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Abstract: The study has modeled shoreline changes by using a multilayer perceptron (MLP) neural
network with the data collected from five beaches in southern Taiwan. The data included aerial
survey maps of the Forestry Bureau for years 1982, 2002, and 2006, which served as predictors, while
the unmanned aerial vehicle (UAV) surveyed data of 2019 served as the respondent. The MLP was
configured using five different activation functions with the aim of evaluating their significance.
These functions were Identity, Tahn, Logistic, Exponential, and Sine Functions. The results have
shown that the performance of an MLP model may be affected by the choice of an activation function.
Logistic and the Tahn activation functions outperformed the other models, with Logistic performing
best in three beaches and Tahn having the rest. These findings suggest that the application of machine
learning to shoreline changes should be accompanied by an extensive evaluation of the different
activation functions.
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1. Introduction

Taiwan is often confronted by several typhoon events, particularly along the coasts causing
serious coastal erosion, and subsequently significant damages to buildings, infrastructure, utilities,
and ecosystems, and mitigating its effect has become increasingly important under climate change.
The monitoring of shorelines has, therefore, become necessary. This activity usually entails ground
surveys, topographic surveys, aerial photos, or remote sensing techniques to extract the shoreline.
Moreover, it can be a daunting task to measure the shoreline using traditional techniques, which is why
in recent years unmanned aerial systems (UAS) have been employed [1]. Despite their high resolution,
weather-related challenges may limit their usage, which might call for predicting the shorelines.
Several models have been applied, such as deterministic process-based models [2], which have been
found to be computationally intensive. Besides they have been shown to have some inconsistencies
between measured and modeled data [3]. On the contrary, artificial neural networks (ANNs) have been
introduced in the field, and we have seen a dramatic increase in accuracy at much lesser costs [4–7].
Neural networks mimic how the brain works and are often dependent on activation/transfer functions
and widely used in many fields, such as Yang et al. mentioned that many electric utilities use
machine learning-based outage prediction models (OPM) to predict the impact of storms on their
networks for sustainable management [8]. Cerrai et al. used machine learning models and distributed
storm power outages across utility service territories in the Northeastern United Stages [9]. Bhuiyan
et al. also studied wind speed forecasting, using a variety of tree-based non-parametric machine
learning techniques to predict the maximum wind speed at 10 m for the selected convective weather
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variables. The wind speed generated by the model successfully encapsulates the reference wind speed,
and significantly reduces the system error and random error [10]. Kumar et al. and Hazra et al. try
to use the information of soil moisture and improve the estimation of rainfall through mechanical
learning methods [11,12]. Bhuiyan et al. conducted rainfall assessments through warm and cold
season weather patterns, and assessed the importance of rainfall improvement for hydrological
simulation [13]. Zorzetto et al. proposed a method suitable for areas with sparse data, using
the Quantitative Precipitation Estimates (QPE) probability density function to infer the sub-grid scale
properties of rainfall [14]. Additionally, a comparison of different neural networks architecture has been
reported for binary classification problems [15]; Tfwala and Wang used Multilayer Perceptron (MLP)
in estimating sediment discharge at Shiwen in southern Taiwan [16]; Chen et al. used a feed-forward
backpropagation model for estimating runoff by using rainfall data from a river basin is developed
and a neural network technique is employed to recover missing data [17]. Wang et al. studied
the potential of using the feed-forward backpropagation (BP) neural network algorithm for estimating
evapotranspiration (ETo) from temperature data [18]. Awolusi et al. also used MLP and feed-forward
networks to model the properties of steel fiber [19]. Wang et al. investigated the accuracy of a
time-lagged recurrent network (TLRN) for forecasting suspended sediment load (SSL) occurring
episodically during the storm events in the Kaoping River basin located in Southern Taiwan [20].
Sentas and Psilovikos evaluated Autoregressive Integrated Moving Average (ARIMA) and Transfer
Function models in water temperature simulation in dam-lake Thesaurus, eastern Macedonia, Greece.
From their results, Transfer function models performed better than the other [21]. Afzaal et al. used
artificial neural networks and deep learning for groundwater estimation from major physical hydrology
components. The components employed are stream level, streamflow, precipitation, relative humidity,
mean temperature, evapotranspiration, heat degree days, and dew point temperature. The deep
learning technique is found to be convenient and accurate [22]. The non-linear Auto-Regressive
Network with exogenous inputs, a type of artificial neural network, was applied to investigate the role
of the atmospheric variables in the sea level variations in the eastern central Red Sea by Zubier
and Eyouni. From their work, it clearly demonstrated that the proposed approach is effective in
investigating the individual and combined role of the atmospheric variables on residual sea-level
variations [23]. Karamoutsou and Psilovikos studied the use of artificial neural networks in water
quality prediction in Lake Kastoria, Greek, for understanding the future of the study area and to
identify the problems that may arise. Based on the statistical measures, the dissolved oxygen model
for the Giole station has produced satisfactory results [24]. While much work has been done on
the application of neural networks, and on its application in different fields of study, less has been
done on evaluating the different activation functions in shoreline predictions.

Therefore, the objectives of the study were to apply ANN to predict shorelines from past
observations, and to explore the influence of activation functions in the predictions.

2. Materials and Methods

2.1. Study Area and Data Collection

The study applied shoreline data collected from 5 beaches; Baisha (BS), Nanwan (NW), Big bay
(DW), Little bay (SW), and Chuanfanshi (TFS), all of which were located in southern Taiwan, as shown
in Figure 1 following the flowchart in Figure 2 for this study. The beaches are characterized by both
fine and coarse sand. The spatial information on each beach is developed by using aerial survey maps
provided by the Aerial Office of the Forestry Bureau for years 1982, 2002, 2006 [25], while serving as
predictors while the unmanned aerial vehicle (UAV) surveyed data of 2019 serving as the respondent.
The UAV model used was the Phantom 4 RTK (developed by Da-Jiang Innovations, DJI in Shenzhen,
China) and a detailed description of the drone and the camera equipped may be found on the DJI
website (https://www.dji.com/tw).

https://www.dji.com/tw
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Figure 1. Location and images of the five beaches collected by the unmanned aerial vehicle (UAV). 

 
Figure 2. Flow chart of the study. 
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2.2. Artificial Neural Networks (ANNs)

ANNs have gained popularity in the last decades with successful applications in many fields
such as sediment transport [16], satellite image classification [26], evapotranspiration [27], coastal
erosion [28] etc. They are a very powerful computational technique for complex non-linear relationships.
Their structure includes at least 3 layers; input, hidden, and output layers. Several ANNs have been
developed; for example, the coactive neuro-fuzzy inference system model, recurrent network models,
radial basis, multilayer perceptron, forward backpropagation, etc. In this study, however, we applied
the multiple layer perceptron (MLP) due to the learning rule it applies, the backpropagation, which is
an effective and practical learning algorithm [5,29].

Multilayer Perceptron Neural Network (MLP)

Multilayer perceptron (MLP) is characterized by the presence of one or more hidden layers, with
computation connections called hidden neurons, whose function is to intervene between the external
inputs and the network output in a useful manner. To extract high order statistics, more hidden
layers may be added. The network acquires a global perspective despite its local connectivity due
to the extrasynaptic connections and the extra dimension of neural network interconnections [30].
MLP may constitute more than a single hidden layer; moreover, previous studies have demonstrated a
single layer to be adequate for most applications [31]. It is for this reason that this study employed one
hidden layer. The equation for each MLP layer is shown in Equation (1). The structure of the model
was basically a 3-3-1 as shown in Figure 3. Inputs of the model were 100 shoreline data points for
1982, 2002, and 2006, while 2019 was the predicted shoreline. Cömert and Kocamaz mentioned that
before network training, it is necessary to understand the amount of data because of the size of the data
neurons in the neural network. During the network evaluation, 70% of the data set is used for training,
and the weights and deviations can be updated according to the network and the target output value;
15% is used for verification, so that the network stops training before overfitting occurs; 15% is used
as testing to predict the performance of the network [32]. Therefore, these data were partitioned
into 70% for training, 15% for validation and testing respectively [33,34]. Although there are several
training algorithms, we applied the second-order Broyden–Fletcher–Goldfarb–Shanno algorithm with
a maximum of 200 training cycles because of its high performance [35]. Learning rates and momentum
were both fixed at 0.1 to avoid instabilities [36] and the weight decay fixed at 0.001. The model and all
computations were performed through the platform of STATISTICA ver. 12.5 (by TIBCO, Hillview
Avenue Palo Alto in USA).

Y j = F
(∑

Wi jXi − θ j
)

(1)

where Y j is the output of neuron j, Wi j is the connection weight from neuron i to neuron j, Xi is
the signal generated for neuron i, θ j represents the bias associated with the neuron j and F(x) are
the different activation functions which are discussed in the section below.
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2.3. Activation Functions

Activation functions transform input signals from neurons of previous layers through mathematical
functions, which may have a significant effect on the overall performance of a neural network model.
Their overall function is to map any real input into a confined range, commonly from 0 to +1 or
from −1 to +1. There are many types of activation functions, but the most commonly used include
linear (sometimes referred to as identity) [37], logistic, hyperbolic tangent, Gaussian [38], threshold,
sine functions, exponential linear unit, rectified linear units [39] etc. This study selected 5 activation
functions (Identity, Tahn, Logistic, exponential and sine) to explore their impacts on a multilayer
perceptron model. Their brief description is provided below.

2.3.1. Identity Function

This function returns a similar value used as its argument, simply obtained by the formula below:

y = α (2)

where α is observed coordinate Y-axis.

2.3.2. Hyperbolic Tan Function (Tanh)

Tahn is a symmetric s-shaped (sigmoid) function, whose output lies in the range (from −1 to +1)
commonly used in MLP networks.

y =
1

1− e−α
(3)

2.3.3. Logistic Function (Logistic)

This function differs from the Tahn function in that its output lies in the range (from 0 to +1).
It is illustrated by the equation:

y =
eα − e−α

eα + e−α
(4)

2.3.4. Exponential Function

The outputs of the function are from 0 to infinity. It is mostly applied when the target is positive.

y = e−α (5)

2.3.5. Sine function

The sine function has a similar output range with the Tahn function, but is often used when
the data being modeled is radially distributed.

y = sin(α) (6)

2.4. Models Evaluation

In this study, the models were evaluated according to Liu et al. and Gupta et al. using two indices,
the root mean square error (RMSE), and the Kling–Gupta efficiency (KGE), and the formulas are listed
in Equations (7)–(9), respectively [7,40]. The RMSE is a measure of the residual variance while r is a
measure of accuracy and is usually used to compare different models.

r =
∑n

t=1(xobs(t) − xobs)(xest(t) − xest)√∑n
t=1 (xobs(t) − xobs)

2 ∑n
t=1(xest(t) − xest)

2
(7)
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RMSE =

√√
1
n

n∑
t=1

[xest(t) − xobs(t)]
2 (8)

KGE = 1− EDED =

√
(r− 1)2 + (α− 1)2 + (β− 1)2 (9)

where xobs(t) represents the observed coordinate X axis, xest(t) is the alternative methods-estimated
coordinate X axis value; xobs and xest are the mean values of the equivalent parameter; and n is
the number of data under consideration. Additionally, a linear regression y = α1x + α0 is applied
for evaluating the models’ performance statistically, where y is the dependent variable (alternative
methods), x the independent variable (observed), α1 the slope, and α0 the intercept. ED is the Euclidian
distance from the ideal point, α is the ratio between the standard deviation of simulated and the standard
deviation of the observed coordinates, β is the ratio between the mean simulated and mean observed
coordinates, and represents the bias, r can be interpreted as the potential value of KGE. The ideal value
for KGE just like r is at unity.

3. Results and Discussion

Table 1 shows the performance of the different activation functions in the five beaches.
Logistic and Tahn activation functions are shown to have better overall performance, with higher r
and KGE values and lower RMSE values. Logistic activation performed better at Baisha, Nanwan
and Chuanfanshi, with r of respectively, 0.999, 0.983 and 0.999 during the testing phase. Similar
patterns were observed with the KGE values, except for slight differences at Baisha and Nanwan.
Due to the lower associated errors, reflected by the lower RMSE and bias value (β), and the very
slight differences between the r and KGE values, the Logistic activation function was still found to be
better. Tahn performed best in the remaining beaches; Big Bay (r = 0.997) and Little Bay (r = 0.994).
Training cycles and the respective errors during training and testing phases are shown in Figure 4.
In all simulated cases, the errors follow a specific pattern, showing a significant drop with 5 training
cycles. Some instabilities are observed however at NW using the logistic activation function. Deviating
from observations made by Parascandolo et al. [41] who suggested that the Tahn function may be
replaced by the Sine function, our results suggest that different functions may be applicable to specific
scenarios or fields.
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Table 1. Performance of the different activation functions.

Location Function
Training Validation Testing

RMSE KGE r β α RMSE KGE r β α RMSE KGE r β α

BS

Exponential 4.092 0.995 0.999 1.000 1.005 1.963 0.991 0.999 1.000 0.991 4.092 0.973 1.000 1.000 0.973
Identity 4.944 0.961 0.994 1.000 1.039 5.099 0.962 0.997 1.000 1.038 3.912 0.987 0.995 1.000 1.012
Logistic 3.195 0.995 0.999 1.000 1.005 2.856 0.993 0.999 1.000 0.993 3.153 0.988 0.999 1.000 0.988

Sine 8.685 0.961 0.994 1.000 1.039 7.712 0.962 0.997 1.000 1.038 6.653 0.987 0.995 1.000 1.012
Tahn 7.003 0.977 0.996 1.000 1.023 7.411 0.996 0.997 1.000 0.997 6.587 0.995 0.996 1.000 0.998

DW

Exponential 11.318 0.973 0.992 1.000 1.026 5.093 0.978 0.995 1.000 1.022 9.479 0.995 0.998 1.000 0.996
Identity 13.914 0.985 0.994 1.000 1.014 5.572 0.978 0.996 1.000 1.021 12.153 0.983 0.993 1.000 1.016
Logistic 9.042 0.989 0.995 1.000 1.010 8.531 0.987 0.997 1.000 1.013 8.120 0.993 0.994 1.000 0.996

Sine 9.820 0.985 0.994 1.000 1.014 8.812 0.978 0.996 1.000 1.021 8.330 0.983 0.993 1.000 1.016
Tahn 8.459 0.996 0.996 1.000 1.002 8.210 0.985 0.997 1.000 0.985 7.782 0.994 0.994 1.000 1.001

NW

Exponential 7.504 0.951 0.975 1.000 1.042 6.303 0.763 0.981 1.000 1.237 6.647 0.794 0.988 1.000 1.205
Identity 14.263 0.932 0.969 1.000 1.061 10.096 0.798 0.972 1.000 1.200 17.322 0.702 0.985 1.000 1.298
Logistic 6.513 0.968 0.982 1.000 1.027 6.955 0.741 0.985 1.000 1.258 5.898 0.716 0.983 1.000 1.284

Sine 8.100 0.932 0.969 1.000 1.061 6.400 0.798 0.972 1.000 1.200 8.295 0.702 0.985 1.000 1.298
Tahn 7.031 0.970 0.981 1.000 1.023 7.01913 0.854 0.969 1.000 1.143 8.179 0.870 0.983 1.000 1.129

SW

Exponential 1.489 0.996 0.998 1.000 1.004 5.283 0.972 0.986 1.000 1.024 3.995 0.942 0.957 1.000 1.039
Identity 1.751 0.968 0.994 1.000 1.032 5.570 0.946 0.979 1.000 1.050 4.280 0.913 0.942 1.000 1.065
Logistic 1.693 0.991 0.997 1.000 1.008 5.113 0.966 0.987 1.000 1.032 3.751 0.950 0.960 1.000 1.031

Sine 2.351 0.968 0.994 1.000 1.032 5.927 0.946 0.979 1.000 1.050 4.670 0.913 0.942 1.000 1.065
Tahn 1.417 0.997 0.998 1.000 1.003 4.052 0.984 0.991 1.000 1.014 3.181 0.960 0.973 1.000 1.029

TFS

Exponential 1.155 0.998 0.999 1.000 1.002 1.326 0.998 0.999 1.000 0.999 1.206 0.987 0.999 1.000 0.994
Identity 2.190 0.969 0.985 1.000 0.973 2.194 0.979 0.985 1.000 1.015 2.505 0.942 0.985 1.000 1.056
Logistic 1.051 0.999 0.999 1.000 0.999 0.982 0.999 1.000 1.000 1.001 0.916 0.994 0.999 1.000 0.987

Sine 4.735 0.969 0.985 1.000 0.973 4.297 0.979 0.985 1.000 1.015 5.104 0.942 0.985 1.000 1.056
Tahn 1.550 0.998 0.998 1.000 0.998 1.599 0.986 0.999 1.000 1.014 1.537 0.983 0.998 1.000 1.017
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A visual of the estimated shoreline and the accuracy of the neural network in 2019 is further
demonstrated in Figure 5. Prediction of the shoreline at NW is shown to be poorer than the other beaches.
This is reflected by the higher errors during the testing cycle as shown in Figure 4. And the predicted
change under both the training and the testing phases as can be found in Figure 5.
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4. Conclusions

The knowledge of shoreline changes can play a crucial role in managing coastal areas, especially in
storm-prone areas like Taiwan. The accurate prediction of such changes is also essential. The artificial
neural network model applied (MLP) herein has demonstrated the application of artificial intelligence
in this field. Additionally, the results have demonstrated the crucial role of activation functions in
the application of such models. For modeling the shoreline change, different activation functions were
considered. Logistic and Tahn functions were shown to perform better than Identity, Exponential
and Sine Functions. The criteria used to select the best function were the highest R2 and the lowest
RMSE. The findings serve as a valuable reference to the prediction of shorelines.
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