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Abstract: Runoff reduction in most river basins in China has become a hotpot in recent years.
The Gushanchuan river, a primary tributary of the middle Yellow river, Northern China, showed a
significant downward trend in the last century. Little is known regarding the relative contributions of
changing environment to the observed hydrological trends and response on the runoff generation
process in its watershed. On the basis of observed hydrological and meteorological data from
1965–2010, the Mann-Kendall trend test and climate elasticity method were used to distinguish the
effects of climate change and human activities on runoff in the Gushanchuan basin. The results
indicate that the runoff in the Gushanchuan Basin has experienced significant declines as large as
77% from 1965 to 2010, and a mutation point occurred around 1997; the contribution rate of climate
change to runoff change is 12.9–15.1%, and the contribution rate of human activities to runoff change
is 84.9–87.1%. Then we divided long-term data sequence into two stages around the mutation
point, and analyzed runoff generation mechanisms based on land use and cover changes (LUCC).
We found that the floods in the Gushanchuan Basin were still dominated by Excess-infiltration runoff,
but the proportion in 1965–1997 and 1998–2010 decreased gradually (68.46% and 45.83% in turn).
The proportion of Excess-storage runoff and Mixed runoff has increased, which means that the runoff

is made up of more runoff components. The variation law of the LUCC indicates that the forest area
increased by 49.61%, the confluence time increased by 50.42%, and the water storage capacity of the
watershed increased by 30.35%.
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1. Introduction

The world’s population is increasing rapidly so that the scale of the economy is expanding, and
humans are over-interfering with the natural ecosystems. It has resulted in a series of ecological and
environmental problems in the Loess Plateau located in the arid and semi-arid regions of the north
in China. That is the main problem of soil erosion [1,2]. For a long time, water shortage and soil
erosion have become the main sources that restrict the economic development in the Loess Plateau.
It is known as “Frequent drought and hardship rank first among the world”, and 1/5 of the poverty
counties in China are distributed in the Loess Plateau [3]. Vegetation is an important part of soil
and water conservation, and it is the core of the ecological environment construction of the Loess
Plateau. It is also one of the main ways to restore the ecological decline of the Loess Plateau [4,5].
Over the past 50 years, the country has successively implemented a series of ecological construction
projects such as key construction of soil and water conservation, construction of the Three-North
Shelterbelt Program (TNSP), protection of natural forest resources, returning farmland to forests and
grasslands, and construction of silt dams on the Loess Plateau. Most of these major initiatives are
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based on vegetation restoration and reconstruction. All these initiatives are in order to enhance the
benign development of regional water cycle and promote the balance of the socio-economic-ecological
system. The melioration of soil erosion in the Loess Plateau through vegetation restoration can be
divided into two aspects: (1) changing the water circulation path to prevent soil erosion, perennial
vegetation can reduce surface runoff by increasing effective vegetation coverage; (2) increasing soil
water content and increasing vegetation productivity.

The Loess Plateau in China is the main runoff area of the Yellow River Basin. After the 1980s, the
Yellow River water volume showed a notable downward trend [6,7] and the cause of the sharp decline
of runoff in the Yellow River has always been the focus of academic debate. Feng [8] pointed out that
due to land use and cover changes (LUCC) on the Loess Plateau, its water yield may decline. Besides,
with the large-scale vegetation restoration on the Loess Plateau, the flow process is significantly affected,
and its impact depends on the vegetation type [9,10]. However, Shi [11] found that the contribution
rate of climate change to the reduction of runoff in the middle reaches of the Yellow River accounted
for more than 40%. The impact of changing environment on runoff is still controversial. Currently,
most of the research focuses on quantitative analysis of land use change on the basin’s hydrological
cycle. This study intends to explore changes in runoff process in typical basins in the middle reaches of
the Yellow River from the perspective of runoff generation patterns. Runoff generation, referring to
the process of generating various runoff components in the basin. It is essentially the movement and
development process of water under the combined effects of various factors on the underlying surface,
it is also the redistribution process of rainfall on the underlying surface (ground and aeration zone).
Different underlying surface conditions have different runoff generation mechanisms, and different
runoff generation mechanisms affect the development of the entire runoff process. It presenting
different runoff characteristics. At present, the natural runoff generation mechanism can be divided
into four types: Surface runoff (Rs), Saturated ground runoff (Rsat), Interflow (Rint) and Underground
runoff (Rg) [12–14]. These four classes of runoff mechanisms comprehensively show three phenomena:
Excess-infiltration runoff, Excess-storage runoff and Mixed runoff. The Loess Plateau has sparse
rainfall, high rainfall intensity, low vegetation coverage, and the thickness of the aerated zone up to
tens of meters or even hundreds of meters, which is a typical Excess infiltration runoff area [15].

The Gushanchuan Basin is located in the first sub region of Loess Hilly and gully area, with
extremely serious soil erosion and fragile ecological environment. However, the hydrological cycle in
this special area still have not been investigated thoroughly. This paper aims to identify the runoff

process, and gains insight into the runoff generation mechanism variation to the response of LUCC,
based on the quantitative analysis of the impacts of climate change and human activities on runoff

in the Gushanchuan Basin. It also tries to seek the cause of the decrease in the amount of runoff in
the Yellow River from the perspective of the runoff process, and provide the necessary scientific basis
for the effectiveness of ecological construction of the Loess Plateau and the formulation of regional
sustainable development countermeasures.

2. Materials and Methods

2.1. Study Area

Gushanchuan Basin is a primary tributary on the right bank of the middle reaches of the Yellow
River in Shaanxi and Inner Mongolia province, China (110◦32′24”–111◦05′24”E, 39◦00′00”–39◦27′36”N).
Originating from Urigol Township, Inner Mongolia, through the Junggar Banner and Fugu County of
Shaanxi Province, and finally flows into the Yellow River near Fugu County, with a drainage area of
1272 km2 (Figure 1). Mean annual precipitation of this basin is about 420 mm, and the interannual
variation of rainfall is unevenly distributed. The flood season (June-September) accounts for 80% of
total precipitation. Affected by the semi-arid continental climate in the mid-temperate zone, the basin
has long sunshine duration and large evapotranspiration. Short-term heavy rainfall is the main cause of
runoff generation in the basin, often causing mountain torrents and severe soil erosion. The geomorphic
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types in the basin are mainly loess hills and gullies, and there are a few loess sand covered areas in
the upper reaches. The main soil type is loessial soil, followed by chestnut soil. The soil structure
is loose, with great permeability, and it is easy to form the surface runoff. Since the 1970s, a large
number of soil and water conservation measures were implemented in the basin, and the land use
changed significantly which has affected the characteristics of regional runoff. Therefore, detecting and
analyzing the impact of changing environment of Gushanchuan basin can be important to manage
water resources in this watershed.
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Figure 1. Map of the Gushanchuan basin. (A) Inset map showing the location of the Yellow River Basin
in China; (B) Location of the Gushanchuan watershed along the Yellow River basin; (C) The control
catchment of Gushanchuan basin and distribution of rainfall-runoff gauge stations.

2.2. Data Collection

For the purposed research, we collected annual and hourly data series between 1965 and 2010 of
runoff, from Gaoshiya hydrological station in Gushanchuan Basin; hourly rainfall data was obtained
from four gauges (Xinmiao, Xinmin, Gushan and Gaoshiya) with a time series of 46 years, from 1965 to
2010. Besides, there is no national level meteorological station in the basin, the evaporation data of
Fugu meteorological station in 1965–2010 near the basin is selected, and the evapotranspiration of the
basin was calculated by inverse distance weighted interpolation (IDW). All the above data are obtained
from the Yellow River Hydrological Yearbook [16]. The spatial resolution of the basin’s DEM (Digital
Elevation Model) data is 90 m. The land use data comes from Landsat series of remote sensing images,
which are acquired by human-computer interactive interpretation based on ENVI (The Environment
for Visualizing Images) and ArcGIS, the resolution is 1 km, provided by Geospatial Data Cloud site,
Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn).
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2.3. Methodology

2.3.1. Analysis of Meteo-Hydrological Changes

In order to identify meteo-hydrological trends, we first apply the widely used Mann-Kendall
trend test [17] to the time series of precipitation, runoff and potential evapotranspiration and point
out significant changes in Gushanchuan basin. For a time series X (X = x1, x2, . . . , xn) which has n
samples, the Mann- Kendall statistics S and UF were given as:

S =

n−1∑
i=1

n∑
j=i+1

sgn
(
xi − x j

)
(1)

UF =
Sk − E[Sk]

Var[Sk]
(k = 1, 2, . . . , n) (2)

where xi and xj represent the values in years i and j, i > j, n is the record length of the series, and
sgn(x − xj) is a characterization of the function. E(SK) and Var(SK) represent the mean and variance of
SK, respectively.

Then the time series order is reversed (i.e., xn, xn-1, . . . , x1) and the above process is repeated to
compute statistical variables UB. Finally, we draw curves of UF and UB, and if the two curves have an
intersection point in the confidence level, then it can be considered as a mutation point. Researchers
believe that after the hydrological sequence is significantly affected by climate change or human
activities, the stability of its distribution sequence will be disturbed or destroyed, showing a certain
degree of phase or trend. Therefore, according to the detected runoff mutation point, the research
period can be divided into base period and mutation period. The base period watershed is in a natural
state, means that the runoff is only affected by climate change. However, in the mutation period,
human activities may have a significant impact on the runoff change.

2.3.2. Estimating the Impact of Climate Variability and Human Activities on Runoff

For a certain watershed, the total changes (∆R, mm) of runoff is a synthetic production of climate
change (∆RC, mm) and human activities (∆RH, mm), it can be calculated from the difference between
the measured runoff before and after the mutation point. Therefore, to quantitatively distinguish
the impact of climate change and human activities on runoff, only one factor should be quantified,
and the effect of the other factor can be calculated by formula (3). Based on long-term water balance
assumptions and the Budyko hypothesis [18], the evapotranspiration (Ea) is a function of the dryness
index (φ = E0/P). Then the contribution of climate change to runoff can be derived by calculating the
elastic coefficient of runoff on precipitation and potential evaporation, which is expressed as:

∆R = ∆RC + ∆RH (3)

∆RC = ∆RP + ∆RE = εP
R

P
∆P + εE0

R

E0
∆E0 (4)

εP + εE0 = 1 (5)

εP = 1 +
φF′(φ)

1− F(φ)
(6)

where ∆RP, ∆RE are contributions of rainfall and potential evapotranspiration to runoff, respectively.
εP, εE0 are dimensionless parameters which represent elastic coefficients of runoff on precipitation and
potential evapotranspiration, respectively; P, R and E0 are multi-year average of precipitation (mm),
runoff depth (mm) and potential evapotranspiration (mm) of the study basin; F(φ) and F′(φ) can be
calculated by the following Budyko forms [18–21] (Table 1):
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Table 1. Four commonly used forms of F(φ) and F′(φ) based on the Budyko hypothesis.

Forms F(φ) F′(φ)

Budyko [φtanh(1/φ)(1 − e−φ)]0.5 0.5[φtanh(1/φ)(1 − e-φ)]0.5
× [(tanh(1/φ) −

sech2(1/φ)/φ)(1 − e-φ) + φtanh(1/φ) e−φ]
Turc-Pike (1 + φ−2)−0.5 1/φ3 [(1 + (1/φ)2)1.5]
Fubaopu 1 + φ − (1 + φα)1/α 1 − (1 + φα)1/α − 1φα − 1

Zhang (1 + ωφ)/(1 + ωφ + 1/φ) (ω + 2ω/φ−1 + 1/ φ2)/(1 + ωφ + 1/φ)2

Note: α and ω are parameters of each formula. According to optimization method, α = 2.5 and ω = 0.9.

2.3.3. Runoff Generation Pattern

Due to the uneven spatial distribution of rainfall and underlying surface conditions, the runoff

mechanism is changing during the rainfall process, and nine types of different runoff mechanisms are
combined under specific aerated zone structures and rainfall characteristics [22] (Table 2). However,
according to the impact factors, it can be divided into two kind of patterns, namely the Excess saturation
runoff and the Excess infiltration runoff patterns. Generally, the impact factors of Excess saturation
runoff are P, E, W0, and the Excess infiltration runoff patterns are P, E, W0, i [23], which is expressed as:

R = fstorage(P, E, W0) (7)

R = fexcess(P, E, W0, i) (8)

where R is runoff depth generated by rainfall (mm); P is the total amount of precipitation (mm); E is
watershed evapotranspiration (mm); W0 is initial water storage capacity (mm); i is rainfall intensity
(mm/h).

Table 2. Combination of basin runoff generation mechanism.

Type Composition
of Runoff Impact Factors Type Composition

of Runoff Impact Factors

1 R = Rs P, E, W0, i 6 R = Rsat + Rint P, E, W0, i
2 R = Rs + Rg P, E, W0 7 R = Rsat + Rint + Rg P, E, W0
3 R = Rg P, E, W0 8 R = Rint P, E, W0, i
4 R = Rs + Rint P, E, W0, i 9 R = Rint + Rg P, E, W0
5 R = Rs + Rint + Rg P, E, W0

In addition, owing to the complexity of the spatial and temporal distribution of rainfall, the above
two runoff patterns are intertwined which leads to the so-called Mixed runoff. This usually occurs in
semi-arid and semi-humid areas. Therefore, the runoff pattern is the embodiment of different runoff

mechanism combinations of each unit in the watershed. However, for a specific watershed, its runoff

process is not static and difficult to describe quantitatively with simple indicators. Table 3 shows the
integrated analysis of this study along with the runoff generation pattern to deduce the runoff process
qualitatively, quantitatively, and comprehensively [24], on the basis of flood generation mechanism in
the Gushanchuan Basin.
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Table 3. Comprehensive analysis table of runoff generation patterns.

Objects Excess Saturation Runoff Excess Infiltration Runoff

Average annual rainfall P > 1000 mm P < 400 mm
Runoff coefficient >0.4 <0.2

Symmetry of Flow Process Line High Low
Impacts of rainfall intensity Low High
Influencing factors of flow Pa, P Pa, i

Surface soil structure Loose Compact
Water shortage capacity Small Big

Proportion of Rg High Low
Relativity Related to P Related to i

2.3.4. Antecedent Precipitation Index

Antecedent precipitation index (Pa) reveal the amount of rainfall that was retained in the soil
during the previous rainfall [25]. In this study, the recursive formula was used to estimate the amount
of Pa in the early stage of the flood, computed as:

Pa,t = kPt−1 + k2Pt−2 + · · ·+ kn(Pa,t−n + Pt−n) (9)

And from this, the formula for calculating the amount of rainfall in the early stage is derived:

Pa,t+1 = k(Pa,t + Pt) (10)

where Pa, t is the antecedent precipitation index (mm) on day t; n is the number of previous rain days
affecting the runoff, usually takes about 15 days, Pt is the t-day rainfall (mm); Pt − 1, Pt − 2 . . . is the
rainfall (mm) on the 1 day before t day, 2 days before. The daily decrease coefficient of soil water
content k is calculated by the following formula:

k = 1−
Em

Wm
(11)

where: Em is the watershed evapotranspiration capacity (mm); Wm is the water storage capacity (mm)
of the basin

2.3.5. Watershed Water Storage Capacity

The watershed water storage capacity (Wm) is derived from multiple flood events [26], which selects
the rainfall floods that can make the water content of the basin saturated and generate a large flood
process. Then let Wm, 0 = Im, where the loss Im = P − R. The calculation process of Wm can be
estimated as:

K j = 1−
Em

Wm, j
(12)

W0, j =

n∑
0

Pi × ki
j (13)

Wm, j = Wm, j−1 + W0, j−1 (14)

where Kj is daily decrease coefficient of soil water content under different iterations; Pi is the rainfall
for the i day before the flood (mm); i is the power; j is the number of iterations; Wm, 0 is the assumed
value for the first iteration (mm). After several iterations, Wm tends to a stable value, which is the
water storage capacity of the basin.
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3. Results and Discussion

3.1. Analysis of Meteo-Hydrologic Changes

Over the past 50 years, the annual runoff in the Gushanchuan Basin has shown a downward
trend. From 1965 to 1980, the annual runoff fluctuated greatly, and after 1980, the runoff decreased
sharply, the annual average runoff was 9.9 million m3 (1965–1980), it plummeted to 4.0 million m3

(1981–2010), the latter being merely 40.3% of the former (Figure 2A). The Mann-Kendall trend test was
used to analyze the precipitation, runoff, and potential evapotranspiration in the Gushanchuan Basin.
The results show that the statistical ZC values of the above meteo-hydrological factors are 0.08, −0.29,
and −4.53, respectively. However, only the absolute value of runoff statistical value ZC > 1.96, indicates
that the runoff change in the study area has reached a significant level. According to the Figure 2B, two
curves intersected in 1997, and the intersection point was laid in two 95% confidence lines, showing
that the annual runoff was abruptly changed around 1997, considering the vegetation restoration on
the Loess Plateau since 1997, the vegetation adaptation to flooding events in terms of physiological,
morphological, and biomechanical properties, may lead to the decrease of runoff [27]. Compared with
the pre-mutation period, the annual runoff and precipitation in the catchment during the post-period
decreased by 2.5% and 77%, but only the annual runoff series shows a significant downward trend
within the confidence level of 0.5 (Table 4). The annual potential evapotranspiration changes are too
small to attract attention. Hence, significant changes in runoff are not just caused by climate change,
and human activities may have played an important role during this period.
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Table 4. Variation of meteo-hydrological factors around the mutation point of Gushanchuan basin.

Variables ZC Significant Mean Value (mm) Change (%)
1965–1997 1998–2010

P −0.08 ns 427.1 402.4 −2.5
E0 −0.29 ns 2426.3 2410.7 −0.0
R −4.53 ** 60.5 13.9 −77.0

Note: ns indicates significance level exceeds 0.05; ** indicates significance levels of 0.0.5.

According to the principle of water balance, the change of annual runoff for many years is the
product of the combined effect of precipitation and potential evapotranspiration. In order to deeply
understand the reasons for the decrease of runoff in Gushanchuan basin, the spatial distribution of
changes in the average annual precipitation and potential evapotranspiration are shown in Figure 3.
From the base period to the mutation period, the multi-year average precipitation of each rainfall



Water 2020, 12, 1237 8 of 14

station has decreased to varying degrees, especially in the northwest and southwest regions of the
basin. The largest decrease in rainfall occurs at Xinmiao Station, which is −48–−44 mm (Figure 3A).
The decrease in precipitation at each rainfall station is the direct cause of the runoff reduction in
Gushanchuan basin. The spatial patterns of changes in potential evapotranspiration were generally
consistent, which characterized by the more decrease in the upstream region than that in the downstream
region (Figure 3B).
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The impact of climate change and human activities on runoff change based on Budyko hypothesis
is represented in Table 5. The results manifest that the elasticity coefficients of runoff to precipitation
estimated by using four functions based on the Budyko hypothesis are very close, with an average
value of 2.5. The contribution rate of climate change to runoff change is between 12.9% and 15.1%, and
the contribution rate of human activities to runoff change is between 84.9% and 87.1%, and the average
values are 13.9% and 86.1%, respectively. This result is similar to that of Zhan [28], which investigated
the relative contributions of human activity and climate change to the hydrological response of the
Weihe River Basin, the largest tributary of the Yellow River. However, all the methods adopted by
them belong to the category of statistical methods and lack of physical mechanism. Wang [29] used
data from 1958–2008 to explore the factors influencing the reduction of runoff in Huangfuchuan Basin,
based on the methods of accumulative anomaly analysis. The results show that the contribution rates
of human activities to the runoff change in Huangfuchuan Basin are 63.57% and 83.19%, during the
period of 1980–1997 and 1998–2008, respectively. Overall, the analysis seems to suggest that the human
activities play a critical role in the reduction of runoff in the Yellow River basin.

Table 5. Separating the effects of climate change and human activities by climate elasticity method.

Variables Budyko Turc-Pike Fubaopu Zhang Average

εP 2.6 2.7 2.4 2.3 2.5
∆RC (mm) −6.8 −7.0 −6.3 −6.0 −6.5
∆RH (mm) −39.8 −39.6 −40.3 −40.6 −40.1

∆RC (%) 14.6 15.1 13.5 12.9 13.9
∆RH (%) 85.4 84.9 86.5 87.1 86.1

3.2. Characteristics of LUCC (Land Use and Cover Changes)

In the past 50 years, many soil and water conservation measures such as afforestation, check dams
and terracing have been implemented. As of 2010, a total of 49 small and medium check dams were
built, with a dam area of 8.9 km2, accounting for 0.70%. The scale of terracing has gradually increased,
with a terracing ratio of 2.97%, and the number of reservoirs has also increased [30]. All these human
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activities greatly altered the land use and land cover, and further affected the land surface hydrological
processes [31,32]. Then we analyzed the relationship of land use conversion based on three periods
of remote sensing data from 1976, 1996, and 2006. Showing that the proportion of grassland area in
the Gushanchuan Basin is the largest (60.89–62.92%), followed by farmland (30.59–32.52%), and the
urban construction land area is the smallest (0.35–0.55%). Between 1976 and 2006, the area of farmland
decreased year by year, and the area of forest, grassland and urban construction land increased in
different extents, and the water area remained basically stable. In addition, farmland has the greatest
change in area among all land use types. The total cultivated area of 24.52 km2 has been converted
to other land use types. The main conversion form is conversion of farmland into forest land, and
grassland into forest land. The forest area is increased by 18.22 km2, the grass area increased by
5.39 km2, demonstrating that the effect of the policy “reverting farmland to forests, returning farmland
to grassland” was significant (Figure 4, Table 6).
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Table 6. Land use classification statistics of Gushanchuan basin.

Year
Type Farmland

(km2)
Forest
(km2)

Grass
(km2)

Water
(km2)

Urban Construction
(km2)

Sum
(km2)

1976 413.68 65.47 774.55 12.28 6.02 1272
1996 405.94 48.41 800.32 12.82 4.51 1272
2006 389.16 83.69 779.94 12.16 7.05 1272

Average 402.93 65.85 784.94 12.42 5.86 1272
Proportion (%) 31.68 5.18 61.71 0.97 0.46 100

3.3. Correlation of Rainfall-Runoff

Based on the mutation point of the Gushanchuan Basin, the time sequence data was divided
into two stages for the research, and in accordance with the principle that the flood peak flow is
greater than 100 m3/s, the first stage (1965–1997) collected 111 flood events, and the second stage
(1998–2010) collected 24 times, with a total of 135 rainfall and flood data. Then we analyzed the
rainfall-runoff characteristics of each flood event. Due to the influence of climate and land use changes,
the rainfall-runoff relationship is different at each stage. The rainfall-runoff correlation coefficients in
two stages are 0.48 and 0.65, respectively. In comparison, the rainfall of flood events in has decreased
significantly associated with the second stage (Figure 5A). The correlation between rainfall intensity
and runoff shows a slight downward trend, namely 0.56 and 0.51. For the flood events of the same
magnitude of rainfall intensity in the two stages, the runoff is greater in the second stage (Figure 5B).
Different from the humid area, the correlation coefficient of rainfall and runoff in this basin is relatively
low, which can be analyzed from two aspects: (1) The effect of land cover changes. The grassland
in Gushanchuan watershed can alleviate the impact of raindrops on the surface soil, increase the
roughness of the surface soil, and reduce the impact of rainfall on runoff generation. With the increase
of rainfall intensity, the rainfall that can penetrate the grass layer increases, namely, the infiltration
capacity of the surface soil increases, so the runoff yield increases apparently. (2) The influence of
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antecedent precipitation index (Pa). The amount of Pa in the soil not only affects how much water
the surface soil can store at the beginning of rainfall, but also affects the infiltration rate of soil water.
Therefore, the Pa is also a very important factor affecting runoff. The lower the soil water content, the
later the runoff generation begins [33].Water 2020, 12, x FOR PEER REVIEW 10 of 14 
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The rainfall duration of the Gushanchuan Basin has increased, and most of the rainfall lasted
between 20–40 h. The mean rainfall at each stage were 47.9 and 38.0 mm. Based on the criteria of
meteorological classification, the flood events are divided into four levels: light rain (P < 10 mm),
moderate rain (10–25 mm), heavy rain (25–50 mm) and rainstorm (P > 50 mm). Among the whole
flood events, there were 21 light rains, 45 moderate rains, 39 heavy rains and 30 rainstorms. Therefore,
the Gushanchuan Basin mainly suffered from moderate rains and heavy rains. The flood duration
showed a slightly increase trend, as well as the peak flow showed a significant decrease over the years
(Table 7). Under the influence of land use and cover changes, a similar phenomenon also appeared in
the Chabagou basin, a tributary of the Yellow River [34].

Table 7. Characteristics of flood events in different stages of Gushanchuan basin.

Characteristics 1965–1997 1998–2010 Change (%)

Mean rainfall duration (h) 12.3 17.3 40.7
Mean rainfall (mm) 47.9 38.0 −20.7

Mean flood duration (h) 47.6 53.8 13.0
Mean peak flow (m3/s) 1480.6 314.7 −78.7

3.4. Diagnostic Analysis of the Runoff Generation Process

We collected the characteristics of three typical floods in the Gushanchuan Basin. In the 19680821
flood (Figure 6A), the total rainfall was 31.36 mm, the rainfall lasted for 12 h, the average rainfall
intensity was 2.6 mm/h, and the maximum rainfall intensity was 8.7 mm/h. The total rainfall during
this rainfall process was small and short in duration, but the short-term rainfall intensity was heavy.
According to the law of runoff generation, the main components of the runoff of this flood were surface
runoff and interflow. The antecedent precipitation index (Pa) was only 2.3 mm, with dry and compact
soil, combined with the Table 3, indicated that the flood is mainly dominated by Excess infiltration
runoff. During the 15 days before the 19950728 flood (Figure 6B), light rain continued to occur and the
surface soil layer was relatively humid, the Pa was calculated to be 23.2 mm in early stage. The rainfall
intensity of this flood was not great, but it was more evenly distributed in space, and the runoff
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coefficient was 0.42. It can be considered that the surface layer of the basin is full, and the type of runoff

generation mechanism was Rs + Rint + Rg, namely, Excess saturation runoff pattern; The 19940802
flood (Figure 6C) was a multi-peak flood. There was almost no rain in the first half month of the basin,
which confirms that the runoff generation pattern in the early phase was mainly Excess infiltration
runoff. With continuous rainfall leading to an increase in soil water content, the runoff generation type
has changed from a single surface runoff mechanism (Rs) to Rs + Rint + Rg, and it is comprehensively
judged that this flood is a Mixed runoff pattern. We can see that the rainfall and Pa in the 19680821 flood
was small, while the rainfall and Pa in the 19950728 flood were both large. Although the rainfall in the
Mixed runoff flood was larger, reaching 72.53 mm, the Pa in the early stage was extremely small, which
leads to the Excess infiltration runoff pattern in the early stage of the basin. Hence, the antecedent
precipitation index in the early stage is also a very important factor for basin runoff generation process.

Water 2020, 12, x FOR PEER REVIEW 11 of 14 

 

runoff generation type has changed from a single surface runoff mechanism (Rs) to Rs + Rint + Rg, and 
it is comprehensively judged that this flood is a Mixed runoff pattern. We can see that the rainfall 
and Pa in the 19680821 flood was small, while the rainfall and Pa in the 19950728 flood were both large. 
Although the rainfall in the Mixed runoff flood was larger, reaching 72.53 mm, the Pa in the early 
stage was extremely small, which leads to the Excess infiltration runoff pattern in the early stage of 
the basin. Hence, the antecedent precipitation index in the early stage is also a very important factor 
for basin runoff generation process. 

 
Figure 6. 19680821 (A), 19950728 (B) and 19940802 (C) flood process line of Gushanchuan Basin. 

From 1965 to 2010, the Gushanchuan Basin was dominated by Excess infiltration runoff, 
accounting for 64.44% of the flood events, and the Mixed runoff accounted for 32.60%, only 4 Excess 
saturation runoffs happened during this period. In these two stages, the floods with Excess 
infiltration runoff accounted for 68.46% and 45.83% of the total floods, respectively, as well as the 
proportion of Excess infiltration runoff decreased significantly. The proportion of Mixed runoff 
increased apparently by the stage, namely 30.63% and 41.67%. Nevertheless, the various stages are 
still dominated by Excess infiltration runoff, but the proportion of its occurrence is decreasing, while 
the proportion of another two kinds of runoff generation patterns is increasing (Table 8). 

Table 8. Statistics of runoff generation patterns in different stages. 

Pattern 
Year 

Excess Infiltration 
Runoff Excess Saturation Runoff Mixed Runoff Sum 

First stage 
1965–1997  76 (68.46%) 1 (0.10%) 34 (30.63%) 111(100%) 

Second 
stage 

1998–2010  
11 (45.83%) 3 (12.50%) 10 (41.67%) 24 (100%) 

Sum 87 (64.44%) 4 (2.96%) 44 (32.60%) 135 (100%) 

The area of forest in the Gushanchuan Basin increases rapidly, and vegetation can increase 
rainfall infiltration by improving soil organic matter and porosity. Therefore, land use cover change 
is an important reason for the change of rainfall runoff [35], which affects the process of runoff 
generation by affecting the outflow capacity of groundwater, infiltration capacity and water storage 
capacity [36]. The annual minimum daily flow and the minimum daily flow in flood season can reflect 
the outflow capacity of groundwater, which has increased gradually in the Gushanchuan Basin, 
especially in 1998–2010, the groundwater outflow capacity increased significantly, resulting in 
increased confluence time and reduced peak flow. The area of forest increased by 49.61%, the 
discharge capacity of groundwater increased by 44.04%, the average precipitation before generate 
flow increased by 90.72%, and the confluence time increased by 50.42% (Table 9).  

Generally, with the increase of rainfall amount and intensity, runoff coefficient will gradually 
increase. The process of infiltration is also an important reason for the change of the runoff generation 
mechanism [37]. The stable infiltration rate of forest and grassland is greater than that of farmland, 
and the vegetation affects soil structure, chemical composition and bulk density. Hence, changes in 

Figure 6. 19680821 (A), 19950728 (B) and 19940802 (C) flood process line of Gushanchuan Basin.

From 1965 to 2010, the Gushanchuan Basin was dominated by Excess infiltration runoff, accounting
for 64.44% of the flood events, and the Mixed runoff accounted for 32.60%, only 4 Excess saturation
runoffs happened during this period. In these two stages, the floods with Excess infiltration runoff

accounted for 68.46% and 45.83% of the total floods, respectively, as well as the proportion of Excess
infiltration runoff decreased significantly. The proportion of Mixed runoff increased apparently by
the stage, namely 30.63% and 41.67%. Nevertheless, the various stages are still dominated by Excess
infiltration runoff, but the proportion of its occurrence is decreasing, while the proportion of another
two kinds of runoff generation patterns is increasing (Table 8).

Table 8. Statistics of runoff generation patterns in different stages.

Year
Pattern Excess Infiltration

Runoff
Excess Saturation

Runoff
Mixed Runoff Sum

First stage
1965–1997 76 (68.46%) 1 (0.10%) 34 (30.63%) 111 (100%)

Second stage
1998–2010 11 (45.83%) 3 (12.50%) 10 (41.67%) 24 (100%)

Sum 87 (64.44%) 4 (2.96%) 44 (32.60%) 135 (100%)

The area of forest in the Gushanchuan Basin increases rapidly, and vegetation can increase rainfall
infiltration by improving soil organic matter and porosity. Therefore, land use cover change is an
important reason for the change of rainfall runoff [35], which affects the process of runoff generation
by affecting the outflow capacity of groundwater, infiltration capacity and water storage capacity [36].
The annual minimum daily flow and the minimum daily flow in flood season can reflect the outflow
capacity of groundwater, which has increased gradually in the Gushanchuan Basin, especially in
1998–2010, the groundwater outflow capacity increased significantly, resulting in increased confluence
time and reduced peak flow. The area of forest increased by 49.61%, the discharge capacity of
groundwater increased by 44.04%, the average precipitation before generate flow increased by 90.72%,
and the confluence time increased by 50.42% (Table 9).
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Table 9. Statistics on the convergence characteristics of Gushanchuan Basin.

Items 1965–1997 1998–2010 Change (%)

Forest areas (km2) 55.94 83.69 49.61
Annual minimum flow (m3/s) 1.01 1.40 32.67

Minimum daily flow in flood season (m3/s) 1.93 2.78 44.04
Mean precipitation before generate flow (mm) 9.7 18.5 90.72

Duration of flood recession (h) 14.32 21.54 50.42
Catchment water storage capacity (mm) 73.17 95.38 30.35

Generally, with the increase of rainfall amount and intensity, runoff coefficient will gradually
increase. The process of infiltration is also an important reason for the change of the runoff generation
mechanism [37]. The stable infiltration rate of forest and grassland is greater than that of farmland,
and the vegetation affects soil structure, chemical composition and bulk density. Hence, changes in
vegetation play an important role in the redistribution of rainfall. Normally, deep root vegetation
can alter soil properties to accommodate its water requirements, which may change the soil channels,
increase soil porosity and permeability [38,39]. Studies have shown that the water storage capacity of
forest land is higher than that of other land-use types, and the increase of water storage capacity will
lead to an increase in underground runoff, runoff coefficient and confluence time, a decrease in peak
flow [40]. The forest area in Gushanchuan Basin increased by 49.61%, the catchment water storage
capacity increased by 30.35% (Table 9), and other studies have reached similar conclusions [41].

4. Conclusions

In this research, we selected Gushanchuan basin as the research object, to detect annual runoff

trend and analyze the changes of the runoff generation process based on the flood events data from
1965 to 2010. Showing that the Gushanchuan Basin has experienced runoff decline as large as 77% in
the last century, which is mainly caused by human activities. The runoff generation pattern of the basin
is dominated by Excess infiltration runoff, but it has also changed to some extent, which is manifested
in the increase of runoff components, the proportion of Excess infiltration runoff decreased, and the
proportion of Excess saturation runoff and Mixed runoff increased stage by stage. The variety of land
use conditions by human activities is the main factor affecting the change of the runoff generation
process of the basin. Land use and cover change, as important factors that cause runoff change,
especially in the flood season, cannot be ignored. In the present paper, we only take the Gushanchuan
Basin as an example. How much of the land use type of the Loess Plateau has changed? Whether
its runoff generation process has co-varied? It can also be expanded in the later period in order to
further understand the law of the runoff generation of the Yellow River Basin. In addition, this study
considers the effects of various human activities as a whole, but its comprehensive effects are extremely
sophisticated. We also expect to further refine the research on the response of runoff changes to different
human activities in future research.
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