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Abstract: This paper uses a two-fold multi-criteria decision-making (MCDM) approach applied for
the first time to the field of microbial management of drinking water distribution systems (DWDS).
Specifically, the decision-making trial and evaluation laboratory (DEMATEL) was applied removing
the need for reliance on expert judgement, and analysed interdependencies among water quality
parameters and microbiological characteristics of DWDS composed of different pipe materials.
In addition, the fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) ranked
the most common bacteria identified during trials in a DWDS according to their relative abundance
while managing vagueness affecting the measurements. The novel integrated approach presented
and proven here for an initial real world data set provides new insights in the interdependence
of environmental conditions and microbial populations. Specifically, the application shows as the
bacteria having associated the most significant microbial impact may not be the most abundant. This
offers the potential for integrated management strategies to promote favourable microbial conditions
to help safeguard drinking water quality.

Keywords: drinking water distribution systems; water quality monitoring; microbiological
assessment; multi-criteria system analysis; DEMATEL; FTOPSIS

1. Introduction

1.1. Microbial Quality of Drinking Water

The delivery of good quality water through drinking water distribution systems (DWDS) has
fundamental implications for public health. However, it is known that the quality, and hence potential
safety of water, deteriorates when travelling through pipes because of interactions with the microbiome
in these large and complex engineered systems. The World Health Organisation [1] have published
several editions of the Guidelines for drinking water quality, reporting information about standardised
microbial analysis of DWDS [2]. Although methods besides the standard analysis such as those based
on molecular/genetic information and flow cytometry are starting to be used to monitor systems
failures, the current official regulations and guidelines do not provide any guidance on how to use the
information gathered from these methods to establish water quality or safety.

Broadly speaking, it is crucial to develop accurate processes of water quality analysis [3], which
have to be based on a principle of absence of harmful elements including potential opportunistic
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pathogens [4]. As explained by McClymont et al. [5], water networks are among the most complex of
key infrastructures, being made of a wide set of physical elements such as valves, pipes, joints, pumps,
tanks and many other hydraulic devices. Given the complexity of these structures [6], they constantly
require effective system management, in terms of control, maintenance and rehabilitation to prevent
safety impacting failures, such as contamination [7].

Indeed, once water within DWDS is contaminated it can be difficult and costly to restore back to a
safe state. It is therefore desirable that actions aimed at preventing such risks must be implemented in
water networks. Potential processes rely on monitoring water quality at regular time intervals [8] at
sources of water supply, inputs to the distribution network after treatment and within the DWDS [9].

Regarding the microbial ecology of DWDS, most microorganisms inhabiting these systems can be
found in biofilms [10]. Biofilms can be defined as a dynamic sessile community of cells attached, in this
case, to the walls of the pipes, and embedded in a matrix of extracellular polymeric substances that
they have produced [11]. Biofilm accumulation on pipe surfaces can be influenced by different DWDS
properties, like pipe characteristics including composition, diameter, roughness, etc., hydrodynamic
conditions or nutrient availability like phosphate [12]. Also, they can alter the quality of water,
participating in metal bio-corrosion processes [13], discolouration events [14] and act as reservoirs
for opportunistic pathogens [15,16]. Water companies use various methods to manage the presence
of microorganisms in DWDS, like chemical disinfection such as keeping a chlorine residual to limit
planktonic regrowth, or physical cleaning techniques such as flushing to remove material. However,
biofilms have mechanisms that protect them from such adverse conditions that allows them to persist
in DWDS [17,18].

Microorganisms in drinking water systems must be monitored and regularly tested by law [19].
However, most of the testing occurs by very infrequently sampling bulk water, thus not sampling
biofilms, and using culturing methods that are not representative of the actual microbial ecology [20].
Various approaches aimed at detecting microbial contamination in DWDS have been proposed in
the literature. For example, Ikonen et al. [21] proposed a pilot-scale DWDS endowed with an on-line
control system making use of pH and temperature sensors as an alternative to traditional water quality
monitoring frameworks to reveal bacterial intrusion, whilst Wang et al. [22] led a study about antibiotic
contaminants released in DWDS aimed at implementing an environmental risk management plan for
drinking water sources.

The survival and regrowth of microorganisms in DWDS will be affected not only by microbiological
factors, but also the interaction with various physicochemical factors [12,23]. In this regard, a study
aimed at bounding the main parameters of water networks and the presence of particular bacteria
would be valuable to understand how these two aspects influence each other and could result in the
implementation of an effective risk management plan [24].

1.2. Multi Criteria Decision-Making

Given the complexity of the DWDS environment that is created inside the pipes and the high
number of interacting variables, a multi-criteria decision-making (MCDM)-based approach may provide
an efficient management support tool. Several studies based on modelling with decision-making in
DWDS management can be found. For example, Henriques and Louis [25] developed a decision-making
model based on a capacity factor analysis to select the most appropriate drinking water supply and
greywater reuse technology for developing communities. Ramos-Martínez et al. [26] integrated
meta-analysis and multi-agent system label propagation via discriminant analysis to identify areas
with different biofilm development trends in a water supply system. The same authors also designed a
biofilm formation model in DWDS using multi-agent systems [27] and machine learning techniques [28].

The decision-making trial and evaluation laboratory (DEMATEL), first implemented by Fontela
and Gabus [29,30], is recognised as a tool to identify cause-effect elements of a complex decision-making
problem. The method is capable to handle evaluations of interdependent relationships to establish
which elements are more critical by means of a visual structural model [31]. Over the last decade,
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it has been successfully applied for solving complicated system problems in various research areas [32].
However, a lack of applications in the field of microbial control and management strategies in drinking
water systems exist. With this recognition, it is proposed DEMATEL may be used as an effective
tool for the analysis and establishment of relations of interdependence among the most important
factors measured in DWDS. Such understanding could contribute to the creation of more suitable
environmental conditions in water networks, since variations in parameters characterised by a higher
degree of interdependence may be related to key aspects needed to manage the microbiology of
these systems.

The fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) [33] is an
extension of the traditional TOPSIS [34] methodology under a fuzzy environment. It allows ranking
of huge numbers of alternatives according to various criteria suitably weighted, on the basis of the
compromise solution concept [35]. The advantage of using fuzzy instead of crisp numbers is represented
by the possibility of taking into account the uncertainty often characterising parameter evaluations [36].
Palczewski and Sałabun [37] led a comprehensive literature review analysing FTOPSIS applications
over the past decade. They highlighted six main areas of application: supply chain management,
environment and energy, energy, healthcare, business and others. Using this classification, a lack of
applications of the FTOPSIS method is revealed in the drinking water sector. The study also notes
FTPOSIS has been integrated with other MCDM techniques, the DEMATEL among them, as presented
in this work. DEMATEL and TOPSIS/FTOPSIS techniques have been and continued to be used to
support various issues, such as supplier selection [38], financial services evaluation [39], educational
model design [40] and medical tourism development [41].

Literature reviews have failed to identify MCDM approaches combining DEMATEL and FTOPSIS
in the field of microbial evaluation in DWDS. Further novelty exists also in considering as evaluation
criteria the specific type of pipe material, each one characterised by different values of parameters such
as temperature or pH, that lead to the presence in different concentrations of elements responsible
for discolouration or corrosion phenomena including iron, manganese or aluminium [42]. Moreover,
regarding DEMATEL application, a modification within the framework of the methodology is herein
proposed, aimed at reducing vagueness of evaluations.

The present research proposes a two-fold approach. It first investigates the possibility of exploring
interrelations existing among the main elements of the process of microbial evaluation by applying the
DEMATEL technique. The second objective, given the wide microbial diversity of the data obtained
from the case study, consists of treating problems of large size and managing uncertainty affecting
input data through the FTPOSIS method. The outcome aims to provide water utilities with a structured
methodology capable to first collect an understanding about which elements have higher influence on
the others and, second, easily identify the presence of dominant members of microbial communities
according to pipe material used in the studied DWDS.

2. Aim and Structure

In this paper the applicability of MCDM methods is investigated to study the dependencies that
exist among the main factors of the microbial evaluation problem (that are water quality parameters
and bacteria classes) and the degree of relative microbial presence in DWDS. With this aim, a case study
was undertaken using data from a DWDS in the UK, where flushing trials were performed to study the
microbial composition of material attached to plastic and cast iron pipes supplied by surface water.
The DEMATEL methodology applied to this data may be suitable to approach biofilm-related issues by
water utilities and the FTOPSIS to evaluate microbial presence according to the type of pipe material.

The paper is organised as follows. Section 3 refers to materials and methods of the research.
In particular, Section 3.1 details the approach proposed to manage the process of microbial evaluation,
as well as the main elements we are going to take into account. Section 3.2 describes the MCDM-approach
supporting the problem of interest, by providing objectives and concise descriptions of DEMATEL
and FTOPSIS. Section 3.3 presents the case study applied to a real DWDS. Section 4 reports the results
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and also a sensitivity analysis performed to check robustness and to derive practical management
implications. Conclusions and possible further developments of the present research are lastly provided
in Section 5.

3. Materials and Methods

3.1. The Problem of Microbial Evaluation for DWDSs

The decision-making problem tackled in the present paper involves carrying out a process of
DWDS microbial evaluation through the support of a MCDM-based analysis. As highlighted by
Zhu et al. [43], drinking water quality directly depends on pipe condition, thus this is considered
as the main critical component in the present context of analysis. In relation to the specific type of
pipe material, it is possible to quantitatively measure the various water quality parameters (such as
turbidity or residual chlorine), as well as microbiology, the latter in terms of relative abundance of
bacteria determined using a next generation sequencing method. These two factors (water quality
parameters and microbiology) are strictly correlated so that studying their mutual relationships is
crucial to pursue effective management. This information can improve understanding how general
environmental conditions may change by varying one or more of the most influencing factors, since
their variations have a direct or indirect impact on all the other factors of analysis.

By coupling this with a posteriori analysis of the types of bacteria detected in pipes of different
materials, a final ranking of bacteria is proposed, showing their degree of relative abundance by
assuming as the main criteria of analysis the pipe materials used in DWDS. The decision criteria may
be additionally weighted based on which material is mostly used in a network, leading to different
bacteria rankings. Getting a clear vision or the relations of interdependencies among factors and
microbial distribution in water pipes represents the main stage from which an effective management
strategy can be planned and implemented. Figure 1 details the proposed approach for the process of
microbial evaluation management.

3.2. Integrated MCDM Approach

This subsection describes the joint MCDM-based approach proposed to deal with the microbial
evaluation problem under analysis with the next two subsections describing the two methodologies
used. First, DEMATEL is applied to a set of input data using water quality parameters and microbial
classifications in order to show which elements have most influence on the others.

A modification of the traditional DEMATEL technique is then proposed, related to the stage
of input data collection. This modification aims to make more trustworthy the whole analysis as
subjective expert evaluations are substituted for measured parameters with statistical correlations.
The FTOPSIS technique is then applied to show which types of bacteria exhibit higher or lower relative
abundance in DWDS pipes, considering pipe material as the evaluation criteria.

3.2.1. Modified DEMATEL to Establish Relationships of Influence among Elements

Decision-making about drinking water supply systems require consideration of the mutual
dependence existing between key factors and what may be effectively achieved by means of a
DEMATEL-based application [44]. Indeed, if dependencies are not taken into account, decision-making
results would be compromised. The DEMATEL technique is herein applied to understand the degree
of intensity of the relationships existing among the most important quality parameters and the
microbiological components characterising DWDS pipes of different materials.

To achieve this, the classical DEMATEL approach requires the support of a team of experts in the
field to get a better understanding about the problem under analysis. However, in this case, influence
relations among elements can be directly measured by performing suitable statistical analyses. This
approach is of great interest to minimise uncertainty derived from expert subjectivity, a main limitation
of the DEMATEL approach [45]. After defining the general goal of the decision-making problem under
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analysis and the set of elements to be evaluated, the main steps implementing the modified technique
are described in the following.

1. Collecting the non-negative input matrix, X, whose cells give the relation of influence xi j of
one element, i, over another one, j, according to the following linguistic evaluation scale: 0 (no
influence), 1 (very low influence), 2 (low influence), 3 (high influence), 4 (very high influence).
The main diagonal of the matrix will be zeroes, since one element has no influence on itself.

2. According to the traditional DEMATEL procedure [29,30], the previous stage is carried out by
involving a decision-making group and by asking each expert to fill in their own input matrix. All
these matrices are then aggregated into one, the so called direct relation matrix, A (output of the
third stage of the procedure), with the aim to treat the set of input data in a way as balanced and
reliably as possible. In this paper, a single input matrix is used, in which, instead of subjective
expert evaluations, the relations of influence for each pair of elements are derived from the related
values of measured Spearman correlations. Hence, the direct relation matrix A coincides with a
single input matrix X.

3. Calculating the normalised direct relation matrix N as:

N = sX, (1)

s being a positive number slightly smaller than

min

 1
max
1≤i≤n

∑n
j=1 xi j

,
1

max
1≤ j≤n

∑n
i=1 xi j

. (2)

Matrix N shows the initial influence that elements exert on and receive from the others. The next
step consists of obtaining a continuous decrease of indirect effects among factors in terms of
consecutive powers of N.

4. Obtaining the total relation matrix, T, which collects the total interrelation, including both direct
and indirect effects among elements, which can be calculated as the sum of the powers of the
normalised direct relation matrix N, given by:

T = N(I −N)−1, (3)

where I is the identity matrix. As observed, for example, in lim
n→∞

Nn = 0 [46], since the spectral
radius of N is smaller than 1, being bounded by the maximum row and column sum. Then,
as shown for instance by Meyer [47], the power series of the normalised direct relation matrix
converges to (I –N)−1. Moreover, it has to be noticed that, whereas the main diagonal of matrix N
is filled with zeroes (expression of no direct effect of each element on itself), the diagonal entries
of the total relation matrix T collect all the non-direct effects related to their corresponding factors.

5. Defining the two vectors r = (ri) and c =
(
c j
)
, respectively representing the n × 1 and 1 × n

vectors of sums of the rows and sums of the columns in the total relation matrix T. From these
two vectors it is possible to calculate the prominence as the sum ri + ci, reflecting the general
effect of element i on all the other elements, and the relation as the subtraction ri − ci, helping in
dividing the elements into classes of cause (if positive) and effect (if negative).

6. Drawing up the final ranking of elements, ordered according to their decreasing values
of prominence.

3.2.2. FTOPSIS to Rank Bacteria according to the Type of Pipe Material

As expressed by Gerami Seresht and Fayek [48], fuzzy set theory [49] is a powerful tool to deal
with subjectivity and uncertain information in a wide variety of contexts.
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Fuzzy numbers are associated with a degree of membership µ(x) varying between 0 and 1 and
are commonly used to quantitatively represent linguistic variables. The most common types of fuzzy
numbers are characterised by a triangular or a trapezoidal shape.

A generic triangular fuzzy number (TFN) ñ is defined by three numerical values, l, m and u,
respectively called the lower, the medium and the upper value of the fuzzy number, being l ≤ m ≤ u.
A generic trapezoidal fuzzy number TrFN r̃ is defined by four numerical values, l, m1, m2 and u,
respectively called the lower, the two medium and the upper values of r̃; being l ≤ m1 ≤ m2 ≤ u.
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Their corresponding membership functions µñ(x) and µr̃(x) are expressed as follows:

µñ(x) =


x−l
m−l for l ≤ x ≤ m
x−u
u−m for m ≤ x ≤ u

0 otherwise
(4)
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µr̃(x) =


x−l

m1−l for l ≤ x ≤ m1

1 for m1 ≤ x ≤ m2
x−u

m2−u for m2 ≤ x ≤ u
0 otherwise

(5)

It is possible to note that membership functions of TFNs can be split into non-decreasing and
non-increasing parts and, in the case of TrFNs, these two parts are linked through the constant function
taking the value of 1 [50]. By dealing with fuzzy instead of crisp numbers, as the traditional TOPSIS
method does, the FTOPSIS technique is considered more suitable when representing real-life situations.

As expressed in Section 3.1, final decisions about the management of microbiology of DWDS
depend on the particular type of pipe material present, each one characterised by different values of
water quality parameters and thus different bacteria concentrations. Fuzzy input data is about these
aspects (see Section 4). The steps required to apply the FTOPSIS method are the following.

1. Defining the fuzzy decision matrix X̃ collecting input data:

X̃ =


x̃11 · · · x̃1n

...
. . .

...
x̃m1 · · · x̃mn

 (6)

where the generic fuzzy number x̃i j represents the rating of alternative i under criterion j. In the
present case, TFNs characterized by ordered triples are taken into account:

x̃i j =
(
li j, mi j, ui j

)
. (7)

2. Obtaining matrix Z̃ by weighting and normalising the fuzzy decision matrix of input with relation
to each criterion. Elements of matrix Z̃ are calculated as:

z̃i j =

 li j

u∗j
,

mi j

u∗j
,

ui j

u∗j

·w j, j ∈ I′, (8)

z̃i j =

 l−j
ui j

,
l−j
mi j

,
l−j
li j

·w j, j ∈ I′′ , (9)

where I′ is the subset of criteria to be maximised, I′′ the subset of criteria to be minimised, w j
expresses the weight of criterion j, and u∗j and l−j are calculated as:

u∗j = max
i

ui jif j ∈ I′, (10)

l−j = min
i

li jif j ∈ I′′ . (11)

3. Computing distances between each alternative and two fuzzy ideal solutions, namely the fuzzy
positive ideal solution S∗ and the fuzzy negative ideal solution S−:

S∗ =
(̃
z∗1, z̃∗2, . . . , z̃∗n

)
, (12)

S− =
(̃
z−1 , z̃−2 , . . . , z̃−n

)
, (13)

where z̃∗j = (1, 1, 1) and z̃−j = (0, 0, 0), j = 1 . . . n. Chen (2000) proposed to compute distances
between each alternative and these points through the vertex method, for which the distance
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d(̃n1, ñ2) between two TFNs ñ1 = (l1, m1, u1) and ñ2 = (l2, m2, u2) corresponds to the following
crisp value:

d(̃n1, ñ2) =

√
1
3

[
(l1 − l2)

2 + (m1 −m2)
2 + (u1 − u2)

2
]
. (14)

Then, aggregating with respect to the set of considered criteria, the distances of each alternative i
from S∗ and S− are:

d∗i =
n∑

j=1

d
(̃
zi j, z̃∗j

)
i = 1 . . . n, (15)

d−i =
n∑

j=1

d
(̃
zi j, z̃−j

)
i = 1 . . . n. (16)

4. Calculating the closeness coefficient CCi to get the final ranking. The mentioned closeness
coefficient CCi is calculated as:

CCi =
di
−

di− + di∗
. (17)

To get the final ranking it is necessary to sort the values of the closeness coefficient related to each
alternative in a decreasing way. The elements with higher CCi values will be selected.

3.3. Case Study

The case study presented is aimed at testing the effectiveness of the proposed MCDM approach
by applying it to the process of microbial evaluation and management of a real operational DWDS in
the United Kingdom, where the water is disinfected with chlorine.

The present application is carried out by using the input data published by Douterelo et al. [12],
by taking into account the measurements of elements (water quality parameters and bacteria relative
abundance), from flushing trials repeated four times in one year, of plastic and cast iron pipes.

Flushing trials were undertaken in a sequential unidirectional manner using different duration and
flow rates. Some physicochemical parameters like pH, temperature and free chlorine were measured in
situ during the trials, and the other parameters were determined by United Utilities Scientific Services
in accordance with drinking water regulation requirements. Microbiological samples came from the
water taken in the different flushing trials, and represent the microbial communities in the material
mobilised from flushing pipes water was filtered through a nitrocellulose membrane filters, and the
DNA was extracted and sequenced by Illumina MiSeq sequencing. Nonparametric Spearman’s rank
correlation analysis was carried out to establish relationships between physicochemical parameters in
the water, bacteriological indicators (richness and diversity), and the relative abundances of the most
representative bacterial phyla in the samples. The detailed analysis of sequencing data can be found in
Douterelo et al. [12].

The dataset of factors is synthetized and codified in Table 1. Such microbiological factors that
might affect water quality, as diversity and richness, are considered as quality parameters. Richness
refers to the total number of different operational taxonomic units (OTUs) performed at a 97% sequence
similarity cut-off for each sample and diversity refers to the proportional abundance of a particular
phylotype relative to the sum of all phylotypes [18].
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Table 1. Factors taken into account for the multi-criteria decision-making (MCDM) analysis.

Water Quality Parameter Bacterial Class

P1 Richness B1 Alphaproteobacteria B14 Clostridia
P2 Diversity B2 Betaproteobacteria B15 Planctomycetia
P3 Turbidity B3 Gammaproteobacteri B16 Spirochaetia

P4
Total organic

carbon B4 Deltaproteobacteria B17 Sphingobacteriia

P5 Temperature B5 Bacilli B18 Anaerolineae
P6 pH B6 Actinobacteria B19 Cytophagia
P7 Chlorine B7 Mollicutes B20 Holophagae
P8 Aluminium B8 Flavobacteriia B21 Spirochaetes
P9 Iron B9 Bacteroidia B22 Chloroflexi
P10 Manganese B10 Cyanobacteria B23 Firmicutes
P11 Nitrate B11 Acidobacteria B24 Gemmatimonadetes
P12 Phosphate B12 Bacteroidete B25 Verrucomicrobia
P13 Sulphate B13 Planctomycetes

4. Results and Discussion

As the first stage, use is made of the results derived from the nonparametric Spearman’s rank
correlation analysis carried out on the datasets of factors (Figure S1 provided as supplementary material
of paper [12]). Correlation results referring to each pair of elements had already been compiled in
a symmetric correlation matrix. Accordingly, the input matrix for the DEMATEL application is a
symmetric matrix in which 0 corresponds to the elements of the main diagonal and to absolute values
of Spearman correlation between 0 and 0.2; 1 to values between 0.2 and 0.4; 2 to values between 0.4
and 0.6; 3 to values between 0.6 and 0.8; 4 to values between 0.8 and 1.

The substitution of subjective evaluations for measured parameters with statistical correlations
removes the need for reliance on expert judgement and helps in making more trustworthy the whole
analysis. After having calculated the total relation matrix T (Table S1, Supplementary Material),
Table A1 (Appendix A) shows the values of prominence along with the ranking of considered factors.
The factors occupying the first positions of the ranking (such as iron, phosphate, Betaproteobacteria,
turbidity and manganese) are those having the highest impact on all the other factors. This means that
variations on these parameters may be related to variations of all the other factors. On the contrary,
variations on the elements at the bottom of the ranking (Alphaproteobacteria, Planctomycetes, Sulphate,
Richness, Actinobacteria) are scarcely responsible to variations on the other aspects.

Figure 2 presents a chart showing the values of prominence necessary to get the final ranking
of factors.

After having evaluated the interdependences among water quality parameters and class of bacteria
detected, we apply the fuzzy TOPSIS technique to rank the bacteria Bi (i = 1, . . . , 25) according to two
evaluation criteria, namely the two different types of pipe materials analysed in [12], i.e., plastic (C1)
and iron (C2). Bacteria evaluations under the two considered criteria are triangular fuzzy numbers
representing the relative abundance of bacteria detected in each type of pipe in a given interval of
time. Each fuzzy number gives three values representing the lower, the medium and the higher
level of bacteria relative abundance observed from three measurements performed in a given month
of observation.

To understand how bacteria ranking changes over a period of observation of one year, the FTOPSIS
was applied to four different months (February 2012, June 2012, October 2012, February 2013). Table A2
(Appendix A) gives the fuzzy evaluations of bacteria abundances referred to the first measurement
carried out in February 2012, whereas Table A3 (Appendix A) presents the related normalised and
weighted fuzzy matrix, in which C1 and C2 are equally weighted. Both criteria have to be minimised
since we assume as positive ideal condition the total absence of bacteria both in plastic and cast iron
pipes and, as negative ideal condition, the maximum bacteria abundance.
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The output of the procedure is a final ranking of bacteria (Table A4, Appendix A), each one
associated to a closeness coefficient expressing its distance to the ideal conditions. Higher values of
closeness coefficients represent better conditions, because they are expressions of higher distance to the
negative ideal condition and lower distance to the positive ideal condition. In other words, by ordering
the values of closeness coefficient in an increasing way, the first positions in the ranking (associated
with lower values of CC) present those types of bacteria to be analysed with priority, having the highest
joint (for plastic and cast iron pipes) percentage of concentration.Water 2020, 12, x FOR PEER REVIEW 9 of 19 
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Figure 2. Prominence values for all the considered factors.

As can be observed in Table A4, the final ranking demonstrates Alphaproteobacteria and Actinobacteria
as the two most abundant species in all the four measurements, as Douterelo et al. [12] indicated.
Moreover, bacteria less abundant are Holophagae in February 2012, Spirochaetes in June and October
2012, and Mollicutes in February 2013.

Results are summarised in Figure 3, where the set of 25 detected bacteria is categorised for each
month of observation. The bars of the graph are related in an inverse way to the CC values. The values
of the CC referring to bacteria have been normalised with respect to the maximum closeness coefficient
evaluated within a specific observation time. It means that the minimum CC is associated with a value
equal to 1 in Figure 3. Thus, taller bars express higher distances to the positive ideal solution, indicating
higher bacterial abundances, thus pointing to those species needing attention and action measures.

The methodology agrees with Douterelo et al. [12] in that phosphate, turbidity and metals (iron and
manganese) are the most relevant parameters affecting the ecosystem of the DWDS studied (Figure 2).
However, it provides us with a new approach about the bacteria influence, highlighting the group of
Betaproteobacteria as the microbial group mainly related with the other components, something that
Douterelo et al. [12] did not take into account. This is of interest as this group could be displaced from
subsequent analyses by other groups such as the Alphaproteobacteria and Actinobacteria (Figure 3) that,
despite being more abundant, have a minor impact on the other factors (Figure 2). The new methodology
applied, indicates that it may not always be the most abundant microorganism in a system that plays
a key role in determining processes taking place in DWDS. The most abundant microorganisms do
not always have the highest influence on the other microorganisms and physicochemical parameters.
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Therefore, data of relative abundance of microorganisms cannot be considered in isolation and other
parameters within the system need to be taken into account when decision and control strategies
are considered for DWDS. Traditional decision-making strategies and management practices should
therefore move away from estimating microbial loads and move towards more useful evaluations of
influence of microorganisms with environmental parameters (e.g., phosphate, turbidity and metals) in
a specific context.
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By taking into consideration the importance of the Betaproteobacteria group, it can lead to a
better understanding about relationships among different parameters. For example, it has been
reported that Betaproteobacteria contributes positively to enhance biological phosphorus removal under
laboratory-scale conditions [51]. Also, in a freshwater reservoir, Betaproteobacteria seems to dominate and
outgrow other bacteria when the concentration of inorganic or organic phosphorus increases and then
to survive with phosphorus depleted conditions due to cytoplasmic phosphorus storage [52]. Recently,
Ferro et al. [53] published a critical review about Betaproteobacteria in drinking water, recommending
to put Betaproteobacteria in DWDS among the potentially relevant safety biomarkers, supporting the
findings from this work. The authors highlighted the importance of this group in drinking water
because of its resistance to chlorine-based disinfection treatments because of its ability to form biofilms
and to degrade chlorinated compounds [54]. This disinfection resilience is associated with multidrug
resistance (such as antibiotics) and resistance to other stress situations, which, in turn, can increase gene
transfer and recombination events between bacterial communities, favouring antimicrobial resistance
and the survival of pathogenic species [53].

To complete the case study, a sensitivity analysis has been conducted on the normalised values of
closeness coefficients (reflecting bacteria abundance). This is achieved by varying criteria weights w1

and w2 in the FTOPSIS application with attribute weights of 30%, 10%, 70% and 90% to the plastic pipe
material (C1) and their complements, 70%, 90%, 30% and 10%, to the cast iron pipe material (C2). Final
results are shown in Figure 4, indicating that the abundance of bacteria varies depending on the season,
and only seven groups of bacteria (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacilli,
Actinobacteria, Cyanobacteria and Clostridia) have a significant relevance throughout the year of sampling.
Therefore, these bacterial groups can be considered as core components of microbial communities
in material attached to pipes since they persisted in the system. It is considered remarkable that by
varying weights attributed to the pipe materials, some groups of bacteria vary with respect to the
others. This can be clearly observed in June 2012 with the groups of Betaproteobacteria, Actinobacteria
and Clostridia, and in October 2012 with Alphaproteobacteria and Actinobacteria (Figure 4). Also, it seems
that higher importance is attributed to the plastic pipe material, with higher relevance of bacteria.
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Figure 4. Sensitivity analysis on normalised CC values by varying criteria weights.

Results reported in Figure 4 indicate that bacterial abundance should not be the only factor taken
into consideration by water utilities to establish management strategies. This approach provides
water companies with a tool to locate those most relevant factors of the system. For example, from
the knowledge of the most important physicochemical and biological factors, these can be altered to
promote the proliferation of those microorganisms positively influencing quality of supplied drinking
water. This could be achieved by favouring the growth of non-pathogenic microorganisms that, on
one hand, are capable to produce natural compounds fundamental to maintain and improve pipe
conditions and, on the other hand, to displace opportunistic pathogens with possible associated
health risks.
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5. Conclusions

For the first time this work has shown that by using a multi-criteria decision-making approach,
microbial ecology can be integrated as part of drinking water distribution systems management
decisions. Results have shown:

• Mutual interdependencies existing among water quality parameters (e.g., iron, chlorine, phosphate
etc.,) and bacterial class can be determined by the decision-making trial and evaluation laboratory,
also removing the need for reliance on expert judgement.

• Bacterial classes can be ranked according to their relative abundance depending on pipe materials
using the fuzzy technique for order preference by similarity to ideal solution.

• The method reveals that the critical bacterial classes, those that have the most inter-dependencies
and therefore potential management impact, may not be the most abundant.

• Initial application of the approach generated new knowledge of the physicochemical and biological
parameters that are most likely to influence the presence and relative abundance of bacterial
classes, for the limited data set available. Such knowledge will allow water companies to inform
management strategies to promote favourable bacterial communities and hence help to safeguard
drinking water quality.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/5/1247/
s1. Table S1: Total relation matrix resulting from the decision-making trial and evaluation laboratory
(DEMATEL) application.
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Appendix A DEMATEL and FTOPSIS Results

Table A1. Values of prominence for each factor and final ranking of dependencies.

Factor r = c Prominence Order Ranking

P1 1.437216965 2.87443393 37 P12 Iron
P2 2.973143464 5.946286928 6 P3 Phosphate
P3 3.17935789 6.358715781 4 P9 Betaproteobacteria
P4 2.345268204 4.690536408 17 P10 Turbidity
P5 1.726788409 3.453576818 32 B2 Manganese
P6 2.251308008 4.502616016 23 B8 Diversity
P7 2.030897355 4.06179471 27 B4 Spirochaetia
P8 2.640276655 5.280553311 12 B16 Gammaproteobacteri
P9 3.448076894 6.896153789 1 P2 Flavobacteriia
P10 3.137029854 6.274059707 5 B15 Gemmatimonadetes
P11 2.240798202 4.481596404 24 B3 Deltaproteobacteria

http://www.mdpi.com/2073-4441/12/5/1247/s1
http://www.mdpi.com/2073-4441/12/5/1247/s1
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Table A1. Cont.

Factor r = c Prominence Order Ranking

P12 3.424555671 6.849111342 2 B5 Aluminium
P13 1.509733521 3.019467042 36 P8 Acidobacteria
B1 1.58008322 3.160166439 34 B21 Bacilli
B2 3.393248734 6.786497469 3 B9 Anaerolineae
B3 2.895992476 5.791984953 8 B25 Holophagae
B4 2.653556974 5.307113947 11 B19 Total organic carbon
B5 2.511551785 5.02310357 14 B24 Bacteroidete
B6 1.395898146 2.791796292 38 P4 Sphingobacteriia
B7 1.927236046 3.854472092 29 B11 Firmicutes
B8 2.815970477 5.631940955 9 B23 Bacteroidia
B9 2.303522588 4.607045176 21 B12 Chloroflexi
B10 1.953345677 3.906691354 28 B7 pH
B11 2.528074142 5.056148284 13 B10 Nitrate
B12 2.341968998 4.683937996 18 P6 Planctomycetia
B13 1.548426935 3.09685387 35 P11 Cytophagia
B14 1.835317607 3.670635214 30 B17 Chlorine
B15 2.201492206 4.402984412 25 B20 Cyanobacteria
B16 2.93537933 5.870758661 7 P7 Mollicutes
B17 2.320906655 4.64181331 19 B14 Clostridia
B18 2.369284818 4.738569635 15 B22 Spirochaetes
B19 2.112981146 4.225962291 26 B13 Temperature
B20 2.351855933 4.703711866 16 P5 Verrucomicrobia
B21 1.752601241 3.505202483 31 B26 Alphaproteobacteria
B22 2.266608635 4.533217271 22 P13 Planctomycetes
B23 2.314947689 4.629895379 20 P1 Sulphate
B24 2.711514009 5.423028017 10 B1 Richness
B25 1.652805885 3.305611769 33 B6 Actinobacteria

Table A2. Fuzzy evaluations of bacteria concentration referred to the February 2012 measurement.

ID C1 C2

B1 20.49107931 22.98176432 35.19847571 17.49200859 24.68045308 25.27149145
B2 6.999646706 7.151476659 9.267970455 5.299802556 11.94256668 15.4431105
B3 4.560177834 5.074191839 15.04694037 6.692299699 10.77111383 13.02206152
B4 0.393775802 3.161985515 3.85331385 0.020783539 1.1318975 1.666710071
B5 4.930240006 9.649355238 21.37821531 6.791843538 8.375766393 9.982707122
B6 6.66573253 8.351857733 11.1596891 10.72682492 10.88049168 22.21760366
B7 0 0.232199692 7.138774214 0 0.639312477 11.86228808
B8 1.258611553 1.431230859 2.229279136 0.539747419 0.572931587 6.131144134
B9 0.176647235 1.144984687 1.390917752 0 1.582560394 12.63639198
B10 1.174976183 2.40606922 8.386327504 3.153727962 4.574752397 5.840174582
B11 0 0 0.749444268 0 0 1.203156332
B12 0.039745628 0.527151477 3.342874872 0.463553738 0.654681492 2.814022952
B13 0.080068859 0.387424579 0.463698993 0 1.013047215 3.018393334
B14 0.018015493 0.225225225 0.381073357 0 0.317716607 1.62972279
B15 0.368370911 2.295974538 5.272919979 0 0 0.005240266
B16 0.317561131 1.175010509 4.107048225 0 3.143311024 5.502279516
B17 0.260400127 0.980392157 1.937666393 0 0 0
B18 0.02540489 1.801801802 2.259943551 0 1.828172609 1.844573704
B19 0 0.174149769 0.251722311 0 0 0
B20 0 0.04857799 0.058049923 0 0 0
B21 0 0.379791556 1.373180936 0 0.01039177 1.294345753
B22 0 0 0 0 0 0
B23 0 0.002001721 0.587352058 0 0 0
B24 0 0.05404648 1.519166225 0 0 0
B25 0 0.438377004 0.507860802 0 0 0.282974375
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Table A3. Normalised and weighted fuzzy matrix referred to the February 2012 measurement.

ID C1 (w1=0.5) C2 (w2=0.5)

B1 0.000014205 0.000021756 0.000024401 0.000019785 0.000020259 0.000028584
B2 0.000053949 0.000069915 0.000071432 0.000032377 0.000041867 0.000094343
B3 0.000033229 0.000098537 0.000109645 0.000038396 0.000046420 0.000074713
B4 0.000129758 0.000158128 0.001269758 0.000299992 0.000441736 0.0240575
B5 0.000023388 0.000051817 0.000101415 0.000050087 0.000059696 0.000073618
B6 0.000044804 0.000059867 0.000075010 0.000022504 0.000045954 0.000046612
B7 0.000070040 0.002153319 1 0.000042150 0.00078209 1
B8 0.000224288 0.00034935 0.000397263 0.000081551 0.000872705 0.000926359
B9 0.000359475 0.000436687 0.0028305 0.000039568 0.000315944 1
B10 0.000059621 0.000207808 0.000425541 0.000085614 0.000109296 0.000158543
B11 0.000667161 1 1 0.000415574 1 1
B12 0.000149572 0.000948494 0.01258 0.000177682 0.00076373 0.001078624
B13 0.001078286 0.001290574 0.006244625 0.000165651 0.00049356 1
B14 0.001312083 0.00222 0.027753889 0.000306801 0.00157373 1
B15 0.000094824 0.000217772 0.001357328 0.095415 1 1
B16 0.000121742 0.000425528 0.0015745 0.000090871 0.000159068 1
B17 0.000258042 0.00051 0.001920122 1 1 1
B18 0.000221244 0.0002775 0.01968125 0.000271065 0.000273497 1
B19 0.001986316 0.002871092 1 1 1 1
B20 0.008613276 0.010292727 1 1 1 1
B21 0.000364118 0.001316512 1 0.000386296 0.048115 1
B22 1 1 1 1 1 1
B23 0.000851278 0.249785 1 1 1 1
B24 0.000329128 0.009251296 1 1 1 1
B25 0.000984522 0.001140571 1 0.001766944 1 1

Table A4. Final bacteria rankings for the four periods of observation.

February 2012 June 2012 October 2012 February 2013

CCi Ranking CCi Ranking CCi Ranking CCi Ranking

0.000021904 B1 0.000032782 B1 0.000020284 B1 0.000018493 B1

0.000050556 B6 0.000092323 B6 0.000054029 B6 0.000134639 B6

0.000064015 B2 0.000173322 B3 0.000314969 B3 0.000151797 B2

0.000064507 B5 0.000473575 B2 0.000460293 B14 0.000242965 B14

0.000071328 B3 0.000609658 B5 0.000489808 B10 0.000273064 B3

0.000198617 B10 0.000679344 B14 0.000551176 B5 0.000915538 B5

0.000533991 B8 0.001587454 B10 0.000618129 B2 0.001244508 B15

0.003518699 B17 0.001798972 B15 0.000916142 B15 0.00212396 B4

0.004021346 B11 0.001857045 B19 0.012192723 B17 0.003477588 B17

0.007296215 B4 0.002647 B11 0.012280875 B9 0.005532909 B9

0.241561775 B15 0.004477637 B9 0.014121489 B24 0.028684001 B10

0.241845487 B9 0.006075334 B23 0.014330545 B4 0.241510047 B19

0.242680267 B12 0.011889233 B25 0.061908005 B13 0.243271905 B11

0.24738986 B13 0.241329775 B16 0.24315878 B11 0.243461954 B12

0.349935656 B14 0.241336195 B4 0.2644993 B8 0.243912411 B8

0.414398757 B7 0.241677682 B8 0.419032998 B16 0.342153911 B20

0.41738494 B19 0.242711521 B17 0.426324756 B25 0.342212028 B25

0.50033904 B23 0.414485803 B20 0.432738399 B19 0.342907479 B22

0.500513044 B16 0.416274632 B13 0.501509865 B23 0.346318664 B13

0.501015736 B25 0.422019615 B24 0.505008398 B12 0.346642736 B16

0.659998225 B22 0.500396692 B12 0.506825384 B18 0.500423791 B18

0.661057314 B18 0.502661286 B18 0.511728433 B7 0.501795598 B24

0.688589598 B21 0.503899708 B7 0.594284831 B20 0.667389964 B21

0.763948195 B24 0.659464916 B22 0.660197068 B22 0.759022559 B23

1 B20 0.659802486 B21 1 B21 0.759056766 B7
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