas at experiment
termination it was decreased to 1.2 dS m−1.

The increased substrate EC in subirrigation has been ascribed to the zero-leaching system, the
unidirectional flow of the nutrient solution by capillary force, the evapotranspiratory environmental
demand and the nutrient solution concentration [31,40,41]. In order to avoid dangerous EC levels,
García-Santiago et al. [39] suggested that the concentration of the nutrient solution has to be decreased
to a point in which plant nutrient demands are met but salt buildup, and thus substrate EC, is kept to a
minimum. The more acidic pH observed in the substrate in subirrigation is consistent with reports by
Martinetti et al. [42] in eggplant (Solanum melongena L.), which has been ascribed to the accumulation
of H+ in the substrate due to the zero leaching in subirrigation systems [43].

Previous research has shown contradictory results as to the effect of subirrigation on the yield
of vegetable species. Santamaria et al. [33] reported that cherry tomato (Solanum lycopersicon var.
Cerasiforme Alef., ‘Naomi’) fruit production decreased by 20% in subirrigation compared to drip
irrigation, while, according to Bouchaaba et al. [2], in green bean (Phaseoulus vulgaris L. ‘Saporro’)
plants the decrease in subirrigation was 33%. The reduced growth and yield in subirrigation has been
attributed to the higher EC recorded in the top layer of the root ball due to salt buildup throughout the
growing season, as corroborated in the present study, and to a poor distribution of moisture at each
layer [2,28,40,42]. Nonetheless, according to other researchers, this does not necessarily affect plant
growth since root development occurs mainly on the bottom layer [44], so roots are not exposed to the
high EC [44]. In contrast, other reports have shown increased yield by subirrigation of vegetables when
compared to that obtained with surface irrigation; for example, García-Santiago et al. [39] reported a
12% increase in fruit yield in subirrigated tomato plants.

In the present study, tomato fruit production was decreased in subirrigated plants; however,
the effect was only marginal as drip-irrigated plants had a yield only 9.5% higher. This suggests
that the benefits of subirrigation can be valuable, because with such an irrigation system there was a
higher water and fertilizer use efficiency with minimal impact on fruit yield. Our results showed that
water use efficiency was 22 L of nutrient solution required to produce 1 kg of fresh tomato fruit in
subirrigated plants. In contrast, drip-irrigated plants demanded 86% more water. In terms of total
water consumed by plants, water use efficiency in subirrigation was 76 L per plant, while drip-irrigated
plants demanded 103% more water. The lower water use efficiency in drip irrigation may be associated
with the nutrient solution that leaches at every irrigation event, the more frequent irrigation events
required and the higher amounts of nutrient solution required at every irrigation event to saturate the
substrate. Garcia-Santiago et al. [39] reported that in subirrigated tomatoes, the substrate had higher
total water, easily available water and non-easily available water than in the substrate of drip-irrigated
plants at the end of the growing season, resulting in a higher water retention capacity and thus less
irrigation events being required than in drip irrigation.

Our data are consistent with those reported by Nederhoff and Stanghellini [21] as tomato plants
irrigated with an open system demanded 53 L to obtain 1 kg of fresh fruits, while in a recirculation
subirrigation system, plants needed 22 L to produce 1 kg of fresh fruits. Similarly, testing on eggplants,
Martinetti et al. [42] reported a 32% reduction in the nutrient solution supply, although water use
efficiency was similar in both subirrigation and drip irrigation systems as plants required 46.6 and
45.5 L of nutrient solution to produce 1 kg of fresh eggplant fruits, respectively.
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In addition to the substantial improvement in water use efficiency, subirrigation allowed significant
increases in fertilizer use efficiency. In the present study, there was a higher efficiency in N, P, K, Ca
and Mg in subirrigated plants compared to drip-irrigated plants. This was because, considering the
sum of all the nutrients applied in all the irrigations performed during the experiment, in subirrigation
5.00 g of N was applied per plant, while for P, K, Ca and Mg it was 2.10, 14.55, 13.19 and 2.51 g per
plant, respectively. In contrast, in drip irrigation 19.85 g of N was applied per plant, while for P, K, Ca
and Mg it was 6.28, 35.65, 44.68 and 9.72 g per plant, respectively. The higher nutrient efficiency of the
subirrigation system was due to the zero nutrient solution leaching and the less frequent irrigation
events required. Parra et al. [45] mentioned that, in tomato, water and nutrient savings were remarkable
(32% to 45%) when the nutrient solution was recirculated, although yield was decreased. In contrast,
Oztekin et al. [46] reported that there were no differences in tomato fruit yield between closed and
open irrigation systems, although there was a significant fertilizer saving with recirculation. Our data
are consistent with those reported by Martinetti et al. [42] in subirrigated eggplant as they reported
91% fertilizer use efficiency when plants were grown in a subirrigation system, while in drip irrigation
it was an efficiency of 79%.

The higher nutrient efficiency in subirrigation may also be due to the fact that plants grown
under such a system are 16.5% lower in total dry weight compared to drip-irrigated plants; thus, such
plants met their demands with lower nutrient contents, as they accumulated 60%, 61%, 47%, 66% and
56% lower N, P, K, Ca and Mg in plant tissues, respectively. Nonetheless, this reduced growth of
subirrigated plants did not markedly impact fruit yield, which is in agreement with reports by Massa et
al. [10], concluding that any fertigation strategy, such as recirculation of the nutrient solution, is capable
of reducing fertilizer use without reducing yield, and therefore has a very promising effect on crop
profitability. Blessington-Haley and Reed [30] also showed that subirrigation of several ornamental
plants resulted in a K efficiency twice as high of that of surface-irrigated plants.

5. Conclusions

Subirrigation proved to be more water- and nutrient-efficient compared to the drip irrigation
system for soilless greenhouse tomato production. The higher efficiency is due to the zero leaching of
the nutrient solution, the lower number of irrigation events required and the lower nutrient demand of
plants, with marginal impact on fruit yield.
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